The topology of moduli spaces of group representations: The case of compact surface

Indranil Biswas a,*, Carlos Florentino b

a School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India
b Departamento Matemática, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal

Received 9 February 2011
Available online 19 February 2011

Abstract

Let G be a connected complex semisimple affine algebraic group, and let K be a maximal compact subgroup of G. Let X be a noncompact oriented surface. The main theorem of Florentino and Lawton (2009) [3] says that the moduli space of flat K-connections on X is a strong deformation retraction of the moduli space of flat G-connections on X. We prove that this statement fails whenever X is compact of genus at least two.

© 2011 Elsevier Masson SAS. All rights reserved.

MSC: 14D22

Keywords: Flat connection; Higgs bundle; Representation

1. Introduction

In [3], the following is proved: Let F be a free group of finitely many generators, let G be a connected complex reductive affine algebraic group, and let K be a maximal compact subgroup of G. Then $\text{Hom}(F, K)/K$ is a strong deformation retraction of $\text{Hom}(F, G)//G$. (See [3, Theorem 1.1].) Since the fundamental group of a noncompact oriented surface is a free group, this result has the following reformulation.

Let X be a noncompact oriented surface. Then the moduli space of flat K-connections on X is a strong deformation retraction of the moduli space of flat G-connections on X.
It is natural to ask whether the above result remains valid for a compact oriented surface.

Let X be a compact connected oriented surface of genus g, with $g \geq 2$. We assume that G is nontrivial and semisimple. Fix a complex structure on X. The representation space $\text{Hom}(\pi_1(X), K)/K$ is homeomorphic to the moduli space $M_G(X)$ of topologically trivial semistable principal G-bundles on X. The representation space $\text{Hom}(\pi_1(X), G)//G$ is homeomorphic to the moduli space $H_G(X)$ of semistable Higgs G-bundles (E_G, θ) on X such that E_G is topologically trivial. From Corollary 2.3 it follows immediately that $M_G(X)$ is not a deformation retraction of $H_G(X)$.

2. Moduli of Higgs bundles and the nilpotent cone

Let G be a connected semisimple affine algebraic group defined over \mathbb{C}. We assume that $G \neq e$. Fix a maximal compact subgroup $K \subset G$. Let X be a compact connected Riemann surface of genus g, with $g \geq 2$.

Let $M_G(X)$ be the moduli space of topologically trivial semistable principal G-bundles over X. See [6] for the definition of semistable principal G-bundles; a construction of the moduli space $M_G(X)$ can be found in [7]. We know that $M_G(X)$ is homeomorphic to the equivalence classes of homomorphisms from $\pi_1(X)$ to K; see [6].

The Lie algebra of G will be denoted by \mathfrak{g}. The holomorphic cotangent bundle of X will be denoted by K_X.

Let $E_G \rightarrow X$ be a holomorphic principal G-bundle. Let $\text{ad}(E_G) := E_G \times^G \mathfrak{g}$ be the adjoint vector bundle for E_G. A Higgs field on E_G, a Higgs field, is a holomorphic section of $\text{ad}(E_G) \otimes K_X$. A Higgs G-bundle on X is a pair of the form (E_G, θ), where E_G is a principal G-bundle on X, and θ is a Higgs field on E_G.

A Higgs G-bundle (E_G, θ) is called semistable if for every pair of the form (Q, E_Q), where Q is a (proper) maximal parabolic subgroup, and $E_Q \subset E_G$ is a holomorphic reduction of structure group to Q such that

$$\theta \in H^0(X, \text{ad}(E_Q) \otimes K_X),$$

the inequality

$$\text{degree}(\text{ad}(E_G)/\text{ad}(E_Q)) \geq 0$$

holds, where $\text{ad}(E_Q)$ is the adjoint bundle for E_Q.

Let $H_G(X)$ denote the moduli space of semistable Higgs G-bundles (E_G, θ) such that E_G is topologically trivial; see [9,2] for the construction of $H_G(X)$. The moduli space $H_G(X)$ is homeomorphic to $\text{Hom}(\pi_1(X), G)//G$, the space of S-equivalence classes representations of $\pi_1(X)$ in G [8].

Fix generators

$$\beta_{n_1}, \ldots, \beta_{n_\ell} \in \bigoplus_{i \geq 1} \text{Sym}^i(\mathfrak{g}^*)^G$$

(2.1)

of the \mathbb{C}-algebra of G-invariant polynomial functions on \mathfrak{g}; the degree of β_{n_j}, $1 \leq j \leq \ell$, is n_j. Using β_{n_j}, we get a morphism

$$H_G(X) \longrightarrow H^0(X, K_X^{\otimes n_j}), \quad (E_G, \theta) \longmapsto \beta_{n_j}(\theta).$$

These morphisms combine together to define a morphism
which is known as the Hitchin map; see [4,5,2].

The inverse image

\[N := \mathcal{H}^{-1}(0) \subset \mathcal{H}_G(X) \]

(2.3)

is known as the nilpotent cone.

Theorem 2.1. The moduli space \(\mathcal{H}_G(X) \) admits a deformation retraction to the nilpotent cone \(N \).

Proof. Fix a Hermitian structure \(h \) on \(X \). We note that \(h \) is Kähler because \(\dim_\mathbb{C} X = 1 \). The Hermitian structure \(h \) induces a Hermitian structure on each line bundle \(K_X \otimes^n i \). Therefore, we obtain an inner product on the vector space \(H^0(X, K_X \otimes^n i) \).

The group \(\mathbb{C}^* \) has a natural action on \(\mathcal{H}_G(X) \). The action of any \(\lambda \in \mathbb{C}^* \) sends any \((E_G, \theta)\) to \((E_G, \lambda \cdot \theta)\). This action is clearly algebraic. Restrict this action of \(\mathbb{C}^* \) to the subgroup \(\mathbb{R}^+ \subset \mathbb{C}^* \).

Consider the map

\[\Phi : \bigoplus_{j=1}^\ell H^0(X, K_X \otimes^n j) \longrightarrow \mathbb{R}_{\geq 0}, \]

defined by

\[\Phi \left(\sum_{j=1}^\ell \omega_j \right) := \sum_{j=1}^\ell \|\omega_j\|_{nj}. \]

Clearly \(\Phi \) is continuous, proper, and \(\Phi^{-1}(0) = 0 \). We have

\[\Phi \left(t \cdot \sum_{j=1}^\ell \omega_j \right) = t \cdot \Phi \left(\sum_{j=1}^\ell \omega_j \right) \]

for all \(t \in \mathbb{R}^+ \). Hence for all \(\epsilon > 0 \), the inverse image

\[V_\epsilon := \Phi^{-1}(\{0, \epsilon\}) \]

is a compact neighborhood of the origin. Since the map \(\mathcal{H} \) in (2.2) is proper (see [4]),

\[U_\epsilon := \mathcal{H}^{-1}(V_\epsilon) \subset \mathcal{H}_G(X) \]

is a compact neighborhood of the nilpotent cone.

Any open neighborhood of \(0 \in \bigoplus_{j=1}^\ell H^0(X, K_X \otimes^n j) \) contains \(V_\epsilon \) whenever \(\epsilon \) is sufficiently small. Since the map \(\mathcal{H} \) is proper, this implies that any open neighborhood of \(\mathcal{H}^{-1}(0) \) contains \(U_\epsilon \) provided \(\epsilon \) is sufficiently small.

We have a retraction of \(\mathcal{H}_G(X) \) onto \(U_\epsilon \) defined as follows:

\[R : \mathcal{H}_G(X) \times [0, 1] \longrightarrow \mathcal{H}_G(X), \]

\[((E_G, \theta), t) \longmapsto \begin{cases} (E_G, t \cdot \theta), & t \in [0, 1], \ t \geq \frac{\epsilon}{\Phi(\mathcal{H}(E_G, \theta))}, \\ (E_G, t_0 \cdot \theta), & t \in [0, 1], \ t \leq t_0 = \frac{\epsilon}{\Phi(\mathcal{H}(E_G, \theta))} \leq 1, \\ (E_G, \theta), & t \in [0, 1], \ \Phi(\mathcal{H}(E_G, \theta)) \leq \epsilon. \end{cases} \]
Note that in the first two cases, either \(t \neq 0 \) or \(t_0 \neq 0 \); this ensures that the map is well defined. For any \((E_G, \theta) \in U_\epsilon\), we have \(R((E_G, \theta), t) = (E_G, \theta)\). Also, \(R((E_G, \theta), 1) = (E_G, \theta)\) for each \((E_G, \theta) \in H_G(X)\).

We claim that \(R((E_G, \theta), 0) \in U_\epsilon\) for each \((E_G, \theta) \in H_G(X)\). To prove this, first note it is evident for all \((E_G, \theta)\) with \(\Phi(H(E_G, \theta)) \leq \epsilon \). Now, if \(\Phi(H(E_G, \theta)) \geq \epsilon \), then it also holds because \(\Phi(R((E_G, \theta), 0)) = \Phi(H(E_G, t_0 \cdot \theta)) = t_0 \cdot \Phi(H(E_G, \theta)) = \epsilon \).

This proves the claim.

The nilpotent cone \(\mathcal{N} \) in (2.3) is a closed subvariety of \(H_G(X) \). Therefore there exists an analytic open neighborhood \(U \) of \(\mathcal{N} \) in the Euclidean topology such that \(U \) retracts to \(\mathcal{N} \). Fix a retraction \(R' \) of \(U \) to \(\mathcal{N} \). Take \(\epsilon > 0 \) small enough so that \(U_\epsilon \subset U \). The above retraction \(R \) followed by the retraction \(R' \) (as composition of two homotopies) gives a retraction of \(H_G(X) \) onto the nilpotent cone.

We have \(\dim H_G(X) = 2 \dim G \cdot (g - 1) \), and \(\dim \mathcal{N} = \dim G \cdot (g - 1) \).

The following lemma is a consequence of Theorem 2.1.

Lemma 2.2. For any \(i > \dim G \cdot (g - 1) \),

\[H^i(H_G(X), \mathbb{Z}) = 0. \]

Also,

\[H^{\dim G \cdot (g - 1)}(H_G(X), \mathbb{Z}) = \mathbb{Z}^N, \]

where \(N \) is the number of conjugacy classes of nilpotent elements in \(g \).

Proof. We have \(H^i(\mathcal{N}, \mathbb{Z}) = 0 \) for \(i > \dim G \cdot (g - 1) \), because \(\dim \mathcal{N} = \dim G \cdot (g - 1) \). Hence the first statement follows immediately from Theorem 2.1.

The irreducible components of \(\mathcal{N} \) are parametrized by the conjugacy classes of nilpotent elements in \(g \) [5]. Also, each irreducible component of \(\mathcal{N} \) is Lagrangian [5] (see also [1]); in particular, the dimension of each irreducible component of \(\mathcal{N} \) is \(\dim G \cdot (g - 1) \). Hence the second statement follows.

Lemma 2.2 has the following corollary:

Corollary 2.3. \(\text{rank } H^{\dim G \cdot (g - 1)}(H_G(X), \mathbb{Z}) > \text{rank } H^{\dim G \cdot (g - 1)}(M_G(X), \mathbb{Z}) \).

Proof. Since \(M_G(X) \) is an irreducible projective variety of dimension \(\dim G \cdot (g - 1) \),

\[H^{\dim G \cdot (g - 1)}(M_G(X), \mathbb{Z}) = \mathbb{Z}. \]

On the other hand, \(N \) in Lemma 2.2 is at least two.

Acknowledgements

The first author wishes to thank Instituto Superior Técnico, where the work was carried out, for its hospitality. The visit to IST was funded by the FCT project PTDC/MAT/099275/2008.
References