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Abstract

We show an averaging result for a system of stochastic evolution equations of parabolic type with
slow and fast time scales. We derive explicit bounds for the approximation error with respect to the small
parameter defining the fast time scale. We prove that the slow component of the solution of the system
converges towards the solution of the averaged equation with an order of convergence 1/2 in a strong sense
– approximation of trajectories – and 1 in a weak sense – approximation of laws. These orders turn out to
be the same as for the SDE case.
c⃝ 2012 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we consider a randomly-perturbed system of reaction–diffusion equations that
can be written as

∂xϵ(t, ξ)

∂t
=
∂2xϵ(t, ξ)

∂ξ2 + f (ξ, xϵ(t, ξ), yϵ(t, ξ)),

∂yϵ(t, ξ)

∂t
=

1
ϵ

∂2 yϵ(t, ξ)

∂ξ2 +
1
ϵ

g(ξ, xϵ(t, ξ), yϵ(t, ξ))+
1

√
ϵ

∂ω(t, ξ)

∂t
,

(1.1)
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for t ≥ 0, ξ ∈ (0, 1), with initial conditions xϵ(0, ξ) = x(ξ) and yϵ(0, ξ) = y(ξ), and Dirichlet
boundary conditions xϵ(t, 0) = xϵ(t, 1) = 0 and yϵ(t, 0) = yϵ(t, 1) = 0. The stochastic
perturbation ∂ω(t,ξ)

∂t is a space–time white noise and ϵ > 0 is a small parameter.
Such a system presents a specific structure: while the variations of the first component a priori

depend on the slow time t , the second component evolves with respect to the fast time t
ϵ
. These

two natural time scales are coupled through the nonlinear terms in the two equations.
In this setting, the main idea of the averaging principle, see for instance [11], is to study the

behaviour of the system when ϵ tends to 0 by exhibiting a limit equation – the so-called averaged
equation – for the slow component xϵ , and to prove the convergence of xϵ towards the solution
of this averaged equation. Here, we show two approximation results – see Theorems 1.1 and 1.2
– and give explicit order of convergence with respect to ϵ.

The averaged equation comes from the asymptotic behaviour of the fast equation.
Heuristically, when t > 0 and ϵ → 0, the fast time t

ϵ
goes to +∞, so that we expect the solution

of the fast equation to be quickly close to a stochastic equilibrium (and this is the case under
the dissipativity assumptions made in this paper), and that we can replace yϵ(t, ξ) in the slow
equation with some stationary – in the stochastic sense – process, which leads to the definition
of averaged coefficients in the slow equation.

To give precise results, it is convenient to look at the equations in an abstract setting, where
system (1.1) can be rewritten

d X ϵ(t) =


AX ϵ(t)+ F(X ϵ(t), Y ϵ(t))


dt

dY ϵ(t) =
1
ϵ


BY ϵ(t)+ G(X ϵ(t), Y ϵ(t))


dt +

1
√
ϵ

dW (t),
(1.2)

with initial conditions given by X ϵ(0) = x ∈ H , Y ϵ(0) = y ∈ H , where H is the Hilbert
space L2(0, 1), and W is a cylindrical Wiener process on H—see Section 2.1.2. In the case of
system (1.1), the definitions of A and B are given in Example 2.2, and the definitions of F and G
as Nemytskii operators are given in the second part of Example 2.10. Nevertheless the abstract
setting allows for more general equations, and in the sequel we only work with system (1.2).

When ϵ tends to 0, the slow component X ϵ is approximated by the process X , which follows
the deterministic evolution equation

d X(t) = (AX(t)+ F(X(t)))dt, (1.3)

with the initial condition X(0) = x , where the nonlinear coefficient F is obtained via an
averaging procedure—explained in detail in Section 2.2.

In this article, we analyse the error between X ϵ(t) and X(t), with two different criteria. We
focus on the order of convergence, i.e. we bound the error by CϵΛ, where C is a constant and
Λ is the order, which gives an idea of the speed of convergence of X ϵ(t) towards X(t). As a
result, we control the error made when X ϵ(t) is approximated by X(t). For instance, the order
of convergence is crucial for the analysis of numerical schemes used to approximate the slow
component X ϵ . In a forthcoming work, we extend a numerical scheme for SDEs analysed in [19]
for systems of SPDEs satisfying the same structure assumptions as system (1.1). This scheme
– called the Heterogeneous Multiscale Method – is deeply based on the averaging principle:
instead of computing X ϵ , we approximate X—and we can control the error we make. Moreover,
the nonlinear averaged coefficient F is never explicitly calculated in the scheme, but only
approximated by using numerical approximations of the values of the fast component at large
times. The theorems we prove here allow to analyse the convergence of such a scheme with the
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same kind of criteria, and without knowing the order of convergence in the averaging principle it
would not be possible to control the error made in the numerical approximation.

The two main theorems give bounds on the error between X ϵ and X ; they need different
dissipativity conditions (SD) and (WD) which determine how the fast equation converges to its
equilibrium, as explained below.

First, when Assumption 2.8 holds, the error can be estimated in a strong sense, where
trajectories of the processes are compared at a given time t :

Theorem 1.1 (Strong-Order). Assume (SD). For any 0 < r < 1/2, T > 0, x ∈ H, y ∈ H, there
exists C = C(T, r, x, y) > 0– depending also on the constants of the problem – such that for
any ϵ > 0 and 0 ≤ t ≤ T

E|X ϵ(t)− X(t)|H ≤ Cϵ1/2−r . (1.4)

The error can also be estimated in a weak sense, where we are interested in the distance between
the laws of the processes at a given time t ; then only Assumption 2.9 is necessary, since we
only need consequences of dissipativity at the level of the transition semi-group, instead of
trajectories:

Theorem 1.2 (Weak-Order). Assume (WD). For any 0 < r < 1, T > 0, 0 < θ ≤ 1,
x ∈ D(−A)θ , y ∈ H, φ ∈ C 2

b(H), there exists C > 0, depending on r, T, φ, |x |(−A)θ , |y|

and the constants of the problem, such that for any ϵ > 0 and t ≤ T

|E[φ(X ϵ(t))] − E[φ(X(t))]| ≤ Cϵ1−r . (1.5)

The domains D(−A)θ are usually the classical Sobolev spaces H2θ with respect to the eigenbasis
of A—see Definition 2.3. We remark that for the first theorem no regularity is needed for the
initial condition – i.e. we can take θ = 0 – while we require θ > 0 for the second one; this is
explained in the proof of Theorem 1.2. We need to take a small parameter r > 0, which can be
as small as possible, but different from 0. This is an effect of the infinite dimensional setting.

As a consequence, we can say that the strong order in averaging is 1/2, while the weak order
is 1. It is a general fact that the weak order is greater than the strong order (since test functions φ
in the theorem are Lipschitz continuous), but it is worth proving that there is a gap; this fact was
known for SDEs see [11,12], but had not been proved yet for SPDEs.

The strong convergence Theorem 1.1 is proved when the fast equation satisfies a strict
dissipativity assumption: for any x ∈ H , the function G(x, .) is Lipschitz continuous, with
constant Lg – independent of x – satisfying the following condition:

Lg < µ,

where µ is the smallest eigenvalue of the linear operator −B. Thanks to this assumption, we can
easily analyse the asymptotic behaviour of the fast equation with frozen slow component; we can
identify a unique invariant probability measure – depending on x – and show some exponential
convergence to equilibrium. More precisely, we control in a strong sense the difference between
two solutions of this fast equation starting from different initial conditions, and driven by the
same noise W : under the previous assumption, the ergodicity comes from properties of the
deterministic equation only.
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The weak convergence Theorem 1.2 needs a weaker dissipativity Assumption 2.9, which
yields the same ergodicity properties—unique invariant probability measure, exponential
convergence to equilibrium – but with different arguments: the asymptotic behaviour of the
transition semi-group can be analysed, thanks to the non-degeneracy of the noise – leading to
a Strong Feller Property. A coupling method – adapted from the study of Markov processes, like
in [13] or [16] – implies that the laws – instead of trajectories – of the fast process issued from two
different initial conditions are exponentially closed. We refer to Section 2.2 for a precise result,
and to [7] for a detailed proof. It seems that for the first time an averaging result is obtained for
SPDEs under a weak dissipativity condition.

Notice that we have assumed that the slow equation has no white noise term dw(t); as a
consequence, the averaged equation is a deterministic parabolic partial differential equation.
Considering a more general situation with some additive noise terms in the slow equation,
independent of the noise in the fast equation, we could still prove in a similar way a strong order
result, the only changes being time regularity of solutions. We would obtain order 1/5, which
can also be compared with the order 1/3 obtained for SDEs. But if we introduce noise in the
slow equation, the method we used to prove the weak order theorem becomes more complicated,
and we have not extended the result to this situation so far.

In the case of stochastic differential equations, averaging results are already well-known—see
for instance [10,11]. Convergence in law or in probability of X ϵ to X in the space C([0, T ], H)
can be shown by different techniques: by using a Khasminskii technique based on a subdivision
of the interval [0, T ](see [19,15]); a Poisson equation (see [18]); the method of perturbed test
functions and of a martingale problem approach (see [9]); or an asymptotic expansion of the
solutions of Kolmogorov equations (see [19,12]).

As far as stochastic partial differential equations are concerned, in [4] both the Khasminskii
technique and a martingale problem approach are used; in [5] a modified Poisson equation is the
essential tool. Then convergence in law or in probability of X ϵ to X in the space C([0, T ], H)
(the space of continuous functions from [0, T ] to H ) is proved; but order of convergence was
never given.

Our proof of Theorem 1.1 relies on the Khasminskii technique already known for SDEs: we
introduce an auxiliary process for which the slow component of the fast variable is frozen on
small intervals of a subdivision. We use Hölder regularity of order 1 − r in time of the slow
component, for which we do not need θ > 0.

To prove Theorem 1.2, we adapt the method of finding an expansion with respect to ϵ of the
solutions of the Kolmogorov equations related to our system. This seems to be the first time
that such a method is used to prove an averaging result for SPDEs. New technical difficulties
due to infinite dimension arise: we use unbounded linear operators and nonsmooth nonlinear
coefficients, and the Kolmogorov equations are more difficult to use. For these reasons, we use
a reduction to finite dimension technique, keeping in mind that bounds must be independent of
dimension, so that precise estimates are needed for each term appearing in the expansion. We
interpret the necessity of θ > 0 with a singularity which needs to be integrable.

In Section 2, we set the notations and give some results on the fast equation, allowing to
define the averaged equation; we also precise the assumptions needed to prove the theorems.
Then in Section 3, we prove the strong-order result. In Section 4, we give the details of the
method for proving the weak-order result. Finally in Section 5 and in the Appendix, we prove all
the necessary estimates.
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2. Preliminaries

2.1. Assumptions and notations

2.1.1. Test functions
To study weak convergence, we use test functions φ in the space C 2

b(H,R) of functions from
H to R that are twice continuously differentiable, with first and second order bounded derivatives.

In the sequel, we often identify the first derivative Dφ(x) ∈ L(H,R) with the gradient in H ,
and the second derivative D2φ(x) with a linear operator on H , via the formulae:

⟨Dφ(x), h⟩ = Dφ(x) · h for every h ∈ H

⟨D2φ(x) · h, k⟩ = D2φ(x) · (h, k) for every h, k ∈ H.

2.1.2. Stochastic integration in Hilbert spaces
In this section, we recall the definition of the cylindrical Wiener process and of stochastic

integral on a separable Hilbert space H (its norm is denoted by |.|H or just |.|). For more details,
see [6].

We first fix a filtered probability space (Ω ,F , (Ft )t≥0,P). A cylindrical Wiener process on
H is defined with two elements:

• a complete orthonormal system of H , denoted by (qi )i∈I , where I is a subset of N;
• a family (βi )i∈I of independent real Wiener processes with respect to the filtration ((Ft )t≥0):

W (t) =


i∈I

βi (t)qi . (2.1)

When I is a finite set, we recover the usual definition of Wiener processes in the finite
dimensional space R|I |. However the subject here is the study of some Stochastic Partial
Differential Equations, so that in the sequel the underlying Hilbert space H is infinite
dimensional; for instance when H = L2(0, 1), an example of complete orthonormal system
is (qk) = (sin(k.))k≥1—see Example 2.2.

A fundamental remark is that the series in (2.1) does not converge in H ; but if a linear operator
Ψ : H → K is Hilbert–Schmidt, then ΨW (t) converges in L2(Ω , H) for any t ≥ 0.

We recall that a linear operator Ψ : H → K is said to be Hilbert–Schmidt when

|Ψ |
2
L2(H,K )

:=

+∞
k=0

|Ψ(qk)|
2
K < +∞,

where the definition is independent of the choice of the orthonormal basis (qk) of H . The space of
Hilbert–Schmidt operators from H to K is denoted L2(H, K ); endowed with the norm |.|L2(H,K )
it is an Hilbert space.

The stochastic integral
 t

0 Ψ(s)dW (s) is defined in K for predictable processes Ψ with
values in L2(H, K ) such that

 t
0 |Ψ(s)|2L2(H,K )

ds < +∞ a.s; moreover when Ψ ∈ L2(Ω ×

[0, t]; L2(H, K )), the following two properties hold:

E
 t

0
Ψ(s)dW (s)

2
K

= E
 t

0
|Ψ(s)|2L2(H,K )

ds, (Itô isometry),

E
 t

0
Ψ(s)dW (s) = 0.

A generalization of Itô formula also holds—see [6].
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For instance, if v =


k∈N vkqk ∈ H , we can define

⟨W (t), v⟩ =

 t

0
⟨v, dW (s)⟩ =


k∈N

βk(t)vk;

we then have the following space–time white noise property

E⟨W (t), v1⟩⟨W (s), v2⟩ = t ∧ s⟨v1, v2⟩.

Therefore to be able to integrate a process with respect to W requires some strong
properties on the integrand; in our SPDE setting, the Hilbert–Schmidt properties follow from
the assumptions made on the linear coefficients of the equations.

2.1.3. Assumptions on the linear operators
We have to specify some properties of the linear operators A and B coming into the definition

of system (1.2); we assume that the linear parts are of parabolic type, with space variable
ξ ∈ (0, 1).

We assume that A and B are unbounded linear operators, with domains D(A) and D(B),
which satisfy the following assumptions:

Assumption 2.1. (1) We assume that (ek)k∈N and ( fk)k∈N are orthonormal basis of H , and
(λk)k∈N and (µk)k∈N are non-decreasing sequences of real positive numbers such that:

Aek = −λkek for all k ∈ N
B fk = −µk fk for all k ∈ N.

We use the notations λ := λ0 > 0 and µ := µ0 > 0 for the smallest eigenvalues of A and B.
(2) The sequences (λk) and (µk) go to +∞; moreover we have some control of the behaviour of

(µk) given by:
+∞
k=0

1
µαk

< +∞ ⇔ α > 1/2.

Example 2.2. A = B =
d2

dx2 , with domain H2(0, 1) ∩ H1
0 (0, 1) ∈ L2(0, 1) – homogeneous

Dirichlet boundary conditions: in that case λk = µk = π2k2, and ek(ξ) = fk(ξ) =
√

2 sin(kπξ)
– see [2].

In the abstract setting, powers of −A and −B, with their domains can be easily defined:

Definition 2.3. For a, b ∈ [0, 1], we define the operators (−A)a and (−B)b by

(−A)a x =

∞
k=0

λa
k xkek ∈ H,

(−B)b y =

∞
k=0

µb
k yk fk ∈ H,

with domains

D(−A)a =


x =

+∞
k=0

xkek ∈ H ; |x |
2
(−A)a :=

+∞
k=0

(λk)
2a

|xk |
2 < +∞


;
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D(−B)b =


y =

+∞
k=0

yk fk ∈ H, |y|
2
(−B)b :=

+∞
k=0

(µk)
2b

|yk |
2 < +∞


.

The domains D(−A)a are related to Sobolev spaces H2a(0, 1): therefore when x belongs to
a space D(−A)a , the exponent a represents some regularity of the function x .

The semi-groups (et A)t≥0 and (et B)t≥0 can be defined by the Hille–Yosida Theorem (see [2]).
We use the following spectral formulae: if x =


+∞

k=0 xkek ∈ H and y =


+∞

k=0 yk fk ∈ H , then
for any t ≥ 0

et Ax =

+∞
k=0

e−λk t xkek and et B y =

+∞
k=0

e−µk t yk fk .

For any t ≥ 0, et A and et B are continuous linear operators in H , with respective operator
norms e−λt and e−µt . The semi-group (et A) is used to define the solution Z(t) = et Az of the
linear Cauchy problem

d Z(t)

dt
= AZ(t) with Z(0) = z.

To define solutions of more general PDEs of parabolic type, we use mild formulation, and
Duhamel principle.

These semi-groups enjoy some smoothing properties that we often use in this work. Basically
we need the following properties, which are easily proved using the above spectral properties.
We write them for A, but they also hold with B.

Proposition 2.4. Under Assumption 2.1, for any σ ∈ [0, 1], there exists Cσ > 0 such that we
have:

(1) for any t > 0 and x ∈ H

|et Ax |(−A)σ ≤ Cσ t−σ e−
λ
2 t

|x |H .

(2) for any 0 < s < t and x ∈ H

|et Ax − es Ax |H ≤ Cσ
(t − s)σ

sσ
e−

λ
2 s

|x |H .

(3) for any 0 < s < t and x ∈ D(−A)σ

|et Ax − es Ax |H ≤ Cσ (t − s)σ e−
λ
2 s

|x |(−A)σ .

Under the previous assumptions on the linear coefficients, it is easy to show that the following
stochastic integral is well-defined in H , for any t ≥ 0:

W B(t) =

 t

0
e(t−s)BdW (s). (2.2)

It is called a stochastic convolution, and it is the unique mild solution of

d Z(t) = B Z(t)dt + dW (t) with Z(0) = 0.

Under the second condition of Assumption 2.1, there exists δ > 0 such that for any t > 0 we
have

 t
0

1
sδ

|es B
|
2
L2(H)

ds < +∞; it can then be proved that W B has continuous trajectories – via

the factorization method, see [6] – and that for any 1 ≤ p < +∞ supt≥0 E|W B(t)|p
H < +∞.
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2.1.4. Assumptions on the nonlinear coefficients
We now give the Assumptions on the nonlinear coefficients F,G : H × H → H . First, we

need some regularity properties:

Assumption 2.5. We assume that there exists 0 ≤ η < 1
2 and a constant C such that the

following directional derivatives are well-defined and controlled:

• For any x, y ∈ H and h ∈ H, |Dx F(x, y) · h| ≤ C |h|H and |Dy F(x, y) · h| ≤ C |h|H .
• For any x, y ∈ H, h ∈ H, k ∈ D(−A)η, |D2

xx F(x, y) · (h, k)| ≤ C |h|H |k|(−A)η .
• For any x, y ∈ H, h ∈ H, k ∈ D(−B)η, |D2

yy F(x, y) · (h, k)| ≤ C |h|H |k|(−B)η .
• For any x, y ∈ H, h ∈ H, k ∈ D(−B)η, |D2

xy F(x, y) · (h, k)| ≤ C |h|H |k|(−B)η .
• For any x, y ∈ H, h ∈ D(−A)η, k ∈ H, |D2

xy F(x, y) · (h, k)| ≤ C |h|(−A)η |k|H .

We moreover assume that F is bounded.

Remark 2.6. We warn the reader that constants may vary from line to line during the proofs, and
that in order to use lighter notations we usually forget to mention dependence on the parameters.
We use the generic notation C for such constants.

We assume that the fast equation is a gradient system: for any x the nonlinear coefficient
G(x, .) is the derivative of some potential U . We also assume regularity assumptions as for F .

Assumption 2.7. The function G is defined through G(x, y) = ∇yU (x, y), for some potential
U : H × H → R. Moreover we assume that G is bounded, and that the regularity assumptions
given in the Assumption 2.5 are also satisfied for G.

Finally, we need to assume some dissipativity of the fast equation. Assumption 2.8 is
necessary to prove Theorem 1.1, while Assumption 2.9 is weaker and is sufficient to prove
Theorem 1.2.

Assumption 2.8 (Strict Dissipativity). Let Lg denote the Lipschitz constant of G with respect to
its second variable; then

Lg < µ, (SD)

where µ is defined in Assumption 2.1.

Assumption 2.9 (Weak Dissipativity). There exist c > 0 and C > 0 such that for any x ∈ H and
y ∈ D(B)

⟨By + G(x, y), y⟩ ≤ −c|y|
2
+ C. (WD)

Indeed, according to Assumptions 2.1 and 2.7, the weak dissipativity Assumption 2.9 is
always satisfied, while strict dissipativity requires a condition on the Lipschitz constant of G.

Example 2.10. We give some fundamental examples of nonlinearities for which the previous
assumptions are satisfied:

• Functions F,G : H × H → H of class C 2, bounded and with bounded derivatives, such that
G(x, y) = ∇yU (x, y) and satisfying (SD) fit in the framework, with the choice η = 0.

• Functions F and G can be Nemytskii operators: let f : (0, 1) × R2
→ R be a measurable

function such that for almost every ξ ∈ (0, 1) f (ξ, .) is twice continuously differentiable,
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bounded and with uniformly bounded derivatives. Then F is defined for every x, y ∈ H =

L2(0, 1) by

F(x, y)(ξ) = f (ξ, x(ξ), y(ξ)).

For G, we assume that there exists a function g with the same properties as f above, such
that G(x, y)(ξ) = g(ξ, x(ξ), y(ξ)). The strict dissipativity assumption (SD) is then satisfied
when

sup
ξ∈(a,b),x∈R,y∈R

∂g

∂y
(ξ, x, y)

 < µ.

The conditions in Assumption 2.5 are then satisfied for F and G as soon as there exists
η < 1/2 such that D(−A)η and D(−B)η are continuously embedded into L∞(0, 1)—it is the
case for A and B given in Example 2.2, with η > 1/4.

We remark that under Assumption 2.7, if we define U0(x, y) =
 1

0 < G(x, sy), y > ds, we
have U0(x, y) = U (x, y)− U (x, 0); therefore U0 is another potential for G, and is the only one
such that for any x ∈ H we have U0(x, 0) = 0. In the sequel, it is therefore not restrictive to
assume U = U0.

Now we can define solutions of system (1.2); under Assumptions 2.1, 2.5 and 2.7, we notice
that the nonlinearities F and G are Lipschitz continuous, and the following proposition is
classical—see [6]:

Proposition 2.11. For every ϵ > 0, T > 0, x ∈ H, y ∈ H, system (1.2) admits a unique mild
solution (X ϵ, Y ϵ) ∈ (L2(Ω , C([0, T ], H)))2:

X ϵ(t) = et Ax +

 t

0
e(t−s)A F(X ϵ(s), Y ϵ(s))ds

Y ϵ(t) = e
t
ϵ

B y +
1
ϵ

 t

0
e
(t−s)
ϵ

B G(X ϵ(s), Y ϵ(s))ds +
1

√
ϵ

 t

0
e
(t−s)
ϵ

BdW (s).
(2.3)

In other words, system (1.2) is well-posed for any ϵ > 0, on any finite time interval [0, T ].
Some properties – bounds on moments, space and time regularity, differentiability with

respect to the parameters – of X ϵ and Y ϵ are given in the Appendix.

2.2. Known results about the fast equation and the averaged equation

In this section, we just recall without proof the main results on the fast equation with frozen
slow component and on the averaged equation, defined below. Proofs can be found in [5] for the
strict dissipative case, and the extension to the weakly dissipative situation relies on arguments
explained below.

If x ∈ H , we define an equation on the fast variable where the slow variable is fixed and equal
to x :

dYx (t, y) = (BYx (t, y)+ G(x, Yx (t, y)))dt + dW (t),
Yx (0, y) = y.

(2.4)

This equation admits a unique mild solution, defined on [0,+∞[.
Since Y ϵ is involved at time t > 0, heuristically we need to analyse the properties of Yx (

t
ϵ
, y),

with ϵ → 0, and by a change of time we need to understand the asymptotic behaviour of Yx (., y)
when time goes to infinity.
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Under the strict dissipativity Assumption 2.8, we obtain a contractivity of trajectories issued
from different initial conditions and driven by the same noise:

Proposition 2.12. With (SD), for any t ≥ 0, x, y1, y2 ∈ H we have

|Yx (t, y1)− Yx (t, y2)|H ≤ e−
(µ−Lg )

2 t
|y1 − y2|H .

Under the weak dissipativity Assumption 2.9, we obtain such an exponential convergence result
for the laws instead of trajectories. The proof of this result is not straightforward, and can be
found in [7].

Proposition 2.13. With (WD), there exist c > 0,C > 0 such that for any bounded test function
φ, any t ≥ 0 and any y1, y2 ∈ H

|Eφ(Y (t, y1))− Eφ(Y (t, y2))| ≤ C∥φ∥∞(1 + |y1|
2
+ |y2|

2)e−ct . (2.5)

The idea of coupling relies on the following formula: if ν1 and ν2 are two probability measures
on a state space S, their total variation distance satisfies

dT V (ν1, ν2) = inf {P(X1 ≠ X2)} ,

which is an infimum over random variables (X1, X2) defined on a same probability space, and
such that X1 ∼ ν1 and X2 ∼ ν2.

The principle is to define a coupling (Z1(t, y1, y2), Z2(t, y1, y2))t≥0 for the processes
(Y (t, y1))t≥0 and (Y (t, y2))t≥0 such that the coupling time T of Z1 and Z2 – i.e. the first time
the processes are equal – has an exponentially decreasing tail.

This technique was first used in the study of the asymptotic behaviour of Markov chains
– see [1,8,14,17] – and was later adapted for SDEs and more recently for SPDEs—see for
instance [13,16].

As a consequence, we can show that there exists a unique invariant probability measure
associated with Yx , and that the convergence to equilibrium is exponentially fast.

First, let ν = N (0, (−B)−1/2) be the centered Gaussian probability measure on H with the
covariance operator (−B)−1/2—which is positive and trace-class, thanks to Assumption 2.1.

Then µx defined by

µx (dy) =
1

Z(x)
e2U (x,y)ν(dy), (2.6)

where Z(x) ∈]0,+∞[ is a normalization constant, is the unique probability invariant measure
associated to Yx . This expression comes from the gradient structure of equation (2.4), given in
Assumption 2.7.

Second, under both dissipativity assumptions, the convergence to equilibrium is exponential
in the following sense:

Proposition 2.14. If we assume (SD) or (WD), there exist constants C, c > 0 such that for any
bounded function φ : H → R or φ : H → H, t ≥ 0 and x, y ∈ H we haveEφ(Yx (t, y))−


H
φ(z)µx (dz)

 ≤ C∥φ∥∞(1 + |y|
2
H )e

−ct .

Under the strict dissipativity Assumption 2.8, this is a consequence of Proposition 2.12
– see Theorem 3.5 and Remark 3.6 of [5]; under the weak dissipativity Assumption 2.9,
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Proposition 2.14 is a consequence of Proposition 2.13 and of the properties of the invariant
measures µx – which have finite moments of any order, uniformly bounded with respect to x .

Now we define the averaged equation. First we define the averaged nonlinear coefficient F :

Definition 2.15. For any x ∈ H ,

F(x) =


H

F(x, y)µx (dy). (2.7)

Using Assumptions 2.5 and 2.7 and the expression of µx , we can easily prove the following
properties on F :

Proposition 2.16. There exists 0 ≤ η < 1 and a constant C such that the following directional
derivatives of F are well-defined and controlled:

• For any x ∈ H, h ∈ H, |DF(x) · h| ≤ C |h|H .
• For any x ∈ H, h ∈ H, k ∈ D(−A)η, |D2 F(x) · (h, k)| ≤ C |h|H |k|(−A)η .

Moreover, F is bounded and Lipschitz continuous.

Remark 2.17. Even when F and G are Nemytskii operators, F is not such an operator in general.

Then the averaged equation – see (1.3) in the introduction – can be defined:

d X(t) = (AX(t)+ F(X(t)))dt,

with initial condition X(0) = x ∈ H . For any T > 0, this deterministic equation admits a unique
mild solution X ∈ C([0, T ], H).

3. Proof of the strong-order result

The main idea – inspired by the work on SDEs of Khasminskii in [11] – of the proof of
Theorem 1.1 is the construction of auxiliary processes (X̃ ϵ, Ỹ ϵ) for any ϵ, for which the analysis
is simpler.

In this section, we assume that dissipativity of the fast equation is strict: we have (SD).
Let T > 0, x ∈ H, y ∈ H and ϵ > 0 be fixed. We introduce the parameter

δ = δ(ϵ) =
√
ϵ (3.1)

to define a subdivision of [0, T ]. We also fix r > 0.
We define X̃ ϵ and Ỹ ϵ via a mild formulation: for any 0 ≤ t ≤ T

Ỹ ϵ(t) = e
t
ϵ

B y +
1
ϵ

 t

0
e
(t−s)
ϵ

B G(X ϵ(⌊
s

δ
⌋δ), Ỹ ϵ(s))ds +

1
√
ϵ

 t

0
e
(t−s)
ϵ

BdW (s),

X̃ ϵ(t) = et Ax +

 t

0
e(t−s)A F(X ϵ(⌊

s

δ
⌋δ), Ỹ ϵ(s))ds,

(3.2)

where ⌊.⌋ denotes the integer part function.
X̃ ϵ and Ỹ ϵ are continuous processes and they satisfy X̃ ϵ(0) = x = X ϵ(0) and Ỹ ϵ(0) = y =

Y ϵ(0). Moreover, on any subinterval [kδ, (k + 1)δ], with 0 ≤ k ≤ N := ⌊
T
δ
⌋, we have

d X̃ ϵ(t) = (AX̃ ϵ(t)+ F(X ϵ(kδ), Ỹ ϵ(t)))dt,

dỸ ϵ(t) =
1
ϵ
(BỸ ϵ(t)+ G(X ϵ(kδ), Ỹ ϵ(t)))dt +

1
√
ϵ

dW (t).
(3.3)
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We remark that on such subintervals the fast component Ỹ ϵ does not depend on the slow
component X̃ ϵ , but only on the value of X ϵ at the first point of the interval.

Since F and G are supposed to be bounded, we easily see that for any t ≥ 0

E|X̃ ϵ(t)|2H ≤ C(1 + |x |
2
H ) and E|Ỹ ϵ(t)|2H ≤ C(1 + |y|

2
H ).

We show the following lemmas:

Lemma 3.1. There exists C > 0 such that for any 0 ≤ t ≤ T and any ϵ > 0

E|X ϵ(t)− X̃ ϵ(t)| ≤ C

δ1−r

+
ϵ

δ


.

Lemma 3.2. There exists C > 0 such that for any 0 ≤ t ≤ T and any ϵ > 0

E|X̃ ϵ(t)− X(t)| ≤ C


ϵ(1 + δ−r )


1 +

1

1 − e−c δ
ϵ

1/2

+ C

δ1−r

+
ϵ

δ


.

The constant C above depends on r, T, x, y, but not on t, ϵ or δ(ϵ).
Lemma 3.1 explains why we can replace X̃ ϵ by X ϵ , and Lemma 3.2 gives an estimate of the

distance between X̃ ϵ(t) and X(t). With the choice of δ(ϵ) =
√
ϵ given by (3.1), the proof of

Theorem 1.1 is straightforward.

Proof of Lemma 3.1.

• Estimate of Y ϵ − Ỹ ϵ .
We define ρϵ(t) = Y ϵ(t)− Ỹ ϵ(t) for any 0 ≤ t ≤ T .
We fix k ≥ 0; then for any t ∈ [kδ, (k + 1)δ] we have

dρϵ(t) =
1
ϵ

Bρϵ(t)dt +
1
ϵ
(G(X ϵ(t), Y ϵ(t))− G(X ϵ(kδ), Ỹ ϵ(t)))dt.

Using a mild formulation and Gronwall lemma, for any t ∈ [kδ, (k + 1)δ] we have

E|ρϵ(t)| ≤ e−
µ−Lg
ϵ

(t−kδ)E|ρϵ(kδ)| +
C

ϵ

 t

kδ
e−

µ−Lg
ϵ

(t−s)E|X ϵ(s)− X ϵ(kδ)|ds.

Since E|Y ϵ(t)| ≤ C(1 + |y|) and E|Ỹ ϵ(t)| ≤ C(1 + |y|), we have the same bound on ρϵ .
We can integrate the previous inequality over the interval t ∈ [kδ, (k + 1)δ] and get (k+1)δ

kδ
E|ρϵ(t)|dt

≤ C
 (k+1)δ

kδ
e−

µ−Lg
ϵ

(t−kδ)dt +
C

ϵ

 (k+1)δ

kδ

 t

kδ
e−

µ−Lg
ϵ

(t−s)E|X ϵ(s)− X ϵ(kδ)|dsdt

≤ C
ϵ

µ− Lg
+ C

 (k+1)δ

kδ
E|X ϵ(s)− X ϵ(kδ)|

 (k+1)δ

s

1
ϵ

e−
µ−Lg
ϵ

(t−s)dtds

≤ Cϵ + C
 (k+1)δ

kδ
E|X ϵ(s)− X ϵ(kδ)|ds.

We recall that strict dissipativity µ− Lg > 0 holds, thanks to Assumption 2.8.
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It remains to take the sum over k ∈

0, . . . , ⌊ t

δ
⌋

, where t ≤ T ; using Proposition A.3 of

the Appendix, we then obtain t

0
E|ρϵ(s)|ds ≤ C(r, T )

ϵ
δ

+ δ1−r

.

• Estimate of X ϵ − X̃ ϵ .

We have for any 0 ≤ t ≤ T

|X ϵ(t)− X̃ ϵ(t)| =

 t

0
e(t−s)A(F(X ϵ(s), Y ϵ(s))− F(X ϵ(⌊

s

δ
⌋δ), Ỹ (s)))ds


≤

 t

0

F(X ϵ(s), Y ϵ(s))− F


X ϵ

⌊

s

δ
⌋δ

, Ỹ (s)

2 ds

≤ C
 T

0

X ϵ(s)− X ϵ

⌊

s

δ
⌋δ
+ |Y ϵ(s)− Ỹ ϵ(s)|


ds.

Using the previous estimate and the regularity result from Proposition A.3, we obtain for any
0 ≤ t ≤ T

E|X ϵ(t)− X̃ ϵ(t)| ≤ C

δ1−r

+
ϵ

δ


. � (3.4)

Proof of Lemma 3.2. We introduce the following decomposition, for any 0 ≤ t ≤ T :

X̃ ϵ(t)− X(t) =

 t

0
e(t−s)A


F


X ϵ

⌊

s

δ
⌋δ

, Ỹ ϵ(s)


− F(X(s))


ds

=

 t

0
e(t−s)A


F


X ϵ

⌊

s

δ
⌋δ

, Ỹ ϵ(s)


− F


X ϵ

⌊

s

δ
⌋δ


ds

+

 t

0
e(t−s)A


F


X ϵ

⌊

s

δ
⌋δ


− F(X ϵ(s))


ds

+

 t

0
e(t−s)A(F(X ϵ(s))− F(X̃ ϵ(s)))ds

+

 t

0
e(t−s)A(F(X̃ ϵ(s))− F(X(s)))ds

= I1(t)+ I2(t)+ I3(t)+ I4(t).

According to Proposition 2.16, F is Lipschitz continuous; thanks to Proposition A.3 and
Lemma 3.1, we then show that for any 0 ≤ t ≤ T

E|I2(t)| ≤ C
 T

0
E
X ϵ ⌊ s

δ
⌋δ


− X ϵ(s)
 ds ≤ Cδ1−r

E|I3(t)| ≤ C
 T

0
|X ϵ(s)− X̃ ϵ(s)|ds ≤ C


δ1−r

+
ϵ

δ


E|I4(t)| ≤ CT

 t

0
E|X̃ ϵ(r)− X(r)|ds.

The I4 term is treated via the Gronwall Lemma.
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It remains to focus on the I1 term. It is fundamental to look at E|I1(t)|2 and not only E|I1(t)|
in order to obtain the best estimate leading to order 1/2. For that, we use the subdivision of [0, T ]

and we expand the scalar product in H : we have for any 0 ≤ t ≤ T

|I1(t)|
2

=

 t

0
e(t−s)A


F


X ϵ

⌊

s

δ
⌋δ

, Ỹ ϵ(s)


− F


X ϵ

⌊

s

δ
⌋δ


ds

2

=


⌊

t
δ
⌋

k=0

 (k+1)δ∧t

kδ
e(t−s)A(F(X ϵ(kδ), Ỹ ϵ(s))− F(X ϵ(kδ)))ds


2

= A1(t)+ A2(t),

where

A1(t) :=

⌊
t
δ
⌋

k=0


 (k+1)δ∧t

kδ
e(t−s)A(F(X ϵ(kδ), Ỹ ϵ(s))− F(X ϵ(kδ)))ds


2

(3.5)

and

A2(t) := 2


0≤i< j≤⌊
t
δ
⌋

 (i+1)δ∧t

iδ
e(t−s)A(F(X ϵ(iδ), Ỹ ϵ(s))− F(X ϵ(iδ)))ds,

×

 ( j+1)δ∧t

jδ
e(t−s)A(F(X ϵ( jδ), Ỹ ϵ(s))− F(X ϵ( jδ)))ds


. (3.6)

We claim that EA1(t) ≤ Cϵ and EA2(t) ≤ Cϵ(1 + δ−r )(1 +
1

1−e−c δϵ
), where C =

C(T, r, θ, x, y). Using Gronwall Lemma, we get the result.

• We first prove the estimate on EA1(t). We use conditional expectation with respect to Fs .
Then for any 0 ≤ k ≤ ⌊

t
δ
⌋, using some symmetry for variables s and σ ,

E


 (k+1)δ∧t

kδ
e(t−s)A(F(X ϵ(kδ), Ỹ ϵ(s))− F(X ϵ(kδ)))ds


2

= 2E
 (k+1)δ∧t

kδ
ds
 (k+1)δ∧t

s
dσ ⟨e(t−s)A(F(X ϵ(kδ), Ỹ ϵ(s))− F(X ϵ(kδ))),

× e(t−σ)A(F(X ϵ(kδ), Ỹ ϵ(σ ))− F(X ϵ(kδ)))⟩

= 2E
 (k+1)δ∧t

kδ
ds
 (k+1)δ∧t

s
dσ ⟨e(t−s)A(F(X ϵ(kδ), Ỹ ϵ(s))− F(X ϵ(kδ))),

× e(t−σ)AE[F(X ϵ(kδ), Ỹ ϵ(σ ))− F(X ϵ(kδ))|Fs]⟩

≤ 2
 (k+1)δ

kδ

 (k+1)δ

s
E(|F(X ϵ(kδ), Ỹ ϵ(s))− F(X ϵ(kδ))| |E[F(X ϵ(kδ), Ỹ ϵ(σ ))|Fs]

− F(X ϵ(kδ))|).

We now define the auxiliary function F̃ . Propositions C.1 and C.2 – see the Appendix –
give important properties of this function: we have some exponential control with respect to
time t of uniform and Lipschitz bounds with respect to x .
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Definition 3.3. For any (x, y) ∈ H2 and t ≥ 0

F̃(x, y, t) = EF(x, Yx (t, y))− F(x). (3.7)

Since F is bounded, we can control the first factor in the integral; for the second factor, we
use the definition of F̃ , the Markov property and Proposition C.1 to see that

E


 (k+1)δ∧t

kδ
e(t−s)A(F(X ϵ(kδ), Ỹ ϵ(s))− F(X ϵ(kδ)))ds


2

≤ C
 (k+1)δ

kδ
ds
 (k+1)δ

s
dσE

F̃ X ϵ(kδ), Ỹ ϵ(s),
σ − s

ϵ


≤ C

 (k+1)δ

kδ

 (k+1)δ

s
e−c σ−s

ϵ dσds ≤ Cδϵ.

Therefore we get EA1(t) ≤ Cϵ.

• Estimate of EA2(t).
We have to introduce the following auxiliary processes, which generalize Ỹ ϵ . (Z ϵi (s))s≥iδ ,

where i ∈ {0, . . . , N } is defined by:

d Z ϵi (s) =
1
ϵ
(B Z ϵi (s)+ G(X ϵ(iδ), Z ϵi (s)))ds +

1
√
ϵ

dW (s)

Z ϵi (iδ) = Ỹ ϵ(iδ).
(3.8)

It is then clear that for iδ ≤ s ≤ (i + 1)δ we have Z ϵi (s) = Ỹ ϵ(s), and that Z ϵk ((k + 1)δ) =

Ỹ ϵ((k + 1)δ) = Z ϵk+1((k + 1)δ). Moreover the processes (Z ϵi ) are uniformly bounded with
respect to i and ϵ.

It is then possible to rewrite the integrands appearing in the expression of A2: when
iδ ≤ s ≤ (i + 1)δ ≤ jδ ≤ τ ≤ ( j + 1)δ,E e(t−s)A(F(X ϵ(iδ), Ỹ ϵ(s))− F(X ϵ(iδ))), e(t−τ)A(F(X ϵ( jδ), Ỹ ϵ(τ ))− F(X ϵ( jδ)))


=

Ee(t−s)A(F(X ϵ(iδ), Ỹ ϵ(s))− F(X ϵ(iδ))), e(t−τ)AE[F(X ϵ( jδ), Ỹ ϵ(τ ))

− F(X ϵ( jδ))|F(i+1)δ]


≤ CE|E[F(X ϵ( jδ), Ỹ ϵ(τ ))− F(X ϵ( jδ))|F(i+1)δ]|,

since F is bounded. We have Ỹ ϵ(τ ) = Z ϵj (τ ); however since i < j we can use conditional
expectation with respect to F(i+1)δ instead of F jδ in order to get a better estimate. We
therefore propose the following decomposition

E|E[F(X ϵ( jδ), Ỹ ϵ(τ ))− F(X ϵ( jδ))|F(i+1)δ]|

≤ CE|E[F(X ϵ((i + 1)δ), Z ϵi+1(τ ))− F(X ϵ((i + 1)δ))|F(i+1)δ]|

+ CE
E(F(X ϵ( jδ), Z ϵj (τ ))− F(X ϵ( jδ)))− (F(X ϵ((i + 1)δ), Z ϵi+1(τ ))

− F(X ϵ((i + 1)δ)))|F(i+1)δ


=: B1 + B2.
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(1) First, using Markov property we have for any jδ ≤ τ ≤ ( j + 1)δ
B1 = CE

E F(X ϵ((i + 1)δ), Z ϵi+1(τ ))− F(X ϵ((i + 1)δ))|F(i+1)δ


= CE
E  F̃


X ϵ((i + 1)δ), Z ϵ(i+1)((i + 1)δ),

τ − (i + 1)δ
ϵ

F(i+1)δ


≤ Ce−c τ−(i+1)δ

ϵ ,

thanks to Proposition C.1.

(2) B2 can be rewritten using a telescoping sum, and some conditional expectation

B2 = E

E


j−1
k=i+1

E


[F(X ϵ((k + 1)δ), Z ϵk+1(τ ))− F(X ϵ((k + 1)δ))]

− [F(X ϵ(kδ), Z ϵk (τ ))− F(X ϵ(kδ))]|Fkδ


|F(i+1)δ


≤

j−1
k=i+1

E

E

[F(X ϵ((k + 1)δ), Z ϵk+1(τ ))− F(X ϵ((k + 1)δ))]

− [F(X ϵ(kδ), Z ϵk (τ ))− F(X ϵ(kδ))]|Fkδ

.
Thanks to Markov property, we obtain

E


F(X ϵ((k + 1)δ), Z ϵk+1(τ ))− F(X ϵ((k + 1)δ))|Fkδ


= E


F̃(X ϵ((k + 1)δ), Ỹ ϵ((k + 1)δ), τ − (k + 1)δ, ϵ)|Fkδ


and

E


F(X ϵ(kδ), Z ϵk (τ ))− F(X ϵ(kδ))|Fkδ


= E


F̃(X ϵ(kδ), Ỹ ϵ((k + 1)δ), τ − (k + 1)δ, ϵ)|Fkδ


.

Using the exponential decrease in time of the Lipschitz constant of F̃ with respect to x
given by Proposition C.2 in the Appendix, we have

B2 ≤

j−1
k=i+1

E

EF̃(X ϵ((k + 1)δ), Ỹ ϵ((k + 1)δ), τ − (k + 1)δ, ϵ)|Fkδ


− E


F̃(X ϵ(kδ), Ỹ ϵ((k + 1)δ), τ − (k + 1)δ, ϵ)|Fkδ


≤ C

j−1
k=i+1

e−c τ−(k+1)δ
ϵ E|X ϵ((k + 1)δ)− X ϵ(kδ)|


1 +

ϵη

(τ − (k + 1)δ)η



≤ C


1 +

ϵη

(τ − jδ)η

 j−1
k=i+1

e−c τ−(k+1)δ
ϵ

δ1−r

(kδ)1−r

≤ C


1 +

ϵη

(τ − jδ)η


δ1−r

((i + 1)δ)1−r

e−c τ− jδ
ϵ

1 − e−c δ
ϵ

,

by using the regularity proved in Proposition A.3.
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(3) We are now able to conclude, by using the estimates on B1 and B2: we have for any
0 ≤ t ≤ T

EA2(t) ≤ C


0≤i< j≤⌊
t
δ
⌋

 (i+1)δ∧t

iδ
ds
 ( j+1)δ∧t

jδ
dτe−c τ−(i+1)δ

ϵ

+ C


0≤i< j≤⌊
t
δ
⌋

 (i+1)δ∧t

iδ
ds
 ( j+1)δ∧t

jδ
dτ

×
δ1−r

((i + 1)δ)1−r

e−c τ− jδ
ϵ

1 − e−c δ
ϵ


1 +

ϵη

(τ − jδ)η


≤ C


0≤i< j≤⌊

T
δ
⌋

ϵδe−c ( j−i−1)δ
ϵ + Cδ1−rϵ

×
1

1 − e−c δ
ϵ


0≤i< j≤⌊

T
δ
⌋

δ1−r

((i + 1)δ)1−r

≤ C(T )ϵ(1 + δ−r )


1 +

1

1 − e−c δ
ϵ


. �

4. Proof of the weak-order result

The proof of Theorem 1.2 relies on an expansion of the solution of the Kolmogorov equation
associated with the stochastic system (1.2) with respect to the small parameter ϵ; the zero-order
term corresponds to the averaged equation, and we control the first-order term to get the result.

When working with SDEs, this strategy can be entirely followed; nevertheless in the case of
SPDEs, the Kolmogorov equations involve the unbounded operators A and B, and quantities like
Tr(D2

yyu), and this leads to technical problems—see [3] or [5].
The idea of the proof is to reduce the infinite dimensional problem to a finite dimensional one

by Galerkin approximation; we apply the method in this finite dimensional setting, and we prove
bounds that are uniform with respect to the dimension. We also show that taking the limit when
dimension goes to infinity is meaningful and gives the desired result.

The key element in the construction of the expansion mentioned above is given in Lemma 4.3:
a Poisson equation can be solved under ergodicity conditions on the fast equation. We notice that
Assumption 2.9 is sufficient, since we can analyse the problem through the asymptotic properties
of the transition semi-group of the fast equation, instead of trajectories.

First, we explain how we reduce the problem to a finite dimensional one—see Section 4.1;
then we explain the method in this setting and show which expressions must be controlled—see
Section 4.2; finally we prove the estimates.

4.1. Reduction to a finite dimensional problem

We use Galerkin approximations based on the orthonormal basis (ek) and ( fk) of H , given by
Assumption 2.1. We define the subspaces

H (1)
N = span {ek; 0 ≤ k ≤ N − 1} and H (2)

N = span { fk; 0 ≤ k ≤ N − 1} .

We denote by P(1)N ∈ L(H) – resp. P(2)N – the orthogonal projection of H onto H (1)
N —resp. H (2)

N .
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Then we define for x ∈ H (1)
N and y ∈ H (2)

N

FN (x, y) = P(1)N (F(x, y))

G N (x, y) = P(2)N (G(x, y))

UN (x, y) = U (x, y).

On H (1)
N × H (2)

N coefficients FN and G N are of class C 2. The function UN is of class C 3 with
respect to y and of class C 2 with respect to x , and we have DyUN (x, y) = G N (x, y) for any

(x, y) ∈ H (1)
N × H (2)

N .
Moreover we have bounds on FN ,G N ,UN and on their derivatives which are uniform with

respect to N and satisfy bound like in Assumption 2.5. In particular we still have the weak
dissipativity condition with G replaced by G N .

We can define the following approximation of system (1.2)

d X ϵN (t) = (AX ϵN (t)+ FN (X
ϵ
N (t), Y ϵN (t)))dt

dY ϵN (t) =
1
ϵ
(BY ϵN (t)+ G N (X

ϵ
N (t), Y ϵN (t)))dt +

1
√
ϵ

dWN (t),
(4.1)

with initial conditions X ϵN (0) = P(1)N x ∈ H (1)
N , Y ϵN (0) = P(2)N y ∈ H (2)

N .

Since H (1)
N (resp. H (2)

N ) is a stable subspace of A (resp. B), this system is well-posed in

H (1)
N × H (2)

N .

We have by definition WN (t) = P(2)N W (t); on H (2)
N it is a N -dimensional Brownian motion.

Below we explain that system (4.1) defines a good approximation of the initial problem
(1.2). Moreover, we can check that the structure of the problem remains the same, with bounds
independent of the dimension.

First we describe the ergodic properties, and in particular the relations between the invariant
measures associated with the associated fast equations with frozen slow component. In

Section 2.2, we have defined ν = N (0, (−B)−1

2 ) and µx – see (2.6); we can do the same for
the finite dimensional fast equation with frozen slow component x ∈ H – and not only for
x ∈ H (1)

N :

dYx,N (t, y) = (BYx,N (t, y)+ P(2)N G(x, P(2)N Yx,N (t, y)))dt + dWN (t)
Yx,N (0, y) = P(2)N y.

(4.2)

Let νN be the unique centered Gaussian probability measure on H (2)
N having for covariance

operator the induced matrix from (B)−1

2 on the subspace H (2)
N . We can then build µx

N the unique –
since we have strict dissipativity – invariant probability measure associated to (4.2): we naturally
extend the definition of UN to H × H (2)

N , by UN (x, y) = U (x, y), and we define

µx
N (dy) =

1
Z N (x)

e2UN (x,y)νN (dy), (4.3)

where Z N (x) ∈]0,+∞[ is a normalization constant.
As νN is the image measure of ν by P(2)N , we can use the following change of variables

formula for suitable test functions Φ:
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H (2)

N

Φ(y)µx
N (dy) =

1
Z N (x)


H (2)

N

Φ(y)e2U (x,y)νN (dy)

=
1

Z N (x)


H

Φ(P(2)N y)e2U (x,P(2)N y)ν(dy).

This formula leads to convergence properties: first when N → +∞ we have

Z N (x) → Z(x) for any x ∈ H.

Moreover if Φ : H → H is a continuous function such that for any y ∈ H, |Φ(y)| ≤ c(1 + |y|),
then 

H (2)
N

Φ(y)µx
N (dy) →


H

Φ(y)µx (dy).

For any x ∈ H we define the averaged coefficient associated with the finite dimensional
problem (4.2)

FN (x) =


H (2)

N

P(1)N F(x, y)µx
N (dy), (4.4)

and the new averaged equation

d X N (t) = (AX N (t)+ FN (X N (t)))dt, (4.5)

with initial condition X N (0) = P(1)N x ∈ H (1)
N .

We notice that FN is bounded, and of class C 2 with bounded derivatives; moreover it satisfies
the properties described in Proposition 2.16, with constants independent of N .

Remark 4.1. Making the Galerkin projection and then averaging the coefficient with µx
N is not

the same as averaging the coefficient with µx and then making the Galerkin projection. As a
consequence X N is not naturally defined by a Galerkin approximation from X .

The following lemma gives the convergence of the finite dimensional approximations to the
initial problem:

Lemma 4.2. (1) For any fixed ϵ > 0, t ≥ 0, and any x ∈ H, y ∈ H, we have when N → +∞

E|X ϵ(t)− X ϵN (t)|
2
+ E|Y ϵ(t)− Y ϵN (t)|

2
→ 0.

(2) For any t ≥ 0, x ∈ H, we have when N → +∞

|X(t)− X N (t)| → 0.

It remains to define an approximated test function: for any x ∈ H (1)
N , we define φN (x) = φ(x).

We can now show how the initial problem can be reduced to a finite dimensional one—
provided we are able to give estimates uniform to the dimension: for any initial conditions
x, y ∈ H and 0 ≤ t ≤ T ,

E[φ(X ϵ(t))] − E[φ(X(t))] = E[φ(X ϵ(t))] − E[φ(X ϵN (t))]

+ E[φN (X
ϵ
N (t))] − E[φN (X N (t))]

+ E[φ(X N (t))] − E[φ(X(t))].

The first and the last terms converge to 0 when N → +∞, according to Lemma 4.2; we later
control the central term with an expression independent of N . Taking the limit as dimension goes
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to infinity then gives the result. So we have to control

E[φN (X
ϵ
N (t))] − E[φN (X N (t))]. (4.6)

From now on, we only work with the approximations to obtain estimates, but in order to simplify
the notations, we forget the index N—since bounds are uniform with respect to N . The spaces
H (i)

N are denoted by H (i) in the next sections.

4.2. The asymptotic expansion

We define the following differential operators: for functions of class C 2 ψ : H (1)
×H (2)

→ R,
for any (x, y) ∈ H (1)

× H (2)

L1ψ(x, y) = ⟨By + G(x, y), Dyψ(x, y)⟩ +
1
2

Tr(D2
yyψ(x, y))

L2ψ(x, y) = ⟨Ax + F(x, y), Dxψ(x, y)⟩

Lϵ =
1
ϵ

L1 + L2.

We also define for ψ : H (1)
→ R of class C 1 Lψ(x) = ⟨Ax + F(x), Dxψ(x)⟩.

We define the following functions uϵ and u: for x ∈ H (1), y ∈ H (2) and t ≥ 0

uϵ(t, x, y) = E[φ(X ϵ(t, x, y))]
u(t, x) = φ(X(t, x)),

(4.7)

where we have mentioned explicitly the dependence on the initial conditions x, y in X ϵ and X .
Since the test function φ is of class C 2

b , uϵ and u are of class C 1 with respect to t and of class
C 2

b with respect to x, y; we also know that uϵ and u are solutions of the following Kolmogorov
equations:

∂uϵ

∂t
(t, x) = Lϵuϵ(t, x)

uϵ(0, x) = φ(x);
(4.8)

∂u

∂t
(t, x, y) = Lu(t, x, y)

u(0, x, y) = φ(x).
(4.9)

We remark that the second equation is a linear transport equation with no diffusion term. We then
rewrite the expression we want to study (see (4.6)):

E[φ(X ϵ(T, x, y))] − E[φ(X(T, x))] = uϵ(T, x, y)− u(T, x). (4.10)

Our strategy is to look for an expansion of uϵ with respect to the small parameter ϵ:

uϵ = u0 + ϵu1 + vϵ, (4.11)

where vϵ is a residual term, while u0 and u1 are smooth and are constructed below.
The identification with respect to the powers of ϵ gives the following equations:

L1u0 = 0, (4.12)

∂u0

∂t
= L1u1 + L2u0. (4.13)
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The operator L1 satisfies the following property on the solutions of Poisson equations:

Lemma 4.3. We fix x ∈ H.

• If Ψ is a bounded continuous function such that


H Ψ(y)µx (dy) = 0, then if Φ is a function
of class C 2 satisfying L1Φ = −Ψ then for any y ∈ H we have

Φ(y) =


H

Φµx
+


+∞

0
E[Ψ(Yx (s, y))]ds.

• Moreover if Ψ is of class C 2
b , then Φ defined by

Φ(y) =


+∞

0
E[Ψ(Yx (s, y))]ds

is of class C 2, satisfies L1Φ = −Ψ , and there exists a constant C– independent on N– such
that for any y ∈ H we have

|Φ(y)| ≤ C(1 + |y|
2)∥Ψ∥∞.

Proof. The first part of the lemma is an easy consequence of Itô formula and of Eq. (2.5), after
integration with respect to y2 under µx . To prove the second part of the lemma, we first see that
for any fixed s ∈ R+ the function y → E[Ψ(Yx (s, y))] =: vx (s, y) is of class C 2. To be able to
exchange integration in s and derivation with respect to y, we need to prove an estimate of the
first and the second derivatives which is integrable with respect to s. The derivatives of Yx (s, y)
with respect to the initial condition satisfy the following equations—to simplify notations we do
not write dependence in x in those derivatives:

dη̃h,y(s)

ds
= Bη̃h,y(s)+ DyG(x, Yx (s, y)).η̃h,y(s, y)

η̃h,y(0) = h,

and

d ζ̃ h,k,y(s)

ds
= Bζ̃ h,k,y(s)+ DyG(x, Yx (s, y)).ζ̃ h,k,y(s)

+ D2
yyG(x, Yx (s, y)) · (η̃h,y(s), η̃k,y(s))

ζ̃ h,k,y(0) = 0.

Without any further dissipativity assumption than (WD), we only get bounds on finite time
intervals like [0, 1]: there exists C > 0 such that for any y, h, k ∈ H and 0 ≤ s ≤ 1

|Dyvx (s, y) · h| ≤ C |h|

|D2
yyvx (s, y) · (h, k)| ≤ C |h| |k|.

However, using the estimate (2.5) and a Bismut–Elworthy–Li formula, we can indeed prove
some exponential convergence with respect to s of the derivatives Dyvx (s, y) and D2

yyvx (s, y).

Let Ψ0 be a function such that |Ψ0(y)| ≤ C(Ψ0)(1 + |y|
2) for any y ∈ H . If we define

v0
x (s, y) := EΨ0(Yx (s, y)) for any y ∈ H, h, k ∈ H , we get for the first order derivative

Dyv
0
x (s, y) · h =

1
s
E
 s

0
⟨η̃h,y(σ ), dW (σ )⟩Ψ0(Yx (s, y))
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=
2
s
E

 s/2

0
⟨η̃h,y(σ ), dW (σ )⟩v0

x (s/2, Yx (s/2, y))


, (4.14)

with the observation that v0
x (s, y) = Ev0

x (s/2, Yx (s/2, y)) thanks to the Markov property; the
second order derivative satisfies

D2
yyv

0
x (s, y) · (h, k) =

2
s
E

 s/2

0
ζ̃ h,k,y(σ ), dW (σ ) > v0

x (s/2, Y (s/2, y))



+
2
s
E

 s/2

0
⟨η̃h,y(σ ), dW (σ )⟩

× Dyv
0
x (s/2, Y (s/2)) · η̃k,y(s/2)


. (4.15)

Since Yx can be controlled in a L2 norm according to Proposition A.1 in the Appendix, we see
that there exists C > 0 such that for any 0 < s ≤ 1, y ∈ H, h, k ∈ H

|Dyv
0
x (s, y) · h| ≤

C
√

s
C(Ψ0)(1 + |y|

2)|h|,

|D2
yyv

0
x (s, y) · (h, k)| | ≤

C

s
C(Ψ0)(1 + |y|

2)|h| |k|.

(4.16)

Now when s ≥ 1 the Markov property implies that vx (s, y) = Evx (s − 1, Yx (1, y)), and
choosing y1 = y and by integrating with respect to µx (dy2) in (2.5) we have

|vx (s − 1, y)| ≤ Ce−c(s−1)(1 + |y|
2).

By (4.16) at time 1, we obtain for s ≥ 1

|Dyvx (s, y) · h| ≤ Ce−c(s−1)(1 + |y|
2)|h|

|D2
yyvx (s, y) · (h, k)| ≤ Ce−c(s−1)(1 + |y|

2)|h| |k|.

Moreover we have a uniform control when 0 ≤ s ≤ 1, so that with a change of constants we get
the result. �

As a consequence we see from (4.12) that u0 is independent of y; we then write u0(t, x, y) =

u0(t, x). We also choose the initial condition u0(0, x) = φ(x). The second equation (4.13) then
yields

∂u0

∂t
(t, x) =


H (2)

∂u0

∂t
(t, x)µx (dy)

=


H (2)

L1u1(t, x, y)µx (dy)+


H (2)

L2u0(t, x)µx (dy)

=


Au0(t, x)+


H (2)

F(x, y)µx (dy), Dx u0(t, x)


= Lu0(t, x).

u0 and u are solutions of the same evolution equation, with the same initial condition; we can
then conclude that u0 = u.
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Then the second equation can be transformed: Lu0 = L1u1 + L2u0. We then obtain an
equation on u1:

L1u1(t, x, y) = ⟨F(x)− F(x, y), Dx u0(t, x)⟩ =: −χ(t, x, y), (4.17)

where χ is of class C 2
b with respect to y, and satisfies for any t ≥ 0 and x ∈ H (1)

H (2)
χ(t, x, y)µx (dy) = 0.

Thanks to Lemma 4.3, we thus obtain the following solution to equation (4.17)

u1(t, x, y) =


+∞

0
E[χ(t, x, Yx (s, y))]ds. (4.18)

Moreover we are able to show regularity of u1 with respect to t and x, y.
The remainder vϵ = uϵ − u0 − ϵu1 satisfies

∂t −
1
ϵ

L1 − L2


vϵ = ϵ


L2u1 −

∂u1

∂t


. (4.19)

Due to non-integrability in 0 of some bounds below, we introduce a parameter ρ(ϵ) = ϵ1/θ
≤

ϵ (since 0 < θ ≤ 1); it satisfies ρ(ϵ) → 0 when ϵ → 0.
Using a variation of constant formula, we obtain

vϵ(T, x, y) = E[vϵ(ρ(ϵ), X ϵ(T − ρ(ϵ), x, y), Y ϵ(T − ρ(ϵ), x, y))]

+ ϵE
 T

ρ(ϵ)


L2u1 −

∂u1

∂t


(t, X ϵ(T − t, x, y), Y ϵ(T − t, x, y))dt


.

By (4.11), and since u0 = u, we then have

uϵ(T, x, y)− u(T, x, y)

= ϵu1(T, x, y)

+ E[vϵ(ρ(ϵ), X ϵ(T − ρ(ϵ), x, y), Y ϵ(T − ρ(ϵ), x, y))]

+ ϵE
 T

ρ(ϵ)


L2u1 −

∂u1

∂t


(t, X ϵ(T − t, x, y), Y ϵ(T − t, x, y))dt


. (4.20)

The following estimates are proved below:

Lemma 4.4. There exists a constant C such that for any 0 < t ≤ T, x, y ∈ H,

|u1(t, x, y)| ≤ C(1 + |x | + |y|)∂u1

∂t
(t, x, y)

 ≤ C


1 +

1
t


(1 + |x | + |y|)2

|L2u1(t, x, y)| ≤ C(1 + |x | + |y|)(1 + |Ax |).

Using estimates on X ϵ and Y ϵ proved in the Appendix (see Propositions A.1 and A.5) the first
and the last expressions of (4.20) are bounded by

Cϵ(1 + |x | + |y|)+ Cϵ1−r/2(1 + | log(ρ(ϵ))|)(1 + |x |(−A)θ + |y|)2,

which is dominated by Cϵ1−r with the choice of ρ(ϵ) given above.
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We notice that the Assumption θ > 0 is essential to control the part involving |Ax |.
We now explain how the central term of (4.20) is controlled; for that we estimate for any

x, y ∈ H

vϵ(ρ(ϵ), x, y) = uϵ(ρ(ϵ), x, y)− u0(ρ(ϵ), x)− ϵu1(ρ(ϵ), x, y)

= −ϵu1(ρ(ϵ), x, y)+ [uϵ(ρ(ϵ), x, y)− uϵ(0, x, y)]

− [u0(ρ(ϵ), x)− u0(0, x)], (4.21)

since the initial condition φ is the same for uϵ and u.
Using Lemma 4.4, the first term above is easily controlled by Cϵ(1 + |x | + |y|). We now use

another method to control the two other terms.
First, we use the definition (4.7) of u = u0 to write

|u0(ρ(ϵ), x)− u0(0, x)| =


 ρ(ϵ)

0

∂

∂t
u0(t, x)dt


=


 ρ(ϵ)

0

∂

∂t
φ(X(t, x))dt


=


 ρ(ϵ)

0
Dφ(X(t, x)).

d

dt
X(t, x)dt


≤ C

 ρ(ϵ)

0

 d

dt
X(t, x)

 dt.

By definition of X (see (1.3)), and using Proposition B.3, we get for any t > 0 d

dt
X(t, x)

 ≤ C(1 + tθ−1)(1 + |x |(−A)θ ).

As a consequence, since θ > 0, we get

|u0(ρ(ϵ), x)− u0(0, x)| ≤ C


ρ(ϵ)+

ρ(ϵ)θ

θ


(1 + |x |(−A)θ ).

The other expression is controlled in the same way; it is important to notice that the
assumption that φ only depends on the slow variable x is fundamental in this estimate.

|uϵ(ρ(ϵ), x, y)− uϵ(0, x, y)| =


 ρ(ϵ)

0

∂

∂t
uϵ(t, x, y)dt


=


 ρ(ϵ)

0

∂

∂t
E[φ(X ϵ(t, x, y))]dt


=


 ρ(ϵ)

0
E


Dφ(X ϵ(t, x, y)).
d

dt
X ϵ(t, x, y)


dt


≤ C

 ρ(ϵ)

0
(E|AX ϵ(t, x, y)| + 1)dt.
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We now use the estimate on E|AX ϵ(t, x, y)| of Proposition A.5 in the Appendix, and we
obtain

|uϵ(ρ(ϵ), x, y)− uϵ(0, x, y)| ≤ C


ρ(ϵ)+

ρ(ϵ)θ

θ
+ ϵ−r/2ρ(ϵ)


(1 + |x |(−A)θ + |y|).

Then by (4.21), and using ρ(ϵ) = ϵ1/θ
≤ ϵ, we get

|vϵ(ρ(ϵ), x, y)| ≤ Cϵ1−r/2(1 + |x |(−A)θ + |y|).

Then thanks to (4.20) and to Proposition A.2, we get for ϵ ≤ 1

|uϵ(T, x, y)− u(T, x, y)| ≤ Cϵ1−r .

As explained at the end of Section 4.1, we have indeed proved a bound on (4.6). It is now
enough to notice that the above constant C is independent of dimension N , and to let N go to
+∞, and Theorem 1.2 follows.

5. Proof of Lemma 4.4

We use results gathered in the Appendices A and B.

5.1. Estimate of u1

Since u1 is defined by (4.18), by using Lemma 4.3 we have

|u1(t, x, y)| ≤ C(1 + |y|
2)∥y → χ(t, x, y)∥∞.

According to (4.17), we indeed have for any y ∈ H (2)

χ(t, x, y) = ⟨F(x, y)− F(x), Dx u0(t, x)⟩,

and therefore we just have to bound |Dx u0(t, x)|, thanks to the following lemma:

Lemma 5.1. For any T ∈]0,+∞[, there exists C0 > 0 such that for any 0 ≤ t ≤ T and
x ∈ H (1)

|Dx u0(t, x)|H ≤ CT sup
z∈H

|Dφ(z)|H .

Proof. u0 is the solution of the equation

∂u0

∂t
(t, x) = ⟨Ax + F(x), Dx u0(t, x)⟩

u0(0, x) = φ(x).
(5.1)

We have a representation formula u0(t, x) = φ(X(t, x)), where X is solution of (1.3).
We can differentiate (1.3) with respect to the initial condition x , and we have for any h ∈ H (1)

Dx u0(t, x) · h = Dφ(X(t, x)) · ηh(t, x),

where ηh(t, x) is the derivative of X with respect to x in direction h, and is solution of the
variational equation (B.1) in the Appendix.

Using Proposition B.4, we get |Dx u0(t, x) · h| ≤ CT supz∈H |Dφ(z)| |h|, and taking the
supremum over h gives the result. �

Therefore, we obtain the first estimate of Lemma 4.4.
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5.2. Estimate of ∂u1
∂t

First we check that
H (2)

∂χ

∂t
(t, x, z)µx (dz) =

∂

∂t


H (2)

χ(t, x, z)µx (dz) = 0.

By definition (4.18) of u1, it is easy to show that we can differentiate with respect to t , and that

∂u1

∂t
(t, x, y) =


+∞

0
E

∂χ

∂t
(t, x, Yx (s, y))


ds. (5.2)

We then obtain∂u1

∂t
(t, x, y)

 ≤ C(1 + |y|
2)

y →
∂χ

∂t
(t, x, y)


∞

.

Since by (4.17) we have

∂χ

∂t
(t, x, y) =


F(x, y)− F(x),

∂

∂t
Dx u0(t, x)


,

we just need to control |
∂
∂t Dx u0(t, x)|:

Lemma 5.2. For any T > 0, there exists CT > 0 such that for any 0 < t ≤ T, x ∈ H (1) and
h ∈ H (1) we have ∂∂t

Dx u0(t, x) · h

 ≤ C(1 + |x |H )(1 + t−1)|h|.

Proof. For any h ∈ H (1), we have

∂

∂t
(Dx u0(t, x) · h) = D2φ(X(t, x))


ηh(t, x),

d

dt
X(t, x)


+ Dφ(X(t, x)) ·

d

dt
ηh(t, x).

(1) Thanks to Proposition B.1, we have |ηh(t, x)| ≤ C(1 + |x |) for any t ≥ 0.
Moreover d

dt X(t, x) = AX(t, x)+ F(X(t, x)).
On the one hand, F is bounded; on the other hand, thanks to Proposition B.3 we have

|AX(t, x)|H ≤ Cθ (1 + t−1)(1 + |x |H ).

Therefore d

dt
X(t, x)


H

≤ C(1 + t−1)(1 + |x |H ).

(2) It remains to control d

dt
ηh(t, x)

 = |Aηh(t, x)+ DF(X(t, x)) · ηh(t, x)|.

Since F is Lipschitz continuous, and using Proposition B.1, we get an estimate of the
second term.

Moreover Proposition B.6 gives

|Aηh(t, x)| ≤ C(t−1
+ 1)(1 + |x |H )|h|.
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Therefore d

dt
ηh(t, x)

 ≤ C(t−1
+ 1)(1 + |x |H )|h|.

(3) We then have for any h ∈ H (1) ∂∂t
(Dx u0(t, x) · h)

 ≤ C(t−1
+ 1)(1 + |x |H )|h|. �

We then obtain the second estimate of Lemma 4.4.

5.3. Estimate of L2u1

To prove Lemma 4.4, it remains to control the part involving L2u1.
By definition of L2, we have

L2u1(t, x, y) = ⟨Ax + F(x, y), Dx u1(t, x, y)⟩. (5.3)

Therefore we have to estimate |Dx u1(t, x, y)|. We explain how Dx u1(t, x, y) · h can be
calculated for any h ∈ H (1).

Recall that u1 defined by (4.18) satisfies

L1u1(t, x, y) = ⟨F(x)− F(x, y), Dx u0(t, x)⟩ = −χ(t, x, y),

where we explicitly write the dependence of the operator L1 in the two variables x and y.
We fix t ≥ 0, x ∈ H (1), y ∈ H (2), and h ∈ H (1). Then for any ξ ≠ 0 we have

L1(x, y)
u1(t, x + ξh, y)− u1(t, x, y)

ξ

= −
χ(t, x + ξh, y)− χ(t, s, y)

ξ

−


G(x + ξh, y)− G(x, y)

ξ
, Dyu1(t, x + ξh, y)


=: −Γ (t, x, y, h, ξ),

where Γ is regular with respect to y; therefore by using Lemma 4.3 we get

u1(t, x + ξh, y)− u1(t, x, y)

ξ
−


H (2)

u1(t, x + ξh, y)− u1(t, x, y)

ξ
µx (dy)

=


+∞

0
E[Γ (t, x, Yx (s, y), h, ξ)]ds.

We want to take the limit when ξ → 0, in order to prove that we can differentiate, and to
obtain an expression that we are able to control.

First, we notice that for any t, x, y we have


H (2) u1(t, x, y)µx (dy) = 0; so we can write that
H (2)

u1(t, x + ξh, y)− u1(t, x, y)

ξ
µx (dy)

= −


H (2)

u1(t, x + ξh, y)
V (x + ξh, y)− V (x, y)

ξ
ν(dy),

where V (x, y) :=
1

Z(x)e
2U (x,y) (so that we have µx (dy) = V (x, y)ν(dy)).
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When ξ → 0, we obtain
H (2)

u1(t, x + ξh, y)− u1(t, x, y)

ξ
µx (dy)

→


H (2)

u1(t, x, y)Dx V (x, y) · hν(dy)

=


H (2)

u1(t, x, y)H(x, y) · hV (x, y)ν(dy),

where H(x, y) = 2DxU (x, y)− 2


H (2) DxU (x, z)µx (dz).
Moreover |


H (2) u1(t, x, y)H(x, y) · hV (x, y)ν(dy)| ≤ C(1 + |x |)|h|.

Second, we look at the part involving Γ : we notice that when ξ → 0,

Γ (t, x, y, h, ξ) → Θ(t, x, y) · h,

where

Θ(t, x, y) · h = Dxχ(t, x, y) · h + ⟨Dx G(x, y) · h, Dyu1(t, x, y)⟩. (5.4)

Below, we prove the following estimate on the function Θ :

Lemma 5.3. There exists a constant C such that for any x ∈ H (1), t ≥ 0, h ∈ H (1) we have for
any y ∈ H (2)

|Θ(t, x, y) · h| ≤ C(1 + |y|
2)|h|.

We notice that for any t, x, ξ, h we have by definition of Γ


H (2) Γ (t, x, y, ξ, h)µx (dy) = 0;
then using the bound of the previous lemma and the dominated convergence theorem we obtain

H (2) Θ(t, x, y) · hµx (dy) = 0 for any x ∈ H (1), t ≥ 0, h ∈ H (1). Using this result,
Proposition 2.13 – with integration with respect to µx (dy2) – and the estimate in the previous
lemma, we then see that u1 can be differentiated with respect to x , and that the following formula
holds:

Dx u1(t, x, y) · h =


H (2)

u1(t, x, y)H(x, y) · hV (x, y)ν(dy)

+


+∞

0
E[Θ(t, x, Yx (s, y)) · h]ds; (5.5)

According to Lemma 5.3, we do not know whether Θ is a bounded function, but we only
know that it has quadratic growth. However, the result of Proposition 2.13 can easily be extended
to such function.

Now we obtain that

|Dx u1(t, x, y) · h| ≤ C(1 + |y|
2)|h|

and therefore (see (5.3))

|L2u1(t, x, y)| ≤ C(1 + |y|
2)(1 + |Ax |),

which is the third estimate of Lemma 4.4.
It remains to prove Lemma 5.3.
We fix t ≥ 0, x ∈ H (1), h ∈ H (1), and y, y′

∈ H (2).
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• On the one hand, χ being defined by (4.17), we have

Dxχ(t, x, y) · h = ⟨Dx F(x, y) · h, Dx u0(t, x)⟩ + D2
xx u0(t, x) · (h, F(x, y)).

Using the boundedness of the first derivative of F , and Lemma 5.1, we easily have

|⟨Dx F(x, y) · h, Dx u0(t, x)⟩| ≤ C |h|.

The other part can be controlled thanks to the following lemma:

Lemma 5.4. For any 0 ≤ t ≤ T, x ∈ H (1), h, k ∈ H (1), we have

|D2
xx u0(t, x) · (h, k)| ≤ C(T, φ)|h|H |k|H .

Proof. We have

u0(t, x) = φ(X(t, x))

Dx u0(t, x) · h = Dφ(X(t, x)) · (Dx X(t, x) · h)

and

D2
xx u0(t, x) · (h, k) = D2φ(X(t, x))(Dx X(t, x) · h, Dx X(t, x).k)

+ Dφ(X(t, x)) · (D2
xx X(t, x) · (h, k)).

Using Proposition B.4, we control ηh(t, x) = Dx X(t, x) · h; moreover we notice that the
second derivative ξh,k(t, x) := D2

xx X(t, x) · (h, k) satisfies Eq. (B.2); using Proposition B.7,
we get the result. �

Therefore |Dxχ(t, x, y) · h| ≤ C |h|.
• On the other hand,

|⟨Dx G(x, y) · h, Dyu1(t, x, y)⟩| ≤ C |h| |Dyu1(t, x, y)|,

But we have proved in Lemma 4.3 how to control the derivatives of u1 with respect to y:
we obtain

|Dyu1(t, x, y) · h| ≤ C(1 + |y|
2)|h|.

Therefore we have

|⟨Dx G(x, y) · h, Dyu1(t, x, y)⟩| ≤ C(1 + |y|
2)|h|,

and now the result is easily obtained:

|Θ(t, x, y) · h| ≤ C(1 + |y|
2)|h|.

Appendix A. Properties of (Xϵ, Y ϵ)

The results of this section only require Assumptions 2.1, 2.5 and 2.7; in particular no
dissipativity is assumed.

The first important property is the control of moments of any order:

Proposition A.1. For any 1 ≤ p < +∞, there exists cp > 0 such that for any (x, y) ∈ H2, t ≥

0 and ϵ > 0

E[|X ϵ(t)|p
H ] ≤ cp(1 + e−λt

|x |
p
H ) and E[|Y ϵ(t)|p

H ] ≤ cp(1 + e−µt
|y|

p
H ).
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We can also give bounds on the moments with respect to | . |(−A)a and | . |(−B)b norms, for
0 < a < 1 and 0 < b < 1/4 (the case a = 1 is treated in Proposition A.5).

Proposition A.2. For any p ≥ 1, a ∈ (0, 1), b ∈ (0, 1/4), there exists C p,a,b > 0 such that for
any x ∈ D(−A)a and y ∈ D(−B)b, we have:

E|X ϵ(t, x, y)|p
(−A)a ≤ C p(1 + |x |

p
(−A)a ) and

E|Y ϵ(t, x, y)|p
(−B)b

≤ C p(1 + |y|
p
(−B)b

).

We now give some regularity estimates of X ϵ and Y ϵ in the time variable. We do not assume
any regularity assumption on x or y; as a consequence, we obtain singularities at the origin,
which are integrable.

Proposition A.3. For any 0 < r < 1, there exists Cr > 0 such that for any x, y ∈ H, for any
0 < s ≤ t and ϵ > 0 we have

E|X ϵ(t)− X ϵ(s)|2H
1/2

≤ Cr |t − s|1−r


1 +
1

s1−r


(1 + |x |H ).

Proof. If we fix 0 < s ≤ t, x, y ∈ H , we have

X ϵ(t)− X ϵ(s) = et Ax − es Ax +

 t

0
e(t−σ)A F(X ϵ(σ ), Y ϵ(σ ))dσ

−

 s

0
e(s−σ)A F(X ϵ(σ ), Y ϵ(σ ))dσ.

For the first term, if x =


+∞

k=0 xkek , we can use Proposition 2.4 to get

|et Ax − es Ax |H ≤ Cr
(t − s)1−r

s1−r
|x |H .

For the second term, we use the following decomposition: t

0
e(t−σ)A F(X ϵ(σ ), Y ϵ(σ ))dσ −

 s

0
e(s−σ)A F(X ϵ(σ ), Y ϵ(σ ))dσ

=

 t

s
e(t−σ)A F(X ϵ(σ ), Y ϵ(σ ))dσ +

 s

0
(e(t−σ)A − e(s−σ)A)F(X ϵ(σ ), Y ϵ(σ ))dσ.

First, by the Cauchy–Schwarz inequality, we have

E
 t

s
e(t−σ)A F(X ϵ(σ ), Y ϵ(σ ))dσ

2
H

≤ (t − s)E
 t

s
|e(t−σ)A F(X ϵ(σ ), Y ϵ(σ ))|H dσ

≤ C(t − s)2,

since F is assumed to be bounded.
Second, we use the second inequality of Proposition 2.4 to control the last expression:

E
 s

0
e(s−σ)A(e(t−s)A

− I )F(X ϵ(σ ), Y ϵ(σ ))dσ

2
H

≤ E
 s

0

e(t−σ)A − e(s−σ)A


F(X ϵ(σ ), Y ϵ(σ ))dσ


H

2
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≤ C2
r (t − s)2(1−r)E

 s

0

e−
λ
2 (s−σ)

(s − σ)1−r
|F(X ϵ(σ ), Y ϵ(σ ))|H dσ

2

≤ C2
r (t − s)2(1−r),

since


+∞

0
e−

λ
2 s

s1−r ds < +∞. �

Proposition A.4. For any 0 < r < 1/4, there exists a constant Cr such that if x, y ∈ H, then
for any 0 < s < t and ϵ > 0

E|Y ϵ(t)− Y ϵ(s)|2 ≤ C(1 + |x |
2
H + |y|

2
H )


t − s

s

2r

+


t − s

ϵ

2r

.

Proof. • For any 0 < s < t ,

Y ϵ(t)− Y ϵ(s) =


e

t
ϵ

B
− e

s
ϵ

B


y +
1
ϵ

 t

s
e
(t−σ)
ϵ

B G(X ϵ(σ ), Y ϵ(σ ))dσ

+
1
ϵ

 s

0


e
(t−σ)
ϵ

B
− e

(s−σ)
ϵ

B


G(X ϵ(σ ), Y ϵ(σ ))dσ

+ W ϵ,B(t)− W ϵ,B(s),

where W ϵ,B(r) =
1

√
ϵ

 r
0 e

(r−σ)
ϵ

BdW (σ ). We remark that only the last expression cannot
bounded almost surely (since we assume that G is bounded).

• For the first term, using the second inequality of Proposition 2.4, we have for any 0 < s < te
t
ϵ

B
− e

s
ϵ

B


y


H
≤ Cr


t − s

s

r

|y|H .

• For the second term, we have for any 0 < s < t1ϵ
 t

s
e
(t−σ)
ϵ

B G(X ϵ(σ ), Y ϵ(σ ))dσ

 ≤
1
ϵ

 t

s
|e

(t−σ)
ϵ

B
|L(H)∥G∥∞dσ

≤
C

ϵ

 t

s
e−µ(t−σ)/ϵdσ

≤ C
 (t−s)/ϵ

0
e−µσdσ

≤ C
(t − s)r

ϵr .

• For the third term, we use the second estimate of Proposition 2.4, and we have for any
0 < s < t1ϵ

 s

0


e
(t−σ)
ϵ

B
− e

(s−σ)
ϵ

B


G(X ϵ(σ ), Y ϵ(σ ))dσ


≤

1
ϵ

 s

0
|e

(t−σ)
ϵ

B
− e

(s−σ)
ϵ

B
|L(H)∥G∥∞dσ

≤
Cr

ϵ

 s

0

(t − s)r

(s − σ)r
e−

µ(s−σ)
2ϵ dσ

≤ Cr
(t − s)r

ϵr


+∞

0

1
σ r e−

µσ
2 dσ.
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• For the fourth term, we have for any 0 < s < t ,

E|W ϵ,B(t)− W ϵ,B(s)|2 = E
 1
√
ϵ

 t

s
e(t−σ)B/ϵdW (σ )

+
1

√
ϵ

 s

0
(e(t−σ)B/ϵ − e(s−σ)B/ϵ)dW (σ )

2
= E

 1
√
ϵ

 t

s
e(t−σ)B/ϵdW (σ )

2
+ E

 1
√
ϵ

 s

0
(e(t−σ)B/ϵ − e(s−σ)B/ϵ)dW (σ )

2
=

1
ϵ

 t

s
|e(t−σ)B/ϵ |2L2(H)

dσ

+
1
ϵ

 t

0
|e(t−σ)B/ϵ − e(s−σ)B/ϵ |2L2(H)

dσ.

On the one hand,

1
ϵ

 t

s
|e(t−σ)B/ϵ |2L2(H)

dσ =
1
ϵ

 t

s

+∞
k=0

e−2(t−σ)µk/ϵdσ

=

+∞
k=0

 (t−s)/ϵ

0
e−2σµk dσ

=

+∞
k=0

1
2µk

(1 − e−2µk (t−s)/ϵ)

≤ Cζ
+∞
k=0

µ2r
k

µk


t − s

ϵ

2r

,

and we know (by Assumption 2.1) that the above sum is finite if and only if r < 1/4; on the
other hand,

1
ϵ

 s

0
|e(t−σ)B/ϵ − e(s−σ)B/ϵ |2L2(H)

dσ =
1
ϵ

 s

0

+∞
k=0

e−2(s−σ)µk/ϵ(1 − e−(t−s)µk/ϵ)2dσ

≤ Cζ
+∞
k=0


t − s

ϵ

2r µ2r
k

µk
(1 − e−2sµk ). �

Finally the following Proposition gives a control for AX ϵ . We assume θ > 0, even if the proof
is valid for θ = 0.

Proposition A.5. For any 0 < r < 1, there exists a constant Cr such that if x ∈ D((−A)θ ) and
y ∈ H, then for any t > 0 and ϵ > 0

(E[|AX ϵ(t)|2])1/2 ≤ Cr (1 + tθ−1)|x |(−A)θ + Cr (1 + ϵ−
r
2 )(1 + |x |H + |y|H ).
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Proof. We remark that in Lemma 4.4 of [5] E|AX ϵ(t)| is controlled, but the same approach gives
the result for E|AX ϵ(t)|2. We have

X ϵ(t) = et Ax +

 t

0
e(t−s)A F(X ϵ(s), Y ϵ(s))ds

= et Ax +

 t

0
e(t−s)A F(X ϵ(t), Y ϵ(t))ds

+

 t

0
e(t−s)A F(X ϵ(s), Y ϵ(s))− F(X ϵ(t), Y ϵ(t))


ds.

For the first term, we have for any t > 0

|Aet Ax | ≤ Ctθ−1
|x |(−A)θ .

For the second term, we have

|A
 t

0
e(t−s)A F(X ϵ(t), Y ϵ(t))ds| = |(et A

− I )F(X ϵ(t), Y ϵ(t))| ≤ C.

For the third term, we haveA  t

0
e(t−s)A F(X ϵ(s), Y ϵ(s))− F(X ϵ(t), Y ϵ(t))


ds


≤

 t

0

Ce−
λ
2 (t−s)

t − s


|X ϵ(s)− X ϵ(t)| + |Y ϵ(s)− Y ϵ(t)|


ds.

Using Minkowski inequality, we get

E

 t

0

Ce−
λ
2 (t−s)

t − s
|X ϵ(s)− X ϵ(t)|ds

2

≤

 t

0

Ce−
λ
2 (t−s)

t − s
(E|X ϵ(t)− X ϵ(s)|2)1/2ds

2

E

 t

0

Ce−
λ
2 (t−s)

t − s
|Y ϵ(s)− Y ϵ(t)|ds

2

≤

 t

0

Ce−
λ
2 (t−s)

t − s
(E|Y ϵ(t)− Y ϵ(s)|2)1/2ds

2

.

Using Propositions A.3 and A.4, we obtain a regularity result which gives convergent
integrals. It is then easy to conclude. �

Appendix B. Properties of X

Again the results of this section only require Assumptions 2.1, 2.5 and 2.7; in particular no
dissipativity is assumed.

Recall that X(t, x) is defined via (1.3).

Proposition B.1. There exists C > 0 such that for any x ∈ H and any t ≥ 0

|X(t, x)| ≤ C(1 + e−λt
|x |).
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Proof. We use the mild representation formula: for any t ≥ 0 and x ∈ H ,

|X(t, x)| =

et Ax +

 t

0
e(t−s)A F(X(s, x))ds


≤ e−λt x +

 t

0
e−λ(t−s)

|F(X(s, x))|ds

≤ C(1 + e−λt
|x |),

since F is bounded. �

Proposition B.2. For any 0 < r < 1 and 0 < θ ≤ 1, there exists Cr > 0 such that for any
x ∈ H, for any 0 < s ≤ t , we have

|X(t, x)− X(s, x)| ≤ Cr |t − s|1−r


1 +
1

s1−r


(1 + |x |H ).

Proof. • If 0 ≤ s < t ≤ T , we can write

X(t, x)− X(s, x) = (et A
− es A)x +

 t

s
e(t−σ)A F(X(σ, x))dσ

+

 s

0
(e(t−σ)A − e(s−σ)A)F(X(σ, x))dσ.

• For the first term, it is easy to see that |(et A
− es A)x |H ≤ Cr |t − s|1−r


1 +

1
s1−r


|x |H .

• For the second term, since F is bounded we have |
 t

s e(t−σ)A F(X(σ, x))dσ |H ≤ C(t − s).
• For the third term, we have s

0
(e(t−σ)A − e(s−σ)A)F(X(σ, x))dσ


H

≤ Cr

 s

0

e−
λ
2 (s−σ)

(s − σ)1−r
(t − s)1−r

|F(X(σ, x))|H dσ

≤ Cr (t − s)1−r , �

Proposition B.3. For any 0 < θ ≤ 1, there exists C(θ) > 0 such that if x ∈ D(−A)θ , then for
any t > 0

|AX(t, x)|H ≤ Cθ (1 + tθ−1)(1 + |x |(−A)θ ).

Proof. We first write that for any t ≥ 0

X(t, x) = et Ax +

 t

0
e(t−s)A F(X(s, x))ds

= et Ax +

 t

0
e(t−s)A F(X(t, x))ds +

 t

0
e(t−s)A(F(X(s, x))− F(X(t, x)))ds.

We have |Aet Ax |H ≤ C |x |(−A)θ tθ−1.
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For the second term, we haveA  t

0
e(t−s)A F(X(t, x))ds


H

= |(et A
− I )F(X(t, x))|H

≤ |F(X(t, x))|H

≤ C.

The third term can be controlled byA  t

0
e(t−s)A(F(X(s, x))− F(X(t, x)))ds

 ≤ C
 t

0

e−c(t−s)

t − s
|X(t, x)− X(s, x)|H ds.

In order to get a convergent integral, we use the regularity result of X proved in
Proposition B.2; therefore we obtain the result. �

The next three Propositions deal with ηh(t, x) the derivative of X(t, x) with respect to x in
direction h ∈ H , at time t : it is the solution of

dηh(t, x)

dt
= Aηh(t, x)+ DF(X(t, x)) · ηh(t, x)

ηh(0, x) = h.
(B.1)

Notice that we have to consider a finite horizon T > 0.

Proposition B.4. For any T > 0, there exists CT > 0 such that for any x ∈ H, h ∈ H and
0 < t ≤ T

|ηh(t, x)| ≤ CT |h|

|ηh(t, x)|(−A)η ≤ CT


1 +

1
tη


|h|.

Proof. We use that A is a negative operator to prove say that for any t ≥ 0

1
2

d|ηh(t, x)|2

dt
= ⟨Aηh(t, x), ηh(t, x)⟩ + ⟨DF(X(t, x)) · ηh(t, x), ηh(t, x)⟩

≤ [F]Lip|η
h(t, x)|2

≤ C |ηh(t, x)|2.

Gronwall Lemma then yields the first estimate. The second one is proved by using the mild
formulation for ηh(t, x):

ηh(t, x) = et Ah +

 t

0
e(t−s)A DF(X(s, x)) · ηh(s, x)ds;

thanks to the previous estimate, the integral is bounded by a constant, while |et Ah|(−A)η ≤
C
tη |h|H

(see Proposition 2.4). �

Proposition B.5. For any T > 0, 0 < r < 1, there exists CT,r > 0 such that for any
x ∈ H, h ∈ H and 0 < s ≤ t ≤ T

|ηh(t, x)− ηh(s, x)| ≤ CT,r (t − s)1−r


1 +
1

s1−r


|h|.
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Proof. • For 0 ≤ s < t ≤ T we can write that

ηh(t, x)− ηh(s, x) = (et A
− es A)h +

 t

s
e(t−σ)A DF(X(σ, x)) · ηh(σ, x)dσ

+

 s

0
(e(t−σ)A − e(s−σ)A)DF(X(σ, x)) · ηh(σ, x)dσ.

• For the first term, we can see that |(et A
− es A)h| ≤ Cr

(t−s)1−r

s1−r |h|.
• For the second term, we simply have t

s
e(t−σ)A DF(X(σ, x)) · ηh(σ, x)dσ

 ≤ C(t − s)|h|H .

• For the third term, s

0
(e(t−σ)A − e(s−σ)A)DF(X(σ, x)) · ηh(σ, x)dσ


≤ Cδ

 s

0

(t − s)1−r

(s − σ)1−r
|DF(X(σ, x)) · ηh(σ, x)|H dσ

≤ Cr,T (t − s)1−r
|h|H . �

Proposition B.6. For any T > 0, there exists CT such that for any x ∈ H, h ∈ H and 0 < t ≤ T

|Aηh(t, x)| ≤ CT (t
−1

+ 1)(1 + |x |)|h|.

Proof. For any t ≥ 0,

ηh(t, x) = et Ah +

 t

0
e(t−s)A DF(X(s, x)) · ηh(s, x)ds

= et Ah +

 t

0
e(t−s)A DF(X(t, x)) · ηh(t, x)ds

+

 t

0
e(t−s)A(DF(X(s, x)).ηh(s, x)− DF(X(t, x)) · ηh(t, x))ds.

For the first term, we have |Aet Ah|H ≤ Ct−1
|h|.

For the second term,A  t

0
e(t−s)A DF(X(t, x)) · ηh(t, x)ds


H

= |(et A
− I )DF(X(t, x)) · ηh(t, x)|H

≤ 2|DF(X(t, x)) · ηh(t, x)|H

≤ C |ηh(t, x)|H

≤ C |h|H .

For the third term, we haveA  t

0
e(t−s)A(DF(X(s, x)) · ηh(s, x)− DF(X(t, x)) · ηh(t, x))ds


H

≤

 t

0

C

t − s
|DF(X(t, x)) · ηh(t, x)− DF(X(s, x)) · ηh(s, x)|H ds.
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To get a convergent integral, we need to show some regularity property.
For any 0 ≤ s < t ≤ T ,

DF(X(t, x)) · ηh(t, x)− DF(X(s, x)).ηh(s, x)

= [DF(X(t, x))− DF(X(s, x))] · ηh(t, x)

+ DF(X(s, x)) · (ηh(t, x)− ηh(s, x)).

On the one hand, using Proposition 2.16 on the regularity of F , we have

|[DF(X(t, x))− DF(X(s, x))] · ηh(t, x)|

≤ C |X(t, x)− X(s, x)| |ηh(t, x)|(−A)η

≤ C(1 + |x |)(t − s)r


1 +
1
sr


1 +

1
sη


|h|H ,

thanks to Propositions B.2 and B.4. Here r must satisfy r > 0 and η + r < 1.
On the other hand, using Proposition B.5,

|DF(X(s, x)) · (ηh(t, x)− ηh(s, x))|H ≤ C |ηh(t, x)− ηh(s, x)|H

≤ C |h| |t − s|1−r


1 +
1

s1−r


.

By integration, we then obtain the result. �

Finally we focus on ξh,k(t, x) the second derivative of X(t, x) with respect to x in directions
h, k ∈ H , at time t : it is solution of

dξh,k(t, x)

dt
= Aξh,k(t, x)+ Dx F(X(t, x)) · (ξh,k(t, x))

+ D2
xx F(X(t, x)) · (ηh(t, x), ηk(t, x)). (B.2)

Proposition B.7. For any T > 0, there exists CT > 0 such that for any x ∈ H, h, k ∈ H and
0 ≤ t ≤ T

|ξh,k(t, x)| ≤ CT |h| |k|.

Proof. We have—since A is negative, and using the estimates of Proposition 2.16:

1
2

d|ξh,k(t, x)|2

dt
≤ |Dx F(X(t, x))| |ξh,k(t, x)|2 + C |ηh(t, x)| |ηk(t, x)|(−A)η |ξ

h,k(t, x)|

≤ C |ξh,k(t, x)|2 + C |ηh(t, x)|2|ηk(t, x)|2(−A)η ,

Using Proposition B.4, the Assumption η < 1
2 , and the Gronwall Lemma, we get the

result. �

Appendix C. Properties of the auxiliary function F̃

The results of this section are used only for the proof of the strong convergence Theorem 1.1.
Here we need the strict dissipativity Assumption 2.8.

In the proof of Lemma 3.2, we need to use an auxiliary function F̃—see Definition 3.3.
Thanks to Proposition 2.14, we get:
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Proposition C.1. There exists c > 0,C > 0 such that for any (x, y) ∈ H2 and t ≥ 0,

|F̃(x, y, t)| ≤ Ce−ct (1 + |x |H + |y|H ).

We also need the following estimate on the Lipschitz constant of F̃ with respect to x , which
depends on the regularity assumptions made on F and G—see Assumptions 2.5 and 2.7:

Proposition C.2. There exists c > 0,C > 0, such that for any x1, x2, y ∈ H and t ≥ 0

|F̃(x1, y, t)− F̃(x2, y, t)| ≤ C(1 + |y|)e−ct


1 +
1
tη


|x1 − x2|.

Proof. For any t0 > 0, we define the following function:

F̃t0(x, y, t) = F̂(x, y, t)− F̂(x, y, t + t0),

where F̂(x, y, t) := EF(x, Yx (t, y)).
We claim that it satisfies the following properties:

• F̃t0(x, y, t) → F̃(x, y, t) when t0 → +∞.
• For any t0, for any x, y, t and any h, F̃t0 is differentiable with respect to x at (x, y, t) and in

direction h ∈ H .
• We have |Dx F̃t0(x, y, t) · h| ≤ Ce−ct


1 +

1
tη


(1 + |y|)|h|,C being independent of t0.

The first two ones are obvious, thanks to regularity properties of F ; moreover as soon as
we have the third property, the proof of the Proposition can be finished as follows: if we fix
x1, x2, y, t, h, then for any t0 > 0

|F̃t0(x1, y, t)− F̃t0(x2, y, t)| ≤ Ce−ct


1 +
1
tη


(1 + |y|)|x1 − x2|.

Letting t0 → +∞, we get

|F̃(x1, y, t)− F̃(x2, y, t)| ≤ Ce−ct


1 +
1
tη


(1 + |y|)|x1 − x2|.

It remains to estimate |Dx F̃t0(x, y, t) · h| for any h ∈ H .
First we notice that thanks to the Markov property we have

F̃t0(x, y, t) = F̂(x, y, t)− F̂(x, y, t + t0)

= F̂(x, y, t)− EF(x, Yx (t + t0, y))

= F̂(x, y, t)− EF̂(x, Yx (t0, y), t).

Therefore we have for any h

Dx F̃t0(x, y, t) · h = Dx F̂(x, y, t) · h − EDx


F̂(x, Yx (t0, y), t)


· h

= Dx F̂(x, y, t) · h − EDx F̂(x, Yx (t0, y), t) · h

− EDy F̂(x, Yx (t0, y), t) · (Dx Yx (t0, y) · h).

Then we see that we have to analyse

Dx F̂(x, y, t) · h − Dx F̂(x, z, t) · h
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and

Dy F̂(x, y, t).

• For any y, z ∈ H , we have

|F̂(x, y, t)− F̂(x, z, t)| = |EF(x, Yx (t, y))− EF(x, Yx (t, z))|

≤ CE|Y x
t (y)− Y x

t (z)|

≤ Ce−ct
|y − z|,

and we deduce that |Dy F̂(x, y, t).k| ≤ Ce−ct
|k|.

• Moreover we know that U x,h
t (y) = Dx Yx (t, y) · h is solution of

dU x,h
t (y) =


BU x,h

t (y)+ Dx G(x, Yx (t, y)) · h + DyG(x, Yx (t, y)).U x,h
t (y)


dt

U x,h
0 (y) = 0.

We deduce the following property: |U x,h
t (y)| ≤ C |h| a.s.

As a consequence |EDy F̂(x, Yx (t0, y), t) · (Dx Yx (t0, y) · h)| ≤ Ce−ct
|h|.

• Now we take x, y, z, t, h, and we compute

Dx F̂(x, y, t) · h − Dx F̂(x, z, t) · h

= E (Dx F(x, Yx (t, y)) · h − Dx F(x, Yx (t, z)) · h)

+ E


Dy F(x, Yx (t, y)).U x,h
t (y)− Dy F(x, Yx (t, z)).U x,h

t (z)


= E (Dx F(x, Yx (t, y)) · h − Dx F(x, Yx (t, z)) · h)

+ E

[Dy F(x, Yx (t, y))− Dy F(x, Yx (t, z))].U x,h

t (y)


+ E


Dy F(x, Yx (t, z)) · (U x,h
t (y)− U x,h

t (z))


First, we have

|E (Dx F(x, Yx (t, y)) · h − Dx F(x, Yx (t, z)) · h) |

≤ E|Dx F(x, Yx (t, y)) · h − Dx F(x, Yx (t, z)) · h|

≤ C |h|H E|Yx (t, y)− Yx (t, z)|(−B)η

≤ C |h|H e−ct


1 +
1
tη


|y − z|H ,

using the regularity assumptions on F (see (2.5)), and using the following estimate:

E|Yx (t, y)− Yx (t, z)|(−B)η ≤ Ce−ct


1 +
1
tη


|y − z|H ,

for some c > 0.
Second,

|E([Dy F(x, Yx (t, y))− Dy F(x, Yx (t, z))] · U x,h
t (y))|

≤ E|[Dy F(x, Yx (t, y))− Dy F(x, Yx (t, z))] · U x,h
t (y)|

≤ CE|U x,h
t (y)|H |Yx (t, y)− Yx (t, z)|(−B)η

≤ Ce−ct


1 +
1
tη


|h|H |y − z|H .
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Third,

|E


Dy F(x, Yx (t, z)) · (U x,h
t (y)− U x,h

t (z))


|

≤ E |Dy F(x, Yx (t, z)) · (U x,h
t (y)− U x,h

t (z))|

≤ E|U x,h
t (y)− U x,h

t (z)|H ;

It remains to look at |U x,h
t (y)− U x,h

t (z)|H ; we indeed have

|U x,h
t (y)− U x,h

t (z)|2 ≤ C |h|
2
H |y − z|2H e−c0t ,

where c0 > 0.
We use these inequalities with z := Yx (t0, y); recalling that for any t0

E|Yx (t0, y)| ≤ C(1 + |y|),

we get

|Dx F̃t0(x, y, t) · h| ≤ C(1 + |y|)e−ct


1 +
1
tη


|h|. �
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