On a Conjecture of Milner on k-Graphs with Non-Disjoint Edges

Daniel Kleitman*
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract

The following theorem is proven. It is a slight generalization of a conjecture of Eric Milner. Consider two families, one consisting of k and the other of l element subsets of an n element set. Let each member of one have nonempty intersection with each member of the other and let $k+l$ be less than or equal to n.

Then either there are no more than $\binom{n-1}{k-1}$ members of the first family or there are fewer than $\binom{n-1}{l-1}$ members of the second.

Let S be an n-element set. Suppose we have a collection of k-element subsets of S with the property that no two of the sets are disjoint. Erdös, Ko, and Rado [1] showed that, if $2 k \leqslant n$, there can be no more than $\binom{n-1}{k-1}$ sets in the collection. E. C. Milner has raised the following related question. Suppose we have two collections of k-element subsets (which we will call k-edges below) such that each member of one has non-empty intersection with each member of the other. Milner conjectured that the number of members of the smaller collection would, if $2 k \leqslant n$, have to have $\binom{n-1}{k-1}$ or fewer members.

We prove below a generalization of Milner's conjecture; it is interesting that it is much easier to prove the more general result then to prove the special case directly. Our result is as follows: If we have two collections of subsets of S, one of k-edges, the other of l-edges, with the restriction that each member of one has non-empty intersection with each member of the other, then if $k+l \leqslant n$ either the first has $\binom{n-1}{k-1}$ or fewer members, or the second has $\binom{n-1}{l-1}$ or fewer members.

A direct proof based on complementation can be given for $k+l=n$. For $k+l<n$, we proceed by induction on n, making use of the fact that we can always find maximal pairs of collections for which there is an element of S which can never be the intersection of a member of one with a member of the other.

[^0]We first present the direct argument for the case $k+l=n$. Then we verify the last remark in the paragraph immediately above. Finally we apply this remark to yield our desired result.

Let F_{k} and G_{l} be collections of k-edges and l-edges of S (i.e., a k-graph and l-graph, respectively, of S), and let each k-edge of F_{k} intersect each l-edge of G_{l}. Let the number of members of F_{k} be f_{k}, and of G_{k}, g_{k}.

Suppose that $k+l=n$. Then the complement in S of the l-edges in G_{l} form a k-graph \bar{G}_{k} no member of which can lie in F_{k}. We can immediately deduce then that

$$
f_{k}+g_{l} \leqslant\binom{ n}{k}=\binom{n-1}{k-1}+\binom{n-1}{l-1}
$$

from which it follows that either $f_{k} \leqslant\binom{ n-1}{k-1}$ or $g_{l}<\binom{n-1}{l-1}$.
Let us order the n-elements of S as s_{1}, \ldots, s_{n} and let us write each subset A of S as an ordered sequence of zeros and ones; thus we write A as $\left\{A_{j}\right\}$ with $A_{j}=1$ when $s_{j} \in A$.

We define the following set of mappings m_{i}, for $1 \leqslant i \leqslant n-1$, which take k-edges into k-edges for each $k \leqslant n$:

$$
\begin{gathered}
m_{i}\left(A_{i}\right)=A_{i}+A_{i+1}-A_{i} A_{i+1}=\max \left(A_{i}, A_{i+1}\right) \\
m_{i}\left(A_{i+1}\right)=A_{i} A_{i+1}=\min \left(A_{i}, A_{i+1}\right) \\
m_{i}\left(A_{j}\right)=A_{j} \quad \text { for } \quad i \neq j \neq i+1
\end{gathered}
$$

Notice that the mapping m_{i} acting on a subset A which contains one of s_{i} and s_{i+1} yields the subset, otherwise identical to A, which contains s_{i} and not s_{i+1}. All other subsets are unchanged by the action of m_{i}.

Further, for any collection F of subsets of S we define $m_{i}(A ; F)$ according to

$$
\begin{gathered}
m_{i}(A ; F)=m_{i}(A) \quad \text { if } \quad m_{i}(A) \notin F \\
m_{i}(A ; F)=A \quad \text { if } \quad m_{i}(A) \in F
\end{gathered}
$$

Suppose now, with F_{k} and G_{l} satisfying the conditions imposed on them above, we examine the collections $m_{i}\left(F_{k} ; F_{k}\right)$ and $m_{i}\left(G_{l} ; G_{l}\right)$. These will have the same number of members as F_{k} and G_{l}, respectively, and will again have the property that each member of one intersects each member of the other. For suppose some member C of $m_{i}\left(F_{k} ; F_{k}\right)$ fails to intersect a member D of $m_{i}\left(G_{l} ; G_{l}\right)$. Suppose that $C=m_{i}\left(A ; F_{k}\right), D=m_{i}\left(B ; G_{l}\right)$. We then have the following situation: $A \cap B \neq \emptyset$ by hypothesis, hence $m_{i}(A) \cap m_{i}(B) \neq \emptyset$. But $C \cap D=m_{i}\left(A, F_{k}\right) \cap m_{i}\left(B, G_{l}\right)=\emptyset ;$ hence either $m_{i}(A) \neq\left(A, F_{k}\right)$ or $m_{i}(B) \neq m_{i}\left(B, G_{l}\right)$. Suppose $m_{i}(A) \neq m_{i}\left(A, F_{k}\right)$; then $m_{i}(A) \in F_{k}$ and $m_{i}(A) \cap B=A \cap m_{i}(B)=C \cap D=\emptyset$, which violates our hypotheses. The argument that applies for $m_{i}(B) \neq m_{i}\left(B, G_{l}\right)$ is identical to this one.

We define a stable pair of collections F_{k}, G_{l}, to be a pair which is invariant under the transformations $F_{k} \rightarrow m_{i}\left(F_{k} ; F_{k}\right) G_{l} \rightarrow m_{i}\left(G_{i} ; G_{l}\right)$ for all $i, l \leqslant i \leqslant n-1$. The argument above tells us that, starting with any pair (F_{k}, G_{l}) satisfying our conditions, we can, by repeated application of the m_{i} transformations, obtain new pairs (F_{k}, G_{l}) which have the same number of edges in each component as have F_{k} and G_{l}, and which again satisfy our intersection property.

For any collection F of subsets let

$$
\alpha(F)=\sum_{d \in F} \sum_{j=1}^{n} A_{j} .
$$

For each $i, \alpha\left(m_{i}(F, F)\right)<\alpha(F)$ unless $m_{i}(F, F)=F$; also for all $F \alpha(F) \geqslant 0$. Consequently repeated applications of the m-transformations must eventually yield a stable pair (\bar{F}_{k}, \bar{G}_{l}) starting from any pair (F_{k}, G_{l}).

A stable pair $\left(\bar{F}_{k}, \bar{G}_{l}\right)$ have the property that, if one takes any member of \bar{F}_{k} (or \bar{G}_{l}) and replaces any element S_{l} in it by a "smaller element" (S_{r} for $r<l$), the resulting subset is again in \bar{F}_{k} (or \bar{G}_{l}). We may therefore conclude that no member A of \bar{F}_{k} can intersect a member B of \bar{G}_{l} in s_{n} only, if $k+l \leqslant n$. Otherwise we could pick an element in neither A nor B (one must exist since $A \cup B$ can contain at most $n-1$ elements) and consider the set A^{\prime} obtained from A by replacing s_{n} by it. Then $A^{\prime} \in \bar{F}_{k}$, and also if $A \cap B=\left\{s_{n}\right\}$, we would have $A^{\prime} \cap B=\emptyset$, violating our assumptions about \bar{F}_{k} and \bar{G}_{l}.

We are now in a position to prove our theorem. Suppose $k+l<n$, and let $\bar{F}_{k l}$ and $\bar{G}_{l 1}$ be the collections of $(k-1)$-edges and $(l-1)$-edges of $\left\{s_{1}, \ldots, s_{n-1}\right\}$ whose union with $\left\{s_{n}\right\}$ lie in \bar{F}_{k} and \bar{G}_{l}, respectively. Let $\bar{F}_{k 0}$ and $\bar{G}_{l 0}$ be the collections of k-edges and l-edges of $\left\{s_{1}, \ldots, s_{n-1}\right\}$ which lie in $\bar{F}_{F_{c}}$ and \bar{G}_{l}. By our hypotheses, each member of $\bar{F}_{k 1}$, and each member of $\bar{F}_{k 0}$, intersect each member of $\bar{G}_{l 1}$, and each member of $\bar{G}_{l 0}$. We may therefore apply our induction hypothesis to each of the four pairs $\left(\bar{F}_{k i}, \bar{G}_{l i}\right)$ (since $k+l<n$, we have $k+l \leqslant n-1$) and with the number of members of $\bar{F}_{k 0}, \bar{F}_{k 1}, \bar{G}_{k 0}$, and $\bar{G}_{k 1}$ denoted, respectively, by $f_{k 0}, f_{k 1}$, $g_{k 0}, g_{k 1}$, we find that either both $f_{k 0} \leqslant\binom{ n-2}{k-1}$ and $f_{k 1} \leqslant\binom{ n-2}{k-2}$ or both $g_{k 0}<\binom{n-2}{k-1}$ and $g_{k 1}<\binom{n-2}{l-2}($ for $l \geqslant 2)$.

We conclude that either

$$
f_{k}=f_{k 0}+f_{k 1} \leqslant\binom{ n-1}{k-1}
$$

or

$$
g_{l}=g_{l 0}+g_{l 1}<\binom{n-1}{l-1}
$$

which proves our result.

It can be seen that the argument here yields a somewhat stronger result, namely, if $l \neq 1$, we could make the second alternative above $g_{l}<\binom{n-1}{l-1}-1$. By pursuing the reasoning involved here we can strengthen our result to the following one:

Theorem. If F_{k}, G_{l} are collections of k-edges and l-edges of S such that each member of F_{k} intersects each member of G_{l}, then either $f_{k} \leqslant\binom{ n-1}{k-1}$ or $g_{l} \leqslant\binom{ n-1}{l-1}-\binom{n-1-k}{l-1}$, where f_{k}, g_{l} represent the number of members of F_{k} and G_{l}, respectively.

References

1. P. Erdös, Chao Ko, R. Rado, Intersection Theorems for Systems of Finite Sets, Quart. J. Math. Oxford Ser. 12 (1961), 48.

[^0]: * This research was supported in part by NSF Contract GP6165.

