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Mutations in the parkin gene are expected to play an essential role in autosomal recessive Parkinson's disease.
Recent studies have established an impact of parkin mutations on mitochondrial function and autophagy. In
primary skin fibroblasts from two patients affected by an early onset Parkinson's disease, we identified a
hitherto unreported compound heterozygous mutation del exon2-3/del exon3 in the parkin gene, leading to
the complete loss of the full-length protein. In both patients, but not in their heterozygous parental control,
we observed severe ultrastructural abnormalities, mainly in mitochondria. This was associated with impaired
energy metabolism, deregulated reactive oxygen species (ROS) production, resulting in lipid oxidation, and
peroxisomal alteration. In view of the involvement of parkin in the mitochondrial quality control system, we
have investigated upstream events in the organelles' biogenesis. The expression of the peroxisome
proliferator-activated receptor gamma-coactivator 1-alpha (PGC-1α), a strong stimulator of mitochondrial
biogenesis, was remarkably upregulated in both patients. However, the function of PGC-1α was blocked, as
revealed by the lack of its downstream target gene induction. In conclusion, our data confirm the role of
parkin in mitochondrial homeostasis and suggest a potential involvement of the PGC-1α pathway in the
pathogenesis of Parkinson's disease. This article is part of a Special Issue entitled: Translating nuclear
receptors from health to disease.
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1. Introduction

Parkinson's disease (PD) is a chronic progressive neurodegener-
ative movement disorder characterized by the selective loss of
dopaminergic neurons in the substantia nigra pars compacta.

While most cases of PD occur sporadically as the result of many
different environmental factors, several gene products have been
identified as responsible for Mendelian forms of PD. Autosomal
dominant PD is caused by mutations in the leucine-rich repeat kinase
2 gene (LRRK2) [1] or in the α-synuclein gene [2]. The proteins
implicated in autosomal recessive PD include parkin [3], PTEN-
induced putative kinase 1 (PINK1) [4], DJ-1 [5] and ATP13A2 [6].

The evidence that these proteins are localized in mitochondria or
are associated with the mitochondrial-dependent cell death would
strengthen the hypothesis of mitochondrial oxidative dysfunction as
the underlying alteration leading to PD development [7]. In particular,
specific defects of complex I (CI) have been demonstrated in autoptic
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specimens from the frontal cortex, platelets, skeletal muscle and cell
cybrids from PD patients [8]. Substantial evidence supports the
hypothesis that oxidative stress plays a major role in PD pathogenesis
[9,10] conditions that, in dopaminergic neurons, could be amplified by
the oxidative metabolism of dopamine [11] and the high levels of
aerobic energy demand.

Since the discovery of mutations in the parkin gene (PARK2) as a
cause of autosomal recessive juvenile parkinsonism [3], almost half of
all PD cases have been associated with mutations in this gene. Parkin
is a multifunctional E3 ubiquitin ligase, whichmediates ubiquitylation
of several target proteins [12]. A link between parkin and mitochon-
dria was originally suggested by the observation that parkin prevents
cytochrome c release in ceramide-treated cells [13]. Several studies on
parkin-null animal models strongly suggest an important role of the
parkin gene for the preservation of mitochondrial function. Despite
having only mild deficits, parkin knockout mice exhibit mitochondrial
dysfunction and oxidative damage [14,15] and Drosophila parkin null
mutants display mitochondrial pathology and apoptotic muscle
degeneration [16,17]. Functional assays in leukocytes [18] as well as
fibroblasts of patients with parkin mutations [19–21] consistently
show mitochondrial impairment. Recently, increasing experimental
evidence reveal that parkin interacts with PINK1 in a common
pathway regulating mitochondrial dynamics [22]. Moreover, it can
induce proteasome-independent ubiquitylation which serves for a
remarkably wide range of physiological functions [23,24], such as
membrane protein trafficking and autophagy [25]. Parkin is recruited
to depolarized mitochondria, through direct phosphorylation by
PINK1, to mediate their autophagic degradation [26]. Furthermore,
parkin has emerged as an important factor in the mitochondrial
quality control mechanisms [27], where a fine balance of mitochon-
drial autophagy and biogenesis plays a key role in healthy mitochon-
drial network [28]. It has been reported that, in proliferating cells,
parkin modulates basic mitochondrial functions and biogenesis
through transcription/replication of mitochondrial DNA and protec-
tion of mitochondrial genomic integrity from oxidative stress [29]. A
central role in a regulatory network involved in the transcriptional
control of mitochondrial biogenesis and respiratory function is played
by PGC-1α, a multifunctional protein found at higher levels in tissues
with high metabolic requirement [30]. PGC-1α has emerged, in
addition, as a key factor in the induction of many antioxidant
programs in response to oxidative stress, in particular in neurons
[31]. Several studies focus on the implication of PGC-1α in the
pathogenesis of neurodegenerative diseases and open the possibility
that modulation of PGC-1α activity could be of therapeutic interest in
these disorders.

In the present study we have carried out a detailed genetic and
biochemical analysis on primary skin fibroblasts from two sisters
affected by an early onset PD, carrying mutations in parkin gene that
cause a complete protein loss. Our analysis shows mitochondrial
dysfunction associated with oxidative stress and altered PGC-1α
function leading to transcription deregulation of target genes.

2. Materials and methods

2.1. Patients

We have examined an Italian family composed of four siblings,
three of which show a juvenile form of PD. Diagnosis of PD was made
according with the UK Brain Bank criteria: patients underwent
neurological examination including the Unified Parkinson's Disease
Rating Scale (UPDRS) and Hoen–Yahr Scale. The proband, a 36 year
old man, showed an initial stiffness of the left leg at age 24 and over a
few years, a camptocormic posture and a sporadic rest tremor of the
left hand. At age 30, he had a moderate bradykinesia, symmetrical
rigidity, a sporadic left hand rest tremor and amild amimia. Cerebellar
signs, a Babinski sign, supranuclear gaze palsy, autonomic involve-
ment and/or cognitive deficit were absent (UPDRS scale 17). The two
probands' female siblings that were analyzed are denominated P1 and
P2 and the latter, twin sister of the proband, shows greater disease
severity. Both siblings, first, showed a bradykinesia at age 35 (P1) and
31 (P2), followed, one year later, by a symmetrical rigidity and mild
amimia. Cerebellar, pyramidal, oculomotoric, autonomic and cogni-
tive dysfunction were absent (UPDRS scale 15 in P1 and 17 in P2
patients). Clinical response to dopaminergic treatment was excellent
in the proband, while moderate in both sisters. The study was
approved by the local Ethical Committee.

2.2. Genetic analysis of PD genes

After informed consent was obtained, total DNA was isolated from
3 ml peripheral blood with Iso Quick Nucleic Acid Extraction Kit
(ORCA Research). The exons of PARK1 (α-synuclein), PARK2 (parkin),
PARK6 (PINK1), PARK7 (DJ1) and PARK8 (LRRK2), were amplified by
polymerase chain reaction (PCR). Primer pairs for amplification and
sequencing have been previously described [2–5,32]. PCR reactions
were purified using the ExoSAP-IT clean up method (Amersham
Biosciences). Direct sequencing of both strands was donewith Big Dye
Terminator Cycle Sequencing Kit.

2.3. Reverse transcription (RT)-PCR and sequencing

Purification of total RNA from fibroblasts was carried out using
RNeasy Mini Kit (Qiagen), according to the manufacturer's protocol.
Onemicrogram of total RNAwas then reverse-transcribed to generate
cDNA for PCR by using iScript cDNA Synthesis Kit (Bio-Rad). The
parkin cDNA was amplified with the following PCR primers: sense 5′-
TGGAGGATTTAACCCAGGAG-3′ and antisense 5′-ACAGGGCTTGGTG-
GTTTTCT-3′. The PCR cycling protocol consisted of 30 cycles of
denaturation at 94 °C for 1 min, annealing at 55 °C for 1 min and an
extension at 72 °C for 1 min. PCR products were gel purified using the
QIAquick Gel Extraction Kit (Qiagen) according to the manufacturer's
instructions and then sequenced at PRIMM srl (Biomedical Science
Park S. Raffaele, Milan, Italy).

2.4. Skin fibroblasts and culture conditions

Primary fibroblasts from the two siblings (P1, 36 years old, and P2,
32 years old) and themother (parental healthy control, CTRL, 59 years
old), were obtained by explants from skin punch biopsy, after
informed consent. Control fibroblasts (NHDF AD, 56 years old) were
purchased from American Type Culture Collection (ATCC; Virginia,
USA). Cells were grown in high-glucose Dulbecco's modified Eagle's
medium (DMEM) supplemented with 10% (v/v) fetal bovine serum
(FBS), 1% (v/v) L-glutamine, 1% (v/v) penicillin/streptomycin, at 37 °C
in a humidified atmosphere of 5% CO2. All experiments were
performed on cells with similar passage numbers, ranging from 5 to
14, to avoid an artifact due to senescence, known to occur at passage
numbers greater than 30. In the passage range used, fibroblasts were
β-Gal negative [33].

Where indicated, CTRL, P1 and P2 cells were grown in DMEM
lacking glucose supplementedwith 10% dialyzed FBS, 0.5 mg/l sodium
pyruvate, 0.9 mg of galactose/ml.

2.5. Electron microscopy

Cells at 80% of confluence were collected by trypsinization and
centrifugation, fixed in 3% glutaraldehyde, 0.1 M sodium phosphate
buffer (pH 7.4) for 2 h, washedwith the same buffer and subsequently
fixed in 1% OsO4 at 4 °C. Next, cells were dehydrated in graded
ethanol, and embedded in Epon 812. Ultrathin sections (60 nm) were
cut with a diamond knife on a LKB-V ultratome, stained with uranyl
acetate followed by lead citrate and examined under a Zeiss EM 109
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electron microscope (Zeiss, Oberkochen, Germany). Digital images
were obtained with a cooled camera Gatan CMS (Gatan GmbH,
München, Germany) and analyzed using Adobe Photoshop software
(Adobe Systems, Inc. San Jose, CA, USA).

2.6. Measurement of endogenous respiration rates in intact cells and
substrate-supported respiration rates in digitonin-permeabilized cells

Mitochondrial oxygen consumption was measured polarograph-
ically with a Clark-type oxygen electrode in a water-jacketed chamber
(Hansatech Instruments, Norfolk, UK), magnetically stirred at 37 °C
essentially as previously described [34,35].

For the measurement of respiration rates by endogenous sub-
strates in intact cells, exponentially growing cells, fluid changed 1 day
before the assays, were collected by trypsinization, and centrifugation
and resuspended at 0.5–2×106 cells/ml in TD Buffer (0.137 M NaCl,
5 mMKCl, 0.7 mMNa2HPO4, 25 mMTris–HCl, pH 7.4). Cell suspension
was transferred to the polarographic chamber while an aliquot was
used for cell counting and protein determination. After slope
measurement, the coupled endogenous respiration was inhibited by
0.5 μg/ml oligomycin followed by 30 μM dinitrophenol (DNP).

For the measurement of respiration rates by exogenous substrates
in digitonin-permeabilized cells, after full uncoupling of the endog-
enous respiration of intact cells with 30 μMDNP, digitonin was added
directly into the oxygraphic chamber at the optimal concentration of
30 μg/106 cells [36]. After 2 min, respiratory substrates and inhibitors
were added at the following concentrations: glutamate (5 mM)/
malate (5 mM), succinate (5 mM) in the presence of 200 nM rotenone
and ascorbate (10 mM)+N,N,N′,N′-tetramethyl-p-phenylenediamine
(TMPD) (0.4 mM) in the presence of 13 nM antimycin A for Complex I
(CI)-, Complex II (CII)- and Complex IV (CIV)-driven respiration,
respectively. Intactness of the outer mitochondrial membrane was
confirmed by the lack of further stimulation of respiration, upon
addition of ferricytochrome c [37].

Since light microscopy of the cell monolayer revealed that
patients' cells were larger than CTRL cells (data not shown) and that
the specific cellular protein content was 2 and 3 fold higher in P1 and
in P2, respectively, vs CTRL fibroblasts, all rates of oxygen consump-
tion were normalized to cellular protein content [37].

2.7. OXPHOS enzymes and citrate synthase activity measurements

Cells, collected by trypsinization and centrifugation, were resus-
pended in hypotonic medium (25 mM potassium phosphate, pH 7.2,
5 mM MgCl2), supplemented with the antiprotease cocktail tablet
(Roche, Basel, CH). In order to allow complete accessibility of
substrates to the inner mitochondrial membrane enzymes, samples
were freeze–thawed three times, gently shaken and then resus-
pended in the assay buffer. CI (NADH:ubiquinone oxidoreductase,
rotenone sensitive), CII (succinate-CoQ oxidoreductase, malonate
sensitive), CIV (cytochrome c oxidase, KCN sensitive) and citrate
synthase activities were measured spectrophotometrically with a
Beckman DU7400 equipped with a rapid-mixing apparatus at 30 °C
essentially as previously described [38]. ATP-hydrolase activity of
Complex V (CV) (oligomycin sensitive) wasmeasured on cell lysate as
previously described [39].

2.8. Oxidative phosphorylation capacity and cellular ATP level
measurements

The rate of mitochondrial ATP synthesis was determined in
digitonin-permeabilized fibroblasts, collected by trypsinization and
centrifugation and resuspended at 0.5–2×106 cells/ml in Buffer A
(75 mM sucrose, 5 mM KH2PO4, 40 mM KCl, 0.5 mM EDTA, 3 mM
MgCl2, 30 mM Tris–HCl, pH 7.4) supplemented with 10 mM glucose,
38 U/ml esokinase and 0.3 mM P1,P5-di(adenosine-5′)pentaphosphate
(Ap5A), as an inhibitor of adenylate kinase. Aliquots were used for cell
counting and protein determination. After addition of digitonin
(30 μg/106 cells), ATP synthesis wasmeasured at 37 °C in the presence
of 0.5 mM ADP using glutamate (5 mM)/malate (5 mM) or succinate
(5 mM) plus 200 nM rotenone as respiratory substrates. After
recording the state III respiration rates for 15 min, the reaction was
stopped with 30% (v/v) perchloric acid. Debris was removed by
centrifugation and samples, neutralized with 60% (v/v) KOH, were
spectrophotometrically assayed for ATP content following the reduc-
tion ofNADP inducedby glucose-6-phosphate dehydrogenase. Steady-
state cellular ATP levels were determined in digitonin-permeabilized
cells in basal conditions or after 1 h pre-treatment with 100 μM
iodoacetic acid as described above.
2.9. Lactate level and lactate dehydrogenase (LDH) activity
measurements

Cells were seeded in 60 mm plastic Petri dishes and cultured for
48 h. The amount of lactate in the cell medium was estimated as
described in [40]. LDH activity was measured spectrophotometrically
on total cell lysates at 25 °C by following NADH oxidation at 340 nm in
50 mM Tris-HCl pH 7.4, 2 μg/ml rotenone and 0.1 mM NADH. The
assay was started by adding 5 mM pyruvate.
2.10. Mitochondrial and peroxisomal labeling and confocal microscopy

For mitochondrial network analysis the cells were stained with
Quant-iT™ PicoGreen® dsDNA reagent (Invitrogen, Molecular
Probes) and MitoTracker®Red CMXRos (Invitrogen, Molecular
Probes). Transient transfections with pDsRed2-Peroxi (staining
peroxisomes) and pEGFP-N1 (staining cytoplasm)/pEGFP-Mito
(staining mitochondria) were performed using FuGENE®HD (Roche,
Basel, CH) and TransIT®-LT1 (Mirus, Madison, USA) according to
manufacturer's conditions. Living cells cultured for 2 days on glass
bottom dishes (MatTek Corporation Ashland) were analyzed with the
inverted confocal laser scanning microscope TCS SP5 (Leica Micro-
systems). To avoid a cross talk in excitation of multiple stained
compounds a sequential scanning mode was used. Images were
acquired with photo multipliers andmicrographs were processed and
analyzed with the software Leica Application Suite Advanced
Fluorescence 2.0.0, Adobe Photoshop CS and Huygens Professional
3.4.0p1.
2.11. Real-time PCR

RTqPCR on cDNA were performed essentially as previously
described [41]. Quantitative normalization of cDNA in each sample
was performed using glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), β-actin and 18S rRNA as internal control. Validated primers
for real-time PCR are reported in the Supplemental materials.
2.12. Intracellular ROS measurements

Intracellular ROS level was determined using the cell permeant
probe 2′-7′dichlorodihydrofluorescin diacetate (H2DCFDA) [42]. Cells
were incubated with 10 μM H2DCFDA in a serum free medium in the
dark at 37 °C for 30 min, collected by trypsinization, washed and
resuspended in an assay buffer (100 mM potassium phosphate, pH
7.4, 2 mMMgCl2). An aliquot was used for protein determination. The
ROS-dependent oxidation of the fluorescent probe (507 nm excitation
and 530 nm emission wavelength) was measured by a Jasco FP6200
spectrofluorimeter.
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2.13. Antioxidant enzymes activities measurements

Measurements of antioxidant enzyme activities were carried out
on cell lysates resuspended in hypotonic medium supplemented with
the antiprotease cocktail tablet (Roche, Basel, CH), followed by a
sonication step. Glutathione reductase, glutathione peroxidase (GPX)
and catalase activities were assayed spectrophotometrically essen-
tially as previously described [43]. Superoxide dismutase (SOD)
activity was determined by using a native-gel activity-stain [44].
MnSOD was distinguished from cyanide-sensitive Cu/ZnSOD, by the
addition of 2 mM KCN. Band intensity relative to the in-situ activity
staining gels was calculated densitometrically using Quantity One-
4.4.1 imaging software (Bio-Rad Laboratories). Silver staining of three
replicate gel was used to verify equal loading.

2.14. Biochemical markers of oxidative stress

Cells, collected by trypsinization and centrifugation, were resus-
pended in hypotonic medium supplemented with the antiprotease
cocktail tablet (Roche, Basel, CH) at a concentration of 1.5–2.0 mg
protein/ml and homogenized with a glass/glass potter. Total glutathi-
one (GSH), oxidized glutathione (GSSG) and protein sulfhydryl groups
weremeasured as previously described [38]. For protein carbonyl (PC)
determination, cellular proteins (1 mg) were precipitated with 10%
TCA (w/v) and centrifuged. The pellet was resuspended in 1 ml of 0.2%
(w/v) dinitrophenyl-hydrazine (DNPH) in 2N HCl or in 1 ml of 2N HCl,
as a control blank, and processed [45]. The steady-state level of the
lipid peroxidation product malondialdehyde (MDA) was assayed in
cell lysates by determining thiobarbituric acid-reactive compounds
(TBARs), spectrophotometrically at 532 nm [46].

2.15. Western blot analysis

Total cell proteins (30 μg) were separated on a 13% Tris–Tricine
SDS-PAGE according to [47] and transferred onto nitrocellulose
membrane. Western blot analysis was performed using the specified
primary antibodies against: CI-39 kDa subunit, CIII-Core 2 subunit,
CIV-Cox IV subunit, CV-β subunit and porin (Invitrogen), catalase
(Calbiochem), cyclic AMP-responsive element binding protein (CREB)
and phosphorylated-CREB (P-CREB) (Santa Cruz Biotechnology)
according to the manufacturer's suggested concentrations. Protein
loading was assessed by reprobing the blots with β-actin (Sigma) or
GAPDH (AbD Serotec) monoclonal antibodies. Proteins were detected
by chemiluminescent LiteAblot reagent (Euroclone) and the signal
was quantified by densitometric analysis using Quantity One-4.4.1
imaging software (Bio-Rad Laboratories). For the parkin western blot
analysis, 40 μg whole cell lysate proteins were separated on a 4–12%
Tris–Tricine SDS-PAGE. Monoclonal parkin primary antibody (Sigma)
was used according to the manufacturer's suggested concentrations.
For the PGC-1αwestern blot analysis, 60 μg whole cell lysate proteins
resuspended in RIPA buffer (50 mM Tris, pH 7.5, 1% Nonidet P-40,
150 mM NaCl, 1 mM EDTA, 0.1 % SDS, 0.5% Na-deoxycholate, protease
inhibitor mixture (Roche, Basel, CH)) were separated on a 9% Tris–
Glycine SDS-PAGE. Polyclonal PGC-1 α primary antibody (Santa Cruz
Biotechnology) was used according to the manufacturer's suggested
concentrations.

2.16. Mitochondrial protein synthesis

Fibroblast cell cultures from CTRL, P1 and P2 patients, after a 16 h
incubation with 50 μg/ml of chloramphenicol, were washed three
times with PBS and then labeled with 30 μCi [35S]methionine-[35S]
cysteine for 2 h, in the presence of 100 μg/ml of emetine, in
methionine-free DMEM supplemented with 10% dialyzed FBS. The
cells were collected by trypsinization and centrifugation, washed
twice with TD buffer and then resuspended in 50 μl TD supplemented
with the antiprotease cocktail tablet (Roche, Basel, CH). Proteins (60–
70 μg) of cell suspensions were separated on a 14% Tris–Glycine SDS-
PAGE. The gel was dried and analyzed by PhosphorImager (Bio-Rad).
Protein loading was assessed by immunoblot analysis of equal
amounts of proteins using β-actin monoclonal antibody.

2.17. Cyclic adenosine monophosphate (cAMP) assay

For cAMP assay, the culture medium was removed and 1 ml of
0.1 MHClwas added to the cell layer followed by 10 min incubation at
37 °C. The lysed cells were scraped and transferred into Eppendorf
tubes. The samples were centrifuged at 1300×g for 10 min at 4 °C. The
supernatants were used for cAMP measurement using a direct
immunoassay kit (Assay Designs) according to the manufacturer's
instruction.

2.18. Statistical analysis

Data are expressed as means±SEM and statistically analyzed by
the Student's t test.

3. Results

3.1. Mutation analysis

A first screening of coding sequences of the genes known to be
associated with autosomal recessive PD (PARK2, PARK6, PARK7) and
of genes associated with autosomal dominant PD (PARK1 and PARK8)
did not reveal any alteration in both P1 and P2 patients (data not
shown). Since standard genomic sequencing may fail to detect
compound heterozygous deletional mutations, RT-PCR was used to
characterize the parkin gene as previously described [48]. The
expected RT-PCR product of 1355 bp was present in the parental
control (CTRL) and in the commercially available NHDF AD control
fibroblasts, but it was absent in both patients (Fig. 1A). On the other
hand, two bands, F1 (950 bp) and F2 (1191 bp) were detected in both
patients, with the F1 being detectable also in the parental CTRL
(Fig. 1A). Direct sequencing of the F1 and F2 RT-PCR products revealed
a deletion of exons 2–3 and exon 3, respectively. Therefore, both
patients carry a compound heterozygous deletional mutation (del
exon2-3/del exon3), while the unaffected parental control displays
the heterozygous del exon2-3 (Fig. 1B). The western blot analysis of
parkin protein expression revealed the complete absence of the
50 kDa full-length protein in the fibroblasts of both patients and a
comparable amount in CTRL fibroblasts and NHDF AD (Fig. 1C).

3.2. Ultrastructural analysis of cultured fibroblasts

Electronmicroscopywasused to examineultrastructural differences
between CTRL, P1 and P2 fibroblasts. As shown in Figures 2 (A–C),
CTRL fibroblasts occur as elongated cells with thin plasma membrane
filopodia, eucromatic nuclei and abundant rough endoplasmic reticu-
lum (RER) with amorphous material filled cisternae. Numerous
rounded or rod-like mitochondria normally arranged, with both
lamellar and tubular cristae, lysosomal vacuoles and peroxisome-like
bodies with uniform and moderately electron dense matrix were also
scattered in the CTRL cytoplasm. Fibroblasts from both P1 and P2
patients (D–R) showed severe ultrastructural alterations, without
morphological differences between each other, characterized by an
irregular cellular shape with pseudopodia membranes and cytoplasmic
protrusions, and heterochromatic and indented nuclei (Fig. 2D).
Cytoplasm appeared electron lucent with abnormal enlargements of
the cisternae of rough reticulum (Fig. 2O) and with numerous vesicles
and lysosomal vacuoles completely (Figs. 2E,G,I arrow) or partiallyfilled
with electron dense material, possibly representing degenerating
mitochondria (Figs. 2E,H,Q, arrowhead), and often merging with RER



Fig. 1. Detection of compound heterozygous deletional mutations of parkin. (A) RT-PCR
analysis of parkin gene was performed on cDNA obtained from NHDF AD fibroblasts
(NHDF), patient 1 and 2 (P1, P2) and their parental control (CTRL) as described under
Materials and methods. wt: full-length wild type product 1355 bp; F1: 950 bp
fragment, exon2-3 deletion; F2: 1191 bp fragment, exon3 deletion. (B) Sequence
chromatogram of the F1 fragment at the junction of the 3′ end of exon1 to the 5′ initial
base of exon4 (F1-Δex2-3). Sequence chromatogram of the F2 fragment at the junction
3′ end of exon2 to the 5′ initial base of exon4 (F2-Δex3). (C) Western blot analysis
reveals the presence of the parkin protein in NHDF and in CTRL fibroblasts, but not in the
patient's cells (P1 and P2). Human dopaminergic neuroblastoma cell line (SH-SY5Y),
was used as positive control for the expression of parkin protein and β-actin, as loading
control.
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cisternae (Figs. 2F,G, arrow). Lamellaries bodies (Fig. 2N, arrow), and
peroxisome-like vacuoles, with a dense granular core (Figs. 2I,M
asterisk), enveloped by lamellar structures (Fig. 2M, arrow), or
irregularly patched dense matrix (Fig. 2L), were also detected. The
most prominent abnormality, however, was represented by swollen
mitochondriawith few remaining cristae and decreased electronmatrix
density (Figs. 2O,P arrowhead) and degenerating with obscuration of
the cristae and electron-dense matrices (residual bodies) (Figs. 2H,O,R,
arrow) close to autophagic vacuoles containing mitochondrial mem-
branes (Figs. 2Q,R, red arrow). No abnormal mitochondrial structures
were present in CTRL fibroblasts.

In order to obtain further insights into the observedmorphological
mitochondrial defects, the mitochondrial networks of cultured cells
were stained with MitoTracker CMXRos and a noticeably more
fragmented mitochondrial network was exhibited by patients'
fibroblasts in respect to CTRL (Fig. 3).

3.3. Functional analysis of bioenergetic metabolism

Next, we raised the question whether the marked changes in
mitochondrial morphology may reflect alterations in mitochondrial
function. The fibroblasts' competence for mitochondrial OXPHOS was
first screened by monitoring cell growth rate in DMEM and in a
selective medium containing galactose [49]. In high glucose-medium,
patient's fibroblasts displayed a growth rate significantly lower with
respect to the CTRL (Fig. 4A). However, while the growth curves of
CTRL cells in glucose and galactose medium were superimposable,
those of patients' fibroblasts showed a marked difference. In fact, the
growth rate of P1 and, even more, of P2 fibroblasts was dramatically
impaired in the galactose medium that forced the cells to use
predominantly oxidative phosphorylation system (OXPHOS) for ATP
synthesis, as compared with glucose medium (Fig. 4A). The
mitochondrial respiratory function was then analyzed by measuring
the oxygen consumption rates by endogenous substrates in intact
cells. As shown in Figure 4B, the basal endogenous respiration rate in
intact cells was significantly lower in P1 and P2 patients (47±4.5%
and 58±3.9%, respectively) with respect to the CTRL fibroblast.
Similarly, the maximal DNP-uncoupled respiration rates in P1 and P2
fibroblasts decreased by 56±6.3% and 65±2.5%, respectively, as
compared with the CTRL value. In view of the marked age-related
decline of fundamental processes essential for mitochondrial biogen-
esis and function in human fibroblasts [35], it should be stressed that
the respiratory rates of both control cells (CTRL and NHDF AD cells)
fall within the range of their age matched group. Furthermore, the
ratio of the DNP-uncoupled vs the oligomycin-blocked respiration
rate (data not shown), was lower in both patients' as compared with
CTRL cells, suggesting a certain degree of uncoupling in both patients.

To further dissect the observed decrease in endogenous respira-
tion, we measured the maximal (uncoupled) respiratory fluxes by
exogenous substrates supplying electrons to CI (glutamate+malate),
CII (succinate) or CIV (ascorbate+TMPD) in digitonin-permeabilized
cells (Fig. 4C). A significant reduction of the uncoupled respiration
rates was observed in both patients, independent of the substrate
used, suggesting an overall reduction in the respiratory capacity of the
electron transport chain. Respiratory fluxes were markedly decreased
with respect to CTRL, by 41±8.2%, 31±6.5% and 25±9.5% in P1, by
59±3.3%, 50±3.7% and 44±4.3% in P2 using glutamate+malate,
succinate and ascorbate+TMPD, respectively.

In order to investigate whether the observed decline of the
respiratory fluxes in the patients was related to the impaired function
of specific respiratory complexes, CI, CII and CIV activities were
measured. As shown in Table 1, a highly significant decrease of CI
activity in P1 (36.1±7.1%) and P2 (28.4±3.7%) and, although to a
smaller extent, of CIV in P1 (10.2±5.5%) and P2 (18.3±8.3%) as
compared to the CTRL ones, was found. On the other hand, the CII
activity was not significantly changed in patients' cells vs CTRL.
Interestingly, the activity of citrate synthase, a well-known functional
marker of mitochondrial content, was also decreased by 44±4.5% and
38±5.5% in P1 and P2, respectively, as compared to CTRL.

The OXPHOS capacity of both patients' fibroblasts was also
examined by measuring the coupled state III respiration rate (in the
presence of ADP) and cellular ATP production rate in permeabilized
cells. Consistent with the results described above, we observed lower
respiration rates in P1 and P2 fibroblasts with NAD-dependent
substrates and with succinate as compared with the control values
(Fig. 4D). The oligomycin-sensitive ATP synthesis rates sustained by
glutamate+malate and succinate were decreased by 51±7.8% and
59±5.9% in P1 and by 80±3.3% and 71±5.2% in P2, respectively as
compared with CTRL cells (Fig. 4E). Moreover, the oligomycin-
sensitive ATP hydrolase activity of CV also revealed a noteworthy
decrease in both patients as compared to the CTRL value (data not
shown).

Despite adefectiveOXPHOS, the cellular total ATPcontent,measured
under basal conditions,was significantly higher in P1 (24±9.2%) and in
P2 (65±5.6%) comparedwithCTRL values (Fig. 4F). Similar resultswere
obtained by measuring the ATP content under strict glycolytic
conditions, i.e. in the presence of antimycin A and rotenone (data not
shown). On the other hand, cellular ATP content, in the presence of
theglycolytic inhibitor iodoacetic acid,wasdecreased by44±1.04% and
40±1.39% in P1 and P2 fibroblasts, respectively (Fig. 4F). These data
indicate that the defective ATP production by OXPHOS in patients'
fibroblasts is compensated by an increased glycolytic supply. Consistent
with the increased glycolytic ATP production was the greater intracel-
lular LDH activity (Fig. 4G) observed in P1 (71.3±13.8 %) and in P2
(84.1±12.9%) as compared with CTRL, as well as the higher
extracellular lactate levels (Fig. 4H) which were increased by 33±
9.4% and 52±12.1% in P1 and P2 fibroblasts, respectively, as compared
with CTRL fibroblasts.



Fig. 2. Ultrastructural analysis of skin fibroblasts. (A–C) Representative micrographs of fibroblasts from CTRL showing eucromatic nucleus and filopodia (A, arrow), RER with dilated
cisternae (B, arrow), mitochondria with lamellar (B, arrowhead) and tubular cristae (C, arrowhead) and lysosomes with uniform matrix (C, asterisk). (D–R) Representative
micrographs of fibroblasts from P1 and P2 patients showing pseudopode membrane (D, arrow), indented nucleus with enlarged RER cisternae (O, asterisk) and lysosomal vacuoles
completely (E, G, I, arrow) or partially filled with electron dense material (E, H, Q, arrowhead), merging with RER cisternae (F, G, arrow). Lamellaries bodies (N, arrow) and
peroxisome-like vacuoles showing granular core (I, M, asterisk), enveloped by lamellar structures (M, arrow), or patched dense matrix (L, asterisk) are detectable. Swollen
mitochondria with disorganized membrane compartments (O, P, arrowhead) and degenerating with electron-dense matrices (H, O, R, arrow) close to autophagic vacuoles
containing mitochondrial membranes (Q, R, red arrow) are present. Scale bar: A, D, 0.83 μm; B, E, O, 0.5 μm; E inset, F, G, H, I, N, Q, 0.2 μm; C, L, M, P, 0.11 μm.
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3.4. Oxidative stress analysis

Mitochondrial dysfunction is often associated with an increased ROS
production, therefore we have evaluated the production of ROS by
measuring the oxidation of H2DCFDA in patients and CTRL cells. As
shown in Figure 5A, a significant increase inROSproductionby 31±9.9%
and 53±13.8% in P1 and P2 cells, respectively, was observed as
compared with CTRL ones.

These results prompted us to investigate levels of oxidative stress
markers. The content of protein carbonyls and TBARs, as protein and
lipid oxidative damage markers, respectively, are shown in Figures 5B
and C. When compared with CTRL, the total level of protein carbonyl
did not differ significantly in PD patients' fibroblasts (Fig. 5B), whereas
higher TBARs were detected in P1 (52.6±8.3%) and P2 (47.4±5.9%)
(Fig. 5C). No significant differencewas observed in the cellular content
of GSH, GSSG and protein sulfhydryl groups (data not shown).

The differences in the ROS levels observed in the patients' cells could
be also due to deficiencies in the scavenging apparatus. For these
reasons, the activity of the antioxidant enzymes was analyzed.
Fibroblasts of both patients exhibited a decreased activity of mitochon-
drial MnSOD (Fig. 5D) (31.6±4.7% in P1, 44.4±13.6% in P2), GPX
(Fig. 5E) (30.9±9.9% in P1, 54.5±4.2% in P2) and catalase (Fig. 5F)
(53.2±5.7% in P1, 31.9±4.8% in P2) compared to CTRL cells. No
significant change in glutathione reductase activity was observed (data
not shown). As shown in Figure 5G, the reduction of the catalase activity
was due to a lower protein level which was decreased by 52.9±4.7%
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Fig. 3.Mitochondrial network analysis. Representative confocal images of mitochondrial network in fibroblasts from CTRL (scale bar: 25 μm), P1 (scale bar: 25 μm) and P2 (scale bar:
50 μm) patients, stained with nuclear stain (green) and mitochondrial stain (red) as described under Materials and methods.
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and 53.1±9.2% in P1 and P2, respectively, as compared to CTRL
fibroblasts.

Finally, to test whether the decrease of catalase could be associated
with a decreased peroxisome content, total peroxisome volume
quantification was analyzed. The analysis revealed, unexpectedly, that
P1 and P2 fibroblasts contain about a 5–6 fold increase of peroxisome
volume (normalized to cell volume) when compared to CTRL (Fig. 6).
3.5. Mitochondrial biogenesis and PGC-1α dysfunction

To assess whether an altered expression of mitochondrial proteins
could underlie the reduction in the respiratory chain complex
activities observed in both patients, we evaluated, by semi-quantita-
tive western blotting analysis, the steady-state levels of different
OXPHOS subunits (Fig. 7A). The results showed a significant decrease
in the expression level of CI, CIII, CIV and CV subunits as well as of the
mitochondrial outer membrane porin, in patients' fibroblasts with
respect to the CTRL cells. The synthesis of mitochondrial-encoded
proteins, measured by the incorporation of [35S]-labeled methionine,
appeared consistently decreased in P1 and P2 fibroblasts with respect
to the CTRL (Fig. 7B). Mitochondrial dysfunction often elicits a
compensatory increase in organelle biogenesis. PGC-1α is a tran-
scriptional coactivator directly involved in the upstream control of
mitochondrial biogenesis [50,51]. Several signal transduction path-
ways have been implicated in the control of PGC-1α expression and
activity, among which is the cAMP mediated signal transduction
pathways that results in phosphorylation of CREB [51]. Interestingly,
we found a rise in the cAMP basal level (Fig. 7C), associated with an
increase of P-CREB in respect to total CREB content in both patients,
more marked in P2 (151.5±44.7%) than in P1 (32.2±12.2%) as
compared to CTRL fibroblasts (Fig. 7D). In agreement with the results
described above, PGC-1α expression appeared to be upregulated
(Figs. 7E and F). The endogenous PGC-1α transcripts were 5.8-fold
and 12.6-fold higher in P1 and P2 respectively, compared to CTRL
(Fig. 7E). Consistently, the PGC-1α protein content was increased by
23.9±7.4% in P1 and 85.5±3.6% in P2 as compared with CTRL
(Fig. 7F). Strikingly, the mRNA levels of PGC-1α downstream target
genes, directly involved in mitochondrial biogenesis (NRF1, NRF2,
TFAM, ATPaseβ, COX II), as well as, in fatty acid metabolism (MCAD),
resulted to be generally unchanged or even significantly lower in both
patients as compared with CTRL (Fig. 7G). The PGC-1α target genes
for the antioxidant enzymes, GPX1 and SOD2, had likewise a
significant lower expression (Fig. 7G). Comparable patterns for
mRNA levels of PGC-1α and its target genes were obtained by using
β-actin (Fig. 7G) and GAPDH or 18S rRNA (Fig. S1) as housekeeping
genes.
4. Discussion

Recent research on PD-associated genes has provided a funda-
mental knowledge of biochemical pathways associated with the
disease process. Moreover, genetic and toxin models suggest that
mitochondrial dysfunction is a common denominator of sporadic and
familial PD. In the present work, we have carried out an extensive
analysis of mitochondrial bioenergetic properties of fibroblasts from
two siblings with juvenile PD. The genetic analysis revealed a hitherto
unreported compound heterozygous mutation del exon2-3/del exon3
in the parkin gene, leading to the complete loss of the full-length
protein. The del ex2-3 mutation was harbored in heterozygosis in the
patients' mother who did not present any pathological symptom
(parental healthy control, CTRL). Although exon2-3 [52] and exon3
[53] deletional mutations in the parkin gene have been previously
described, this is, to our knowledge, the first report of the two
mutations appearing simultaneously in compound heterozygotes.

Whether heterozygous mutations in the parkin gene can cause
parkinsonism or can confer an increased susceptibility for typical
late-onset PD is still controversial [54–57]. The absence of any
mitochondrial defect in the heterozygous parental control is in line
with the evidence that the siRNA-mediated parkin 50% knockdown
does not result in an impaired mitochondrial transmembrane
potential nor in mitochondrial morphology alteration [20]. Mito-
chondrial defect has been primarily demonstrated by a specific
impairment in growth of both patients' cells in a medium containing
galactose, which is metabolized through the glycolytic pathway only
very slowly [49].

The mitochondrial functions investigated in CTRL exhibited
unchanged values with respect to the unrelated matched control.
We provide evidence, in PD patients' fibroblasts, of significantly
decreased respiratory capacities by endogenous and exogenous
substrates in intact and permeabilized cells, respectively, as compared
with the parental control, and even more with the average age-
matched values (cf. [35]). The more evident decline of the maximal
respiratory rates by NAD-dependent substrates and of the specific CI
enzyme activity is in agreement with previous data obtained in
peripheral cells from parkin patients [18] and in mouse parkin
mutants model [14].

The inhibition of respiratory fluxes is also associated with a decline
in CIV function as measured polarographically in intact (data not
shown) and in digitonin-permeabilized cells and confirmed by the
spectrophotometric assay of the specific CIV enzyme activity. A
reduced capacity of the electron transport chain has been already
reported in mouse models of PD, such as parkin−/− mice [14,15] and
pink1−/− mice [58] as well as in fibroblasts derived from patients
bearing parkin mutations [20]. The functional decline could be due to
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Fig. 4. Functional analysis of bioenergetic metabolism. (A). Cellular growth curves. Fibroblast growth was monitored in CTRL, P1 and P2 fibroblasts in standard glucose/medium
(closed circle) or in galactose/medium, lacking glucose, and containing, 0.9 mg of galactose/ml and 0.5 mg of pyruvate/ml (open circle). (B) Basal and DNP (30 μM)-uncoupled
endogenous respiration rates in intact cells. (C) DNP-uncoupled respiration rates in digitonin-permeabilized cells were measured in the presence of CI (G/M, glutamate 5 mM+
malate 5 mM, rotenone sensitive fraction), CII (Succ, succinate 5 mM plus rotenone, antimycin A sensitive fraction) and CIV (Asc 10 mM/TMPD 0.4 mM plus antimycin A, cyanide
sensitive fraction) substrates. (D) State III respiration rates were measured after addition of 0.5 mM ADP in the presence of glutamate+malate (G/M) or succinate plus rotenone
(Succ) in digitonin-permeabilized cells. The values are expressed as percentage of CTRL whose mean values±SEM are 4.9±0.7 and 7.7±0.6 nmoles O2·(min·mg protein)-1 for G/
M and Succ, respectively. (E) Oligomycin-sensitive ATP synthesis rates were measured in the presence of CI (G/M), and CII (Succ) substrates in digitonin-permeabilized cells. (F)
Cellular ATP content under basal conditions (Basal) and after treatment with 100 μM iodoacetic acid for 1 h (basal+IAA) was measured in digitonin-permeabilized cells. (G) LDH
activity wasmeasured in total cell lysates. Data are expressed as percentage of CTRL whosemean value±SEM is 2.7±0.1 μmoles·(min·mg protein)-1. (H) Extracellular lactate level
was measured in the growth medium at 48 h after seeding. Data are expressed as percentage of CTRL whose mean value±SEM is 105.2±16.1 nmoles/μg protein. The values
reported represent the means±SEM of at least four independent experiments. For more details see Materials and methods. Hatched bar, NHDF AD; open bar, CTRL; gray bar, P1;
filled bars, P2. *pb0.05, **pb0.005.
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the decreased protein level of OXPHOS subunits reported in our work
and also described in parkin−/− mice by Palacino et al. [14]. These
results would highlight the involvement of parkin in the biogenesis of
mitochondrial respiratory chain complexes [59].

The major harmful consequence of a defective electron transfer
chain is displayed in ATP synthesis by OXPHOS. The decreased
mitochondrial ATP synthesis by CI- and CII-substrates, observed in
patients' fibroblasts, is compensated by an increase in the anaerobic
glycolytic pathway. A general shift to anaerobic glycolysis in the
neocortex of PD patients has been established by magnetic resonance
spectroscopy and 2-[18F]fluoro-2-deoxy-D-glucose positron emission
tomography studies, showing increased lactate concentrations [60].
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Table 1
Mitochondrial respiratory enzyme and citrate synthase activities.

Enzyme activities (% CTRL) NHDF AD P1 P2

Complex I 95±8 ⁎⁎64±7 ⁎⁎72±4
Complex II 119±11 123±10 107±10
Complex IV 96±8 ⁎90±6 ⁎82±8
Citrate synthase 87±5 ⁎⁎56±5 ⁎⁎62±6

Specific enzymatic activities of mitochondrial respiratory chain CI, CII, CIV, and citrate
synthaseweremeasured on total cell lysates fromNHDFAD, parental CTRL, and P1 and P2
fibroblasts as described underMaterials andmethods. Data are expressed as percentage of
CTRL values. The mean values±SEM for CI, CII, CIV and citrate synthase activities in CTRL
fibroblastswere 34.7±4.3, 10.5±0.7, 13.2±0.9, 20.5±2.5 nmoles·(min·mgprotein)-1,
respectively. The values represent the means±SEM of at least four independent
experiments. For more details see Materials and methods.
⁎ pb0.05.
⁎⁎ pb0.005.

Fig. 5. Oxidative stress analysis. (A) The intracellular ROS content was detected by DCF fl

percentage of CTRL values. Cellular content of (B) protein carbonyls (PC), and (C) thi
(D) Representative “in situ” SOD activity assay, determined by histochemical staining of a nat
Data are expressed as percentage of CTRL values. (E) GPX and (F) catalase activities wer
performed on whole cell lysates. Bar graph shows quantification by densitometric analysis
expressed as percentage of CTRL values. For more details seeMaterials and methods. The valu
bar, CTRL; gray bar, P1; filled bars, P2. *pb0.05, **pb0.005.
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As expected, the defects in the electron transfer chain lead to an
increase in ROS production. The resulting significant increase in TBARs
detected in the patients' fibroblasts, strengthen the role of lipid
peroxidation as the major link between parkin fibroblasts and PD
substantia nigra [61]. Lipid peroxidation products are thought to be
markers of early PD pathogenesis even before clinical manifestation,
since abnormally high levels have been observed in brain autopsies of
asymptomatic individuals [62] and in the substantia nigra of PD
patients [63]. On the contrary, no oxidative protein damage and no
change in cellular glutathione content was detected in patients' cells,
suggesting their possible implication in a later phase of PD
pathogenetic mechanisms (see however [64,65]). Finally, the obser-
vation of the significant decline of catalase, glutathione peroxidase
and MnSOD activities in the patients' fibroblasts worsen the oxidative
stress condition that is considered a common underlying feature in PD
pathogenesis (see also [66,67]).
uorescence in cells loaded with DCFH-DA (10 μM) for 30 min. Data are expressed as
obarbituric acid-reactive compounds (TBARs), were measured on total cell lysates.
ive-gel. Bar graph shows quantification of SOD positive bands by densitometric analysis.
e measured in total cell lysates. (G) Representative western blot of catalase content
of band intensity of catalase normalized to β-actin, used as loading control. Data are
es reported represent the means±SEM of at least four independent experiments. Open
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Fig. 6. Peroxisome volume analysis. (A) Representative confocal images of fibroblasts from CTRL (scale bar: 25 μm), P1 (scale bar: 25 μm) and P2 (scale bar: 25 μm) patients
expressing mitochondrial (green) and peroxisomal (red) fluorescent fusion proteins. (B) Representative confocal images of fibroblasts from CTRL (scale bar: 50 μm), P1 (scale bar:
50 μm) and P2 (scale bar: 50 μm) patients expressing cytoplasmic (green) and peroxisomal (red) fluorescent fusion proteins. Bar graph shows ratio of peroxisome volume (red) and
cell volume (green) quantification, obtained by confocal images reported in B, taken and processed by deconvolution software (background reduction). The images underwent pixel
analysis and the corresponding values were acquired. Open bar, CTRL; gray bar, P1; filled bars, P2.
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The brain is particularly vulnerable to oxidative stress since the
high demand of a strictly aerobic energy production seems not to be
balanced by an efficient antioxidant defense system as compared with
other organs [68]. This scenario would become particularly dangerous
in dopaminergic neuronswhere a pro-oxidant environment exists, due
to the presence of dopamine. While the “vicious circle” between
mitochondrial respiratory dysfunction and ROS production might be,
somehow, expected, thedecrease in theROS scavenging system shifted
our investigation in different directions. Of particular interest was, for
us, the decrease of catalase activity and protein expression, and the
increase in peroxisomal number observed in PD fibroblasts. Catalase
exists primarily within peroxisomes and removes the H2O2 generated
by the long-chain fatty acid beta-oxidation pathway. The enzyme
deficiency might contribute to the imbalance of intracellular ROS,
affecting lipid metabolism and membrane function. Furthermore, the
peroxisomal generated H2O2 may move into the cytoplasm to induce
an overall intracellular stress condition affecting organelles' function.

Recently, a close association between mitochondria and peroxi-
somes has been described [69]. Both organelles are in close contact
with the endoplasmic reticulum, exchanging metabolites and sharing
some metabolic pathways and components of their division machin-
ery, so that their biogenesis can occur in a coordinated manner
[69,70]. The interrelationship between the two organelles has been
strengthened by the recent demonstration of a concerted action of
PGC-1α on mitochondrial function and peroxisomal specialization
and biogenesis [71]. Indeed, it has been shown that the increase of the
peroxisomal catalase level in senescent human cells restores
mitochondrial integrity [72] while its inactivation results in mito-
chondrial dysfunction and an increase in peroxisome number [73].
Alterations in peroxisomal metabolism, biogenesis, dynamics and
proliferation can potentially influence mitochondrial functions and
vice versa having a negative impact on their cooperative function,
thus contributing to disease appearance [69] and aging process [74].

The morphological abnormalities that we observed in PD patients,
mainly in mitochondria, would be the result of the mitochondrial
dysfunctions and the oxidative stress condition so far described. In
fact, current data suggest that parkin is required for the turnover of
compromised mitochondria by promoting their autophagy [26,75,76],
recruiting the autophagic adaptor protein p62 [77,78], a protein
involved, also, in pexophagy [79]. The imbalance between the extent
of autophagy induction and the ability of the cell to complete
autophagic degradation and recycling/regeneration of cellular com-
ponents, upregulating compensatory biosynthetic responses, would
create a state of autophagic stress and eventually cell death [80].

In this scenario and in the light of the possible involvement of
parkin in mitochondrial turnover [59], we have investigated upstream
events in the organelles biogenesis. Several signal transduction
pathways are implicated in the control of expression and activity of
PGC-1α, a strong regulator of mitochondrial biogenesis, required, as
well, for the induction of many ROS detoxifying enzymes upon
oxidative stress [31]. Activation of the cAMP signaling pathway is a
major mechanism underlying the induction of PGC-1α, whose
promoter contains a functional CREB binding site that is required for
cAMP response [51]. Abnormal PGC-1α activity likely plays an
important role in the pathogenesis of several metabolic diseases
[51] and it is rising its involvement in the pathogenesis of
neurodegenerative disorder such as Huntington's disease [81,82]
and Friedreich's ataxia [83]. Specifically related to PD is the evidence
that a PGC-1α knockout mice shows enhanced susceptibility to
neuronal loss following MPTP exposure [31]. Furthermore, during the
preparation of this manuscript, Scherzer's group reported a reduced
expression of PGC-1α target genes related to mitochondrial function

image of Fig.�6


Fig. 7. Mitochondrial biogenesis and PGC-1α dysfunction. (A) Protein expression of respiratory chain complexes and of porin. Representative western blot of CI (39 kDa), CIII (core
2), CIV (Cox IV), CV (β-subunit) respiratory chain's subunits and of porin, performed onwhole cell lysates. Bar graph shows quantification by densitometric analysis of mitochondrial
protein bands normalized to β-actin, used as loading control. Data, means±SEM of at least four independent experiments, are expressed as percentage of CTRL values. (B) [35S]-
methionine labeled mitochondrial protein synthesis. Representative autoradiographic patterns of mitochondrial translation. (C) cAMP basal levels in total cell lysates. Data are
means±SEM of at least three independent experiments. (D) Western blot of CREB and P-CREB, performed on whole cell lysates. Bar graph shows the CREB/P-CREB ratio calculated
by quantification by densitometric analysis of band intensity normalized to GAPDH, used as loading control. Data are means±SEM of at least four independent experiments,
expressed as percentage of CTRL values (E) PGC-1αmRNA levels. The mRNA levels were determined by RTqPCR of total RNA normalized to GAPDH. Data are means±SEM of at least
four determinations. (F) Western blot of PGC-1α performed on whole cell lysates. Bar graph shows quantification by densitometric analysis of band intensity normalized to β-actin,
used as loading control. Data are means±SEM of at least three independent experiments, expressed as percentage of CTRL values. (G) mRNA levels of PGC-1α target genes: NRF1,
NRF2, TFAM, ATPaseβ, COX II, MCAD and antioxidant enzymes CAT, GPX1, SOD2. The mRNA levels were determined by RTqPCR of total RNA normalized to GAPDH. Data are means
±SEM of at least four determinations. For more details see Materials and methods. Open bar, CTRL; gray bar, P1; filled bars, P2. *pb0.05, **pb0.005.
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and energy production, in the substantia nigra and in non-nigral
tissues of PD patients [84].

In our study, changes in cellular metabolism, due to the loss of
mitochondrial oxidative capacity, could elicit an adaptive response by
promoting a signaling pathway involving activation of CREB by
phosphorylation, which is reported to be catalyzed by several kinases
such as the cAMP-dependent Protein Kinase (PKA) [30]. CREB
phosphorylation leads to the remarkable upregulation of PGC-1α
expression which is, however, not associated with any increase in the
transcript levels of its target genes. This fact would pinpoint to
possible post-translational modifications known to modulate PGC-1α
function such as phosphorylation, acetylation, methylation and
sumoylation [85]. These modifications can affect the intrinsic activity
and stability of PGC-1α or regulate its interaction with other proteins.
In particular, the reversible acetylation by the NAD-dependent protein
deacetylase sirtuin 1 (SIRT1) is emerging as a crucial controller of
mitochondrial biogenesis [86] and autophagy [87].

5. Conclusion

In conclusion, this work strengthens the role of mitochondrial
dysfunctions and oxidative stress in PD pathogenesis, highlighting the
overall mitochondrial homeostasis impairment as causative of the
pathological process. The compensatory increase of PGC-1α level is not
associated with induction of its target genes thus failing to correct the
mitochondrial defects as well as the oxidative stress condition.
Involvement of PGC-1α in parkin-associated PD still require further
studies routed to define the role of parkin in quality control of
mitochondria and peroxisomes. Strategies to promote PGC-1α function
could represent a promising therapeutic approach for the treatments of
multiple forms of PD and other neurodegenerative disorders.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.bbadis.2010.12.022.
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