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SUMMARY

The derivation of molecular models from spatial
density data generated by X-ray crystallography or
electron microscopy is an active field of research.
Here, we introduce and evaluate an approach relying
on the equilibrium sampling of energy landscapes
describing restraints to experimental input data.
Our procedure combines density restraints with
replica exchange methodologies in the parameter
space of the restraints, andwe demonstrate its appli-
cability to both flexible polymers and the assembly of
protein complexes from rigid components. For the
most difficult system studied, we highlight the impor-
tance of advanced data analysis techniques in
mining poorly converged data further. Successful
and unbiased interpretation of input density maps
is a prerequisite for using this approach as an auxil-
iary restraint term in molecular simulations. Because
these simulations will also utilize physical interaction
potentials, we hope that they will contribute to
deriving families of structural models for input data
that are ambiguous per se.

INTRODUCTION

In structural biology, information at atomic resolution is routinely

obtained by two major experimental techniques: X-ray crystal-

lography and nuclear magnetic resonance (NMR) spectroscopy.

In addition, electron microscopy (EM) has seen major advances

in data collection and processing in recent years, pushing its

resolution down to near-atomic resolution (Cheng and Walz,

2009). Interactions of biological matter with electromagnetic or

particle waves through absorption, scattering, or other pheno-

mena produce a signal that is difficult to assign to specific sys-

tem components. This is in contrast to NMR phenomena, which

are very sensitive to nucleus type. Dramatically improved

contrast in absorption or scattering experiments is obtained by

incorporating or absorbing much larger nuclei, and this is used

in such techniques as multiple isomorphous replacement (Green

et al., 1954) in X-ray crystallography or immunogold labeling

(Faulk and Taylor, 1971) in EM. Conversely, for unlabeled

biomolecules, we cannot expect to distinguish signals coming

from, e.g., carbon versus oxygen. This implies that even for

high-resolution data, structural models are obtained indirectly,
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i.e., by minimizing deviations between observed signal and

model-derived signals. The models invariably incorporate auxil-

iary information, which can be very basic (e.g., geometric

parameters of chemical groups) or highly advanced (e.g., solved

crystal structures of individual components when interpreting

EM density maps of macromolecular assemblies; Wriggers

et al., 1999).

Structural information is particularly difficult to obtain for

systems exhibiting heterogeneity. The interpretation of data

on these systems is often ambiguous (DePristo et al., 2004),

and models relying on a combination of independent measure-

ments and human intuition have to be constructed (Marsh et al.,

2012; Petoukhov et al., 2002). The problem is challenging

because conformational disorder may lead to indistinguish-

ability of signals from background. For assemblies such as pro-

tein fibrils (Fändrich et al., 2009), filaments (Fujii et al., 2010), or

large complexes (Cheng and Walz, 2009; Walzthoeni et al.,

2013), any level of conformational or other polydispersity will

render the signal at least partially ambiguous. This can result

in models of mixed resolution, which are similarly found in

NMR ensembles of proteins structures. Structural data that

are of poor or inconsistent quality directly motivate the use of

these experimental signals in computer simulations based on

physicochemical principles (Marsh et al., 2012; Robustelli

et al., 2010; van Gunsteren et al., 2008). Ensembles generated

in silico, which are physically sound and also explain the exper-

imental data, can replace or add to those models relying

partially on human or database input. It is important that this

can highlight limitations to the interpretability of the experi-

mental data alone (by quantifying model degeneracy), and

that it can rank degenerate models by their physical feasibility

rather than by human bias.

Crystal structure refinement generally utilizes least-squares

deviations between model-derived and measured signals,

whether performed in real (Diamond, 1971) or in reciprocal space

(Jack and Levitt, 1978). Here, either density may be subjected to

an optimal linear transform. The parameters of this transform are

generally considered to be meaningless, and it is therefore

equivalent to perform the fitting by maximization of the nor-

malized cross-correlation coefficient. Because of a rigorous

theoretical framework being unavailable, model-derived signals

generally use Gaussian or similar functions of controllable width

to represent atoms (Chapman, 1995; Tama et al., 2004). Refine-

ment relies on optimization protocols to minimize a composite

cost function incorporating the signal deviation along with ste-

reochemical and excluded volume terms (Brünger et al., 1987).

The underlying assumption is that the initial model is close

enough to the optimal solution. Often, to aid with computational
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efficiency, the problem is also decomposed into piecewise opti-

mization tasks for subsets of the system. Similar ideas have been

developed for EM data. Early efforts focused on rigid-body opti-

mization (Chacón and Wriggers, 2002; Roseman, 2000), but

semiflexible (Fabiola and Chapman, 2005; Tama et al., 2004;

Topf et al., 2008) and fully flexible treatments (Trabuco et al.,

2008; Vashisth et al., 2012) are now in use.

Here, we describe a versatile approach to compute lattice-

based, physical property densities from particle coordinates.

We also establish a protocol to quantitatively interpret an input

density map by assuming a linear relation between signal and

property density. Taken together, these developments consti-

tute the framework for a lattice-based restraint potential that

can be used in molecular simulations. This article serves to

demonstrate the validity of the approach by three proof-of-

concept applications posing qualitatively different challenges.

We utilize methods of broader relevance, specifically replica ex-

change (REX) sampling in the parameter space of the restraint

potential and a hybrid sampling protocol. The power of quantita-

tive, statistical approaches to the mining of these types of simu-

lation data is demonstrated. Points of departure from existing

work are that the method is unbiased, i.e., not a knowledge-

based approach, that an implicit background can be accounted

for, and that it deals naturally with data ambiguity.

RESULTS

Outline of the Experimental Approach
Restraining Molecular Simulations to a Target Mass

Density

In this section, we provide a brief outline of our approach. The

goal is a quantitative interpretation of an input density map,

which is approximated by a simulated density derived from

molecular simulation. The potential is enumerated over lattice

cells and penalizes density deviations in either direction. As a

consequence, simulations are expected to produce conforma-

tions that are largely free of volume overlap, even in the absence

of physical interaction potentials.

Lattice-Based Density Function from Atomic Positions. We

need to transform a set of N atomic positions, frn!g, into a

lattice-based property density, r. Here, we utilize cardinal

B-splines in the same vein as in the particle-mesh Ewald method

(Essmann et al., 1995), where the property would be atomic

charge. Cardinal B-splines replace a point-like representation

with a distribution that is polynomial in nature and has finite

support:

rijk =V�1
ijk

XN

n=1
xn
Y3

d= 1
BA

�
rdn � Pd

ijk

�
: (1)

The lattice cell with indices i, j, and k and volume Vijk is associ-

ated with a reference point Pijk corresponding to its center. For

each atom, its property, xn, is distributed across the lattice with

a weight dependent on the distance from the reference point.

Cardinal B-splines are factored for spatial dimensions (d) and

conveniently satisfy that the integral over all lattice cells recovers

the total property value. Their order, A, determines the exact

shape of the function with limiting values of A = 1 corresponding

to a rectangular binning function and A / N being a Gaussian

(Figure 1A). All B-splines, BA(x), are assumed centered making
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them symmetric about x = 0. Because support is finite (A3 lattice

cells), the actual cost inherent in Equation 1 is linear in N and

independent of lattice size.

Mass Density with Background. We choose mass density as

the target quantity to restrain (atomic number could be used

instead of mass). In general, the input density will have a back-

ground signal stemming not from vacuum but often from

aqueous solvent. To emulate this signal in simulations without

an explicit representation of solvent, we use both lattice-based

mass and volumes to arrive at

rijk = rsol +V�1
ijk

XN

n= 1
½mn � gnVnrsol�

Y3

d= 1
BA

�
rdn � Pd

ijk

�
: (2)

Here,mn are atomic masses, Vn are atomic volumes estimated

from published radii (Vitalis and Pappu, 2009), gn is a factor

correcting for volume overlaps between topologically connected

atoms, and rsol is the assumed physical background density.

The values for gn are determined as gn =Veff
n =Vn, where Vn

eff is

obtained by subtracting from an atom’s volume half of the

overlap volume with each covalently bound partner atom as

determined by linear approximations. If A > 2, r is a continuously

differentiable function usable in gradient-based simulation or

modeling techniques.

Processing of Experimental Input Densities. Experimental input

densities are most likely derived from X-ray crystallography or

EM. Sample heterogeneities and their impact on averaged sig-

nals, possible overlap of radiation diffraction and absorption

processes, sample damage due to continuing exposure, and

limitations in signal processing may all weaken the link between

signal and its physical source. We therefore treat the input

density as having arbitrary units and will assume that the signal

is linearly proportional to mass density as in related work

(Trabuco et al., 2008).

The linear transform is meant to accomplish two things: (1) it

aligns the background signal in the input with the chosen value

for rsol, and (2) it allows scaling of the data so that there is control

over the assumed contrast levels within physically reasonable

bounds. The scaling is controlled by a parameter, ut:

Xijkfc2ðutÞuijk : (3)

Here,u is the input density,X is the interpreted density, andut

is used to determine the scaling factor, c2. Qualitatively, ut

should correspond to an isocontour value for the input that

would give a rough molecular envelope. Importantly, ut does

not remove or distort information contained in the input map.

Details are given in the Supplemental Experimental Procedures.

Note that it is common to consider auxiliary modifications of the

input, such as flattening or rebinning, which do alter the data

qualitatively. The lack of assumptions we make means that the

above treatment works equally well for other properties and

other types of input data.

Lattice-Based Harmonic Restraint Potential. By virtue of having

defined lattice-based mass densities, both as input and as

derived from simulations, constructing a restraint potential

from their squared deviations is straightforward:

VD = fD
X
i;j;k

�
rijk � Xijk

�2
: (4)
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Here, fD is a unitless scale factor. Evaluation of Equation 4

scales directly with the number of lattice cells. Forces require

the partial derivative of rijkwith respect to a given atomic position

(compare Equation 2) and incur a cost that is O(N). Equation 4

could also have been written using an ensemble average for

rijk, but this is not explored here. As written, each instantaneous

conformation is penalized for deviations from the input map, and

the underlying assumption is that a single conformation can

explain the input density. This assumption may be incorrect.

However, the order of B-splines, A, in conjunction with lattice

dimensions defines an inherent averaging at the level of an

instantaneous conformation, which can be matched to the

contrast level set by ut. Larger values for A will ‘‘smear out’’

each atom’s property, and we use this in the generation of syn-

thetic maps. Modifications to Equations 2 and 4may be required

for input maps with highly heterogeneous contrast levels.

Sampling Methodology

Our general sampling engine is a hybrid scheme using both

Monte Carlo (MC) and force-based integrators in internal coordi-

nate space (IMD) as implemented in and documented for

the software CAMPARI (http://campari.sourceforge.net). The

degrees of freedom can but need not include all rigid-body

coordinates, all freely rotatable dihedral angle degrees of

freedom, and pucker degrees of freedom for the flexible rings

in proline and sugars. The latter are peculiar in that they are

only sampled by the MC segments (Radhakrishnan et al.,

2012) but have to be frozen in IMD. All systems are represented

with united atoms in the CHARMM19 convention (Brooks et al.,

1983), and masses are adjusted accordingly. For all runs, steps

alternated in segments of 6,000 IMD steps followed by 600 MC

steps (90.9% IMD versus 9.1%MC). The velocity rescaling ther-

mostat (Bussi et al., 2007) was used throughout in IMD to ensure

sampling of proper canonical ensembles at 300 K.

The Hamiltonian generally consists of the density restraint

potential (Equation 4) and few bonded potentials taken from

appropriate force fields for polypeptides and polynucleotides,

respectively (see the Supplemental Experimental Procedures).

The potentials are required, for example, to keep peptide moi-

eties planar or to preserve the covalent geometry of flexible

rings. The ubiquitin system (see below) employs an additional

term, viz., a statistical potential biasing f/c-angles based on

local preferences (see the Supplemental Experimental Proce-

dures; Figure S1). The potential is included because of the

challenging nature of this system, but, importantly, it employs

no system-specific information for ubiquitin or any other protein.

The lack of any excluded volume or stiff harmonic terms in the

Hamiltonian means that the integration time step for the IMD

portion can be large. Details regarding the simulation protocol

are provided in the Supplemental Experimental Procedures.

In terms of performance, a single replica for a system with 749

atoms, more than 400 degrees of freedom, 3.83 104 lattice cells,

and A = 5 produced �2 3 107 steps per day on a single core of

the Schrödinger supercomputer at the University of Zurich.

Test Systems

Test systems of increasing difficulty are chosen to highlight the

potential and versatility of our approach.

Arp2/3 Protein Complex. The Arp2/3 complex from Bos taurus

as resolved by crystallography (Protein Data Bank [PDB]

ID code: 1TYQ; Nolen et al., 2004) is composed of seven
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polypeptide chains. Cofactors and water were removed, and

missing atoms in incomplete residues were rebuilt (all dihedral

angles at 180�). Residues missing entirely were not recon-

structed. The resultant structure contained 16,502 atoms and

was used to generate synthetic low-resolution maps. The sys-

tem was defined to be a periodic lattice with cubic cells of 3 Å

and dimensions of 36 3 40 3 58 in the x, y, and z directions,

respectively. This comfortably accommodates the assembled

complex. Using Equation 2 with rsol = 1.01 g/cm3 and Ag being

2, 8, or 17, synthetic maps of varying resolution were created

(see Figure 1A). The notation Ag is used to distinguish it from

parameter A used in Equation 2 during the actual simulations.

These maps served as input to independent REX runs. Every

such run utilized 16 replicas that differed in their values for

fD ranging from 0.01 to 0.16 in steps of 0.01. All other parameters

were constant between runs and replicas, viz., rsol = 1.01 g/cm3,

A = 3,MM = 191.7 kD, and ut = 1.55 g/cm3. Each simulation con-

sisted of 1.15 3 107 total steps per replica. The degrees of

freedom were just the rigid-body coordinates, which allows for

a very large time step of 5.0 ps and a net simulation time per

replica of �52 ms. Further details are given in the Supplemental

Experimental Procedures.

RNA Stem-Loop. The NMR ensemble (eight structures) of a

17-residue RNA stem-loop (PDB ID code: 2LBL; Chang and

Nikonowicz, 2012) was used to construct average synthetic

densitymaps consistent with theNMR ensemble. The 408 united

atoms were used as input to Equation 2 assuming a periodic

lattice with cubic cells of 1.4 Å side length and dimensions of

21 3 35 3 21. The B-spline order in map generation, Ag, was

either two or eight. All structures in 2LBL were given equal

weight.

The two maps served as input to independent REX runs each

using 16 replicas with values for fD ranging from 0.02 to 0.17 in

increments of 0.01. The threshold parameter was ut =

1.1g/cm3 for the higher and ut = 1.5g/cm3 for the lower resolu-

tion. Varying ut is generally necessary for high-resolution data

in order to ensure comparable average molecular densities for

the interpreted maps (here, 1.86 g/cm3). The remaining parame-

ters were constant between runs and replicas, viz., rsol =

1.01 g/cm3,MM = 5.35 kD, and A = 5. Each simulation consisted

of 1.6 3 108 total steps per replica. The degrees of freedom

included rigid-body coordinates (6), nucleic acid backbone and

side chain torsions (117), and the pucker angles of the ribose

moieties (17 sets of highly coupled degrees of freedom). The

time step was 10 fs for a total simulation time of �1.5 ms per

replica. MC moves are described in the Supplemental Experi-

mental Procedures and included a dedicated move type for

sugar pucker angles.

Ubiquitin. We obtained the crystallographic electron density of

a unit cell for the 76-residue protein ubiquitin (PDB ID code:

1UBQ; Vijay-Kumar et al., 1987) from the Uppsala Electron-

Density Server (Kleywegt et al., 2004). The formal resolution of

1.8 Å is sufficient to isolate a single protein molecule from the

unit cell with the help of the University of California, San Fran-

cisco (UCSF) Chimera’s volume viewer (Pettersen et al., 2004).

The density describing a single molecule of ubiquitin was

surrounded by a flat background signal with numerical value

of �1.0, and the resolution was reduced by rebinning it by

roughly a factor of 2.0. This is for three reasons: (1) our method
hts reserved

http://campari.sourceforge.net


Structure

Equilibrium Sampling with Density Restraints
is not a crystallographic refinement or solution tool meant to op-

erate on data at these resolutions; (2) performance is improved

by the more tractable number of lattice cells; and (3) as will

become clear below, very high-resolution input data are likely

to result in trapping, which slows or prevents convergence. Tests

performed at the original resolution produced data of no statisti-

cal significance. After rebinning, the lattice has 32 3 33 3 36

roughly cubic cells with side lengths of 1.1915, 1.2058, and

1.2063 Å, respectively. This size is comparable to the stem-

loop example (1.4 Å).

We next set up four identical but independent REX runs, each

using 48 replicas that differed in their values for fD and ut.

Replicas were arranged such that either but never both parame-

ters vary minimally between neighboring replicas. We chose a

very compact schedule in terms of both values to ensure that

the REX technology remained effective (see the Supplemental

Experimental Procedures for details). The remaining parameters

were constant between runs and replicas, viz., rsol = 1.01 g/cm3,

MM = 8.56 kD, and A = 5. The sampled degrees of freedom are

rigid-body coordinates (6), polypeptide u, f, c, and c torsions

(386), and the pucker angles in three proline residues. Some

rotatable dihedral angles involving either only hydrogen atoms

or symmetric substituents at a planar site are frozen (e.g., guani-

dino groups). Each simulation consisted of 1.723 108 steps per

replica for a total simulation time of�1.6 ms per replica (10 fs time

step). MC moves are described in the Supplemental Experi-

mental Procedures and consisted of various move types,

including dedicated moves for proline pucker angles (Radhak-

rishnan et al., 2012).

Problem and Solution Strategy
As outlined in the Introduction, we ultimately want to push the

limits of unbiased interpretability of input density data, e.g.,

those coming from high-resolution EM experiments. This

approach will in general have to employ a combination of phys-

ical potentials and experimental restraints. However, we first

need to demonstrate that the restraints on the experimental

density data work as expected. Therefore, this manuscript

describes the performance of the density restraint potential in

isolation. For this test to be meaningful, we use an equilibrium

sampling protocol that is equally capable of supporting physical

potentials. We note that the overall approach is general for

spatial distributions in that it is not tailored toward a specific

biopolymer type, toward a specific set of degrees of freedom,

or even toward a specific type of input, i.e., in Equations 1 and

2, we could use any property of any spherical particle.

The most common way of dealing with ambiguous data is to

incorporate auxiliary information into the model determination,

e.g., the use of crystal or independentlymodeled structures of in-

dividual components in EM.We use synthetic data on the Arp2/3

complex as an example of this type as it has been employed in

comparable work (Lasker et al., 2009). For fully flexible polymers,

rather than using general physical potentials, it is common to

employ database-derived information in several highly sophisti-

cated and successful methodologies, most importantly the

Rosetta-derived approaches (Adams et al., 2013). Conversely,

we intentionally avoid a knowledge-based approach of this

type. This in turnmeans that our flexible test systems necessarily

have to be small to keep the complexity manageable.
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The complexity of sampling flexible polymers in the presence

of high-resolution density restraints is 2-fold: first, despite the

absence of excluded volume terms, the potential energy sur-

face is rugged, which means that trapping is likely to occur.

Second, the search space is vast. We note that the challenges

are comparable to those of simulations of reversible protein

folding. Using both the RNA stem-loop and ubiquitin, we

demonstrate that this challenge can be overcome for data at

appropriate resolution. We show that convergence becomes

increasingly difficult with increasing numbers of degrees of

freedom and increasing resolution of the input data. Search

efficiency is aided by advanced sampling methodologies, i.e.,

a hybrid sampling protocol in conjunction with the REX method

(Sugita and Okamoto, 1999) in the parameter space of the

restraint potential (see the Supplemental Experimental Proce-

dures available online). These techniques do not limit our ability

to interpret the generated trajectories as proper canonical

ensembles.

Before presenting the results on the three systems, which are

arranged by increasing difficulty, we want to emphasize that size

and scope of test systems necessarily differ from that in recent

refinement (Haddadian et al., 2011) or template-based re-

modeling efforts (Terwilliger et al., 2012). Instead, we hope to

highlight the versatility of the approach by including data and

systems at different scales and by using different biopolymers.

ARP2/3
The actin-related protein 2/3 (Arp2/3) complex is comprised of

seven polypeptide chains and has been used as a model

system for fitting components of macromolecular assemblies

into density data (Lasker et al., 2009). Low-resolution, synthetic

density maps are created from the crystal structure (1TYQ) as

described above and are shown in Figure 1A. For starting con-

formations of the assembly simulations, we randomized the

rigid-body coordinates of all seven chains within the confines

of the unit cell (see Figure S2A). Individual components are

kept rigid during simulations meaning that there are 42 degrees

of freedom to consider.

The REX runs used variable restraint strengths, fD. For high

enough fD, for all input resolutions, the native complex is found

with very high statistical weight. This is asserted by clustering

the data with a recent tree-based algorithm that is appropriate

for this task because it can handle large data sets and produces

tight, overlap-free clusters, whose centroids tend toward regions

of high data density (Vitalis and Caflisch, 2012). The metric for

clustering is the root-mean-square deviation (rmsd) of three

selected atoms for each domain (see the Supplemental Experi-

mental Procedures for details). This information is enough to

describe the assembly entirely. We stress that structures are

never subjected to alignment because the density restraints

provide an absolute reference in space. The snapshots best

approximating the centroids of the respective top clusters from

the replicas with largest fD are shown in Figure 1B in comparison

to the crystal structure. It is obvious that the differences are

minor. This is despite the fact that these are snapshots from

equilibrium sampling that have not undergone any kind of mini-

mization. Figures 1C–1E corroborate this quantitatively. For

each resolution, we plot as a function of fD the weight of the

native-like cluster (it is always the largest one) and the all-atom
6–167, January 7, 2014 ª2014 Elsevier Ltd All rights reserved 159



Figure 1. Results for the Assembly of the Arp2/3 Complex

(A) Input maps were generated at different resolutions by using the atomic representations as shown (lattice with cubic cells of 3.0 Å side length). The resultant

resolutions are illustrated by showing corresponding surfaces (with different threshold values) that enclose similar volumes (scale and orientation are identical for

all three images).

(B) Centroids of the native-like clusters for runs at the highest restraint strength (fD = 0.16) for all three resolutions are shown together with the crystal structure of

Arp2/3 (PDB ID code: 1TYQ). The latter is emphasized by using darker colors. General color coding is by chain.

(C) For the highest resolution, the centroid of the native-like cluster taken from the run with fD = 0.16 is shown along with the input density at an enclosing surface

value of 1.5g/cm3 (transparent). In the bottom half of the panel, we plot the weight (number of snapshots in cluster divided by total number) of the native-like

cluster and its all-atom rmsd from the crystal structure as a function of restraint strength. For restraint strengths lower than the ones shown, no clusters describing

at least 1% of the data (ten snapshots) are found, and these trajectories are omitted in the plot.

(D) The same as (C) for intermediate resolution.

(E) The same as (C) for the lowest resolution. All illustrations were rendered with Chimera (Pettersen et al., 2004).
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rmsd of its centroid snapshot to the crystal structure. These plots

are illustrated by the corresponding centroids at the largest fD
values (same as in Figure 1B) along with the input density.
160 Structure 22, 156–167, January 7, 2014 ª2014 Elsevier Ltd All rig
In summary, the correct assembly is predicted unanimously

and independent of resolution (within the range studied). The

impact of lowering resolution is apparent by lower cluster
hts reserved
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weights and increasing rmsd values (Figures 1C–1E). This is

what would be expected intuitively. Sampling does not appear

to be an issue. We inspected the clustering results for all trajec-

tories and found minor clusters with much larger rmsd values.

These differ only in the rotation state of individual, spherical

domains (see Figure S2B).

RNA Stem-Loop
The NMR ensemble of a 17-residue RNA stem-loop (2LBL)

served as the input data for generating synthetic density data

at high enough resolution for a flexible treatment of the RNA to

be successful in the absence of auxiliary potentials. The inclu-

sion of multiple conformations in map generation is an important

departure from the Arp2/3 test case, because it allows for differ-

ences in contrast levels to appear for different parts of the mole-

cule. The degrees of freedom are dominated by torsion angles in

the polynucleotide backbone but also include side-chain

torsions, rigid-body coordinates, and pucker angles. Initial

structures (Figure S3A) are generated by randomizing all freely

rotatable nucleic acid backbone torsions with all other sampled

angles left at a fixed default value, usually 180� (pucker states are
all initially in C20-endo).
Utilizing REX runs with variable restraint strength, fD, we find

the native conformation with high statistical weight for both input

resolutions (Figure 2A) and for most values of fD. This is based on

a clustering using the rmsd of all heavy atoms (see the Supple-

mental Experimental Procedures for details). The centroid snap-

shots reproduce the first structure in the NMR ensemble to well

below 1 Å rmsd, and the same is true for all other members of the

NMR ensemble (data not shown). Interestingly, the weight of the

native cluster is higher for lower resolution when fD is large. Fig-

ure 2B points out that this is a direct result of sampling conver-

gence by plotting block-averaged restraint energies and rmsd

values as a function of simulation progress. Clearly, conver-

gence is more rapid for low resolution and does not seem to

involve significant trapping. The enthalpic gap between mis-

folded and correctly folded structures also seems to be lowered

considerably. Figure 2C shows a direct comparison of the NMR

ensemble to ensembles created from the centroid snapshots of

the native-like clusters found for trajectories corresponding to

individual replicas with sufficiently high fD. Clearly, higher resolu-

tion produces a tighter ensemble that is visually difficult to

distinguish from the NMR ensemble. An analysis of possible cor-

relations between sequence-specific heterogeneities is found in

Figure S3B.

Examples of conformational traps hindering convergence are

shown in Figure 2D. These are all extracted as cluster centroids

from the trajectory with the largest fD within the high-resolution

run. The weights of the clusters in question are in the range of

2% to 5% each. Two of the traps have misfolded parts in the

50 end of the stem-loop, whereas the third one (rightmost struc-

ture) has a backbone registry that is shifted by one nucleotide.

The nature of these traps indirectly highlights why the system

is tractable as a fully flexible polymer, and this is because density

patterns created by side chains and backbone, respectively, are

very characteristic and easy to distinguish from one another.

Lastly, Figures 2E and 2F show two-dimensional (2D) histograms

for individual trajectories (29,600 snapshots) at the highest fD.

These histograms (plotted logarithmically) make the point that
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there is a clear enthalpic gap between folded andmisfolded con-

formations and that the landscape is indeed rugged, more so for

the case of high-resolution input.

Ubiquitin
Ubiquitin is a 76-residue protein with a reasonably complex a/b

fold. Its structure has been determined by X-ray crystallography

and the electron density is available as input (see Figure S4 for a

representation of both original and interpreted [Equations 3 and

S3] input densities). There are threemajor differences to the RNA

stem-loop: (1) the polymer is much larger (roughly a factor three

in the effective number of degrees of freedom); (2) the density is

derived from an experimental measurement; and (3) it is a

polypeptide rather than a polynucleotide implying that backbone

and side chain densities are harder to tell apart.

Starting structures are obtained by randomizing f/c angles

while leaving other dihedral angles at default values, usually

180�. Initial tests highlighted the difficulty in sampling this

system, and as a result there are four identical REX simulations

each using variable fD and ut values. Moreover, the Hamiltonian

is extended to include a weakly residue-specific, statistical

potential applied to f/c-angles (Figure S1). This potential is

meant to limit the search space and improve convergence rates,

but no stringent test of its efficacy for this system could be

performed. The impact is expected to be weak in that for those

replicas included in the analysis the total energy correlates

very strongly with the density restraint term, but not with any

other term. Poor convergence was apparent upon visual inspec-

tion of trajectories, and this prompted us to combine data from

different replicas for analysis (details are in the Supplemental

Experimental Procedures).

Figure 3A shows the logarithmic plot of a 2D histogram of rmsd

values to the crystal structure and recomputed restraint energies

for the combined trajectories. The overall histogram created

from 28/48 replicas of every REX run highlights that there is

good correlation between rmsd and the restraint energies, which

were recomputed for all 1.12 3 106 snapshots to make data

coming from different replicas comparable. To assess conver-

gence quantitatively, it is best to compare data sets that are

completely independent. This is why we next clustered the four

REX runs separately using a set of atoms describing the entire

chain (see the Supplemental Experimental Procedures). The

largest clusters from each run span a certain range of rmsd

and energy values, and these ranges (representing 90% of

each cluster) are indicated as diamonds with solid lines. The

same is done for the tightest cluster representing at least

0.25% of the data if it is not the largest one (dashed diamonds).

The circles highlight minimum energy structures from each run,

and these structures are shown on the left of Figure 3A. Taken

together, these results suggest strongly that only the REX run

in green samples the crystal structure.

Quantitative evidence for an overall lack of convergence is

found in Figure 3B, where we plot time-dependent, block-

averaged quantities (similar to Figure 2B). These reveal two

important results. First, over the simulation length considered

here, stable plateau values are not reached for any of the REX

runs. Second, there is a dramatic difference between the run

sampling the crystal structure versus those that do not in terms

of the restraint energy. More so than Figure 3A, this result
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Figure 2. Results for the RNA Stem-Loop, PDB ID Code: 2LBL

(A) For two different resolutions of the input map (distinguished by line type) and several restraint values, the weight of the native-like cluster and the heavy atom

rmsd of its centroid to the first model in 2LBL are shown.

(B) For both resolutions of the input map, the trajectories for the strongest restraint condition (fD = 0.17) are partitioned into 100 blocks, and time-dependent

averages over individual blocks are plotted for both VD and the heavy atom rmsd to 2LBL (#1).

(C) NMR and derived ensembles for the stem-loop are shown colored in accordance with the Nucleic Acid Database Atlas convention (Berman et al., 1992). The

left and right images show the ten centroids of the native-like cluster for trajectories with values of fD from 0.08 to 0.17 for low and high resolution of the input map,

respectively. The corresponding input map at an enclosing surface value of 1.71 g/cm3 is overlaid as a transparent envelope. The NMR ensemble is depicted in

the middle.

(D) Cluster centroids corresponding to traps encountered in the simulation with fD = 0.17 at high input resolution are shown in comparison to the native-like cluster

centroid. The latter uses lighter colors, and coloring proceeds from red (50 end) to blue (30 end).
(E) The negative logarithm of a 2D histogram of restraint energy and heavy atom rmsd for the trajectory with fD = 0.17 at low input resolution. Points with no counts

appear in white. The histogram is discontinuous because it is derived from a REX trajectory at a single condition.

(F) The same as (E) for higher input resolution. Arrows locate the traps depicted in (D) in the plot. Images in (C) and (D) were generated with Chimera.
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Figure 3. Results for Ubiquitin, PDB ID Code: 1UBI

(A) The negative logarithm of a combined 2D histogram of restraint energy and rmsd is plotted. Energy values are recomputed tomake data from different replicas

comparable (fD = 0.08 and ut = �0.21). Rmsd computations use 620 of 746 atoms with those atoms creating artifactual deviations being excluded (see the

Supplemental Experimental Procedures). Data are combined from all REX runs and all replicas with fD = 0.059 or larger. Points with no counts appear in white.

Circles highlight minimum restraint energy structures from each REX run (color coded). Solid and dashed diamonds indicate the spread (90%) of largest and

tightest clusters (at least 0.25% of data represented), respectively. The minimum energy structures are illustrated on the left along with the crystal structure

(transparent). Color code is red to blue from N- to C terminus, and images were generated with Chimera.

(B) Average rmsd and recomputed restraint energies are shown as a function of simulation steps. Trajectories from individual replicas are partitioned into

100 blocks to give block averages. Blocks are then averaged across conditions for each REX run separately. The color code for the individual runs is the same

as in (A).

(C) For cluster centroid and minimum energy snapshots from all runs, subset rmsd values are plotted for four-residue segments. The color code is the same

as in (A).
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emphasizes that the crystal structure corresponds to a deep,

enthalpic minimum, which is expected given the resolution of

the input data. However, the energy surface is so rugged that

persistent trapping occurs as seen for the various, partial

misfolds in Figure 3A. The latter are analyzed in detail in Fig-

ure 3C. Here, we plot subset rmsd values for four-residue seg-
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ments along the sequence for all snapshots highlighted in the

histogram in Figure 3A (clusters are represented by the snapshot

best approximating the cluster centroid). As for the other sys-

tems, all snapshots are directly taken from the simulations (no

minimization or refinement performed). Figure 3C makes the

point that all these snapshots are folded correctly in parts.
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Figure 4. Sequence Specificity for Ubiquitin

(A) Crystallographic B-factors averaged over residues are compared to rmsf values for a pseudoensemble of the snapshots constituting the native state. These all

come from the run shown in green in Figure 3. The data exclude ambiguous atoms (see the Supplemental Experimental Procedures).

(B) Cumulative histograms of rmsd values for four-residue segments are shown. Data from three runs were combined and all 840,000 snapshots contribute to the

histograms. All segments accumulate significant density in the 0.0 to 1.5 Å regime, and this is shown more clearly in the inset.

(C) The statistical weights of the largest clusters from an analysis of four-residue segments are plotted along with the rmsd of the centroid snapshot to the

corresponding segment in the crystal structure. The color code is the same as in Figure 3A.

(D) The top left shows backbone stick representations for crystal structure (purple), the global minimum energy structure (red, see Figure 3A), and a hybrid model

constructed from consensus fragments (see C). A cartoon representation is added for the fragment model. The top right shows the same from a different angle

just as cartoons. The bottom row highlights the N-terminal hairpin (left) and main helix (right) by showing a comparison of the crystal structure (purple) to the

fragment model (colored by type) for all heavy atoms. A cartoon representation for the crystal structure is overlaid for orientation. Images were generated with the

software Visual Molecular Dynamics (Humphrey et al., 1996).
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Misfolding appears to occur everywhere along the chain

but is generally more prominent toward the C terminus. With

the exception of the run shown in cyan, minimum energy snap-

shots appear similar to at least one of the cluster centroids

shown.
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There are at least two questions to ask. First, do varying

contrast levels in the input density contribute to convergence

issues? Second, what can be extracted from these data if the

run shown in green is discarded? Figure 4A shows a comparison

of the crystallographic B-factors averaged over residues to
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root-mean-square fluctuation (rmsf) data across a pseudoen-

semble created by gathering all the 9,998 snapshots in the

native-like cluster (green diamond in Figure 3A). Whereas the

rmsf values in the N-terminal portion of ubiquitin are generally

low, there appears to be good correlation for the C-terminal

half. In particular the high variability of residues 61–64 and 71–

76 appears to be present in both ensembles. This indicates

that the poorer quality of the input data for these residues trans-

lates into more ambiguity in the simulations. This is confirmed by

Figure 4B, where we plot cumulative histograms of rmsd values

for individual four-residue segments on data pooled from all

runs, except the one in green. These data highlight that the afore-

mentioned segments are generally less likely to be placed

correctly, presumably because of the higher contrast present

in other parts of the density.

For the second question, we performed additional cluster

analyses on coordinate subsets corresponding to the same

four-residue segments utilized in Figures 3C and 4B. This is

an example of a problem decomposition strategy at the data

analysis level, i.e., in theory we can also construct models by

combining information from different snapshots. Figure 4C

shows the weights of the largest clusters for all 19 segments

when analyzing the three relevant REX runs separately. These

data are juxtaposed with rmsd values to the crystal structure

for the corresponding segments and confirm the notion that

the N-terminal side of the protein is more reliably folded than

the C-terminal side. Importantly, there is a clear anticorrelation

between statistical weight of the cluster and its rmsd. For

example, for residues 45–56 the run shown in blue yields lower

cluster weights than the other runs and is also the only one

predicting incorrect placement of these residues. From the

clusters for individual segments, we can also directly assess

their mutual compatibility. Here, we define a consensus

assignment if all three centroid snapshots of the largest clus-

ters for a given segment are within 1.5 Å of each other. The

resulting partial structure contains 12 four-residue segments,

all of which are placed correctly. This is illustrated in Figure 4D

by comparison to the crystal structure. Note that the fragment-

based structure shown contains information from 12 different

simulation snapshots taken directly from equilibrium sampling,

and yet the covalent geometry appears quite reasonable

throughout (even at the putative chain breaks). The bottom

row of Figure 4D shows that the majority of side chains are

also placed correctly. Models of this type could be used as

an incomplete template for partial remodeling, etc., but this

is not explored here.

DISCUSSION

The results presented in the prior section demonstrate that the

density restraints combined with advanced sampling methodol-

ogies can solve problems of a rather different nature, which is

satisfactory as a proof-of-concept study. However, there are

obvious limitations to the complexity of problems that will reliably

yield solutions. Complexity is a result of the number of degrees of

freedom to explore and the ruggedness incurred by high-resolu-

tion input data. In this sense, despite its size, the Arp2/3 system

is by far the simplest one considered here. The counterproduc-

tive nature of high-resolution input is most clearly illustrated for
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the RNA stem-loop (Figure 2B). This result appears intuitive if

we place our simulations in the context of molecular simulations

at equilibrium in the presence of physical interaction potentials,

which face challenges that are at least as considerable (Smith

et al., 2002).

Asmentioned in the Introduction, our methodology is meant to

eventually work as an additional term to the potential energy to

address cases associated with insufficient data. Ambiguity

may result from the intrinsic heterogeneity of a system or from

a lack of resolution given the set of degrees of freedom we

wish to explore. Conversely, if the input data are of near-atomic

resolution and/or on systems that can easily exploit knowledge-

based approaches, then there are vastly superior methods

available that rely on innovations in search, optimization, and

database utilization (Adams et al., 2013; Zhang et al., 2011).

These make it possible to solve crystal structures by using, for

example, strategies such as knowledge bias, automated pattern

recognition, or hierarchical (iterative) assignments. The work of

Perrakis et al. (1997) is a good example. We emphasize that

we do not wish to present our method as a competitive alter-

native to the different families of highly elaborate, efficient, and

well-established approaches to solving crystal structures of

biomolecules. This is also consistent with the fact that the phase

problem is not considered to any extent here.

While there are no fundamental departures in restraining

real-space density information (Diamond, 1971), we believe

that the inclusion of an implicit background, and the translation

of the input into physical quantities with contrast levels, which

are controllable by ut, are useful features of our approach. One

of the favorable properties of this approach is that the restraints

yield densities that are physically meaningful. This is manifested,

for example, by the low steric overlap seen for the Arp2/3

assembly (Figure 1C). Here, the number of interchain clashes

between heavy atoms with distances that are more than 0.5 Å

too short (Hooft et al., 1996) is only 61 despite the complete

absence of excluded volume terms. Disseminatedwithin popular

simulation software, the simulation approach of Trabuco et al.

(2008) has been incorporated into other protocols that aim to

refine crystal (Haddadian et al., 2011) or EM structures (Vashisth

et al., 2012) with different advanced sampling/modeling

approaches. However, the underlying restraint potential requires

the presence of both physical interactions and additional bias

terms, which is why it is not used in the generation of ab initio

models. The power of the methodology we propose and explore

here is illustrated by Movie S1, which shows how the REX

sampling protocol in the parameter space of the restraint poten-

tial resolves trapping problems for the RNA example.

In conclusion, we have shown that both restraints and

sampling protocols work as intended. We re-emphasize that

the starting structures are completely uninformed at the level

of the set of degrees of freedom being sampled, distinguishing

the method from refinement approaches. Simulation snapshots

corresponding to cluster centroids (or combinations thereof)

are of surprisingly high quality given that neither minimization

nor refinement is performed, not at the level of physical poten-

tials or for the density fit itself. We anticipate our approach to

be useful in interpreting low-resolution density data, for which

dedicated, knowledge-based approaches are unavailable, e.g.,

high-resolution EM data on amyloid fibrils. Consequently,
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current research is concerned with using the approach in

conjunction with physical potentials and with the refinement of

consensus data analysis schemes as used in Figure 4.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, four 3D molecular models, and one movie and can be found

with this article online at http://dx.doi.org/10.1016/j.str.2013.10.014.
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