JOURNAL OF ALGEBRA 63, l-14 (1980)

Separable Rings

GORO AZUMAYA*

Department of Mathematics, Indiana University, Bloomington, Indiana 47401 Communicated by I. N. Herstein

Received March 2, 1979

TO NATHAN JACOBSON ON HIS 70TH BIRTHDAY

As a natural generalization of the classical theory of simple algebras, Auslander and Goldman established the theory of separable algebras in [I]. They proved in particular that if Λ is a separable algebra then it has the following two properties (a) By any ring epimorphism of Λ onto another ring the center of Λ is mapped onto the center of the image ring of Λ . (b) Every two-sided ideal of Λ is generated by an ideal of its center. In this paper we are concerned with rings having these two properties, and indeed we call a ring Λ a separable ring if it satisfies both the conditions (a) and (b). Every separable algebra is thus a separable ring, but the converse is not true. Our purpose is, however, to show that separable rings behave quite similarly to simple rings as well as separable algebras; also ideal algebras, introduced by Rao, are considered in connection with separable rings. For the theory of separable algebras, as is well-known, the Morita theory for projective modules gave a nice background, while in developing our study the recent Fuller theory which extends the Morita theory to the case of quasi-projective modules provides a substantial background.

1. FULLER'S THEOREM AND ITS COROLLARIES

Let R be a ring, and let U be a left R-module. We denote by $Gen_R(U)$ the class of all left R-modules which are expressed as sums of homomorphic images of $_RU$. Let S be another ring and let U now be an R-S-bimodule. Then</sub> for every left R -module X and for every left S -module Y we define the canonical homomorphisms

$$
\rho(X): {}_{R}U \otimes_{S} \text{Hom}_{R}(U, X) \to {}_{R}X,
$$

$$
\sigma(Y): {}_{S}Y \to {}_{S}\text{Hom}_{R}(U, U \otimes_{S} Y)
$$

* This research was supported by the NSF under Grant MCS77-01756. The main results of this paper were announced at the Antwerp Ring Theory Conference in August 1978.

by $\rho(X)(u \otimes f) = f(u)$ for $u \in U$, $f \in \text{Hom}_R(U, X)$ and $(\sigma(Y)y)u = u \otimes y$ for $y \in Y$, $u \in U$, respectively. Concerning these homomorphisms an important theorem was obtained by Fuller in [5, Theorem 2.61 and recently some improvement and refinement have been added to it by Sato [S] and Azumaya [2]. Thus the improved Fuller's theorem is

THEOREM 1.1. Let U be a left R-module and let $S = \text{End}_R(U)$; we view U as an R-S-bimodule. Then the following conditions are equivalent:

(1) $_R U$ is finitely generated quasi-projective and every submodule of $_R U$ is in $Gen_R(U)$.

(2) $\rho(X)$ is an isomorphism for all X in $\text{Gen}_R(U)$ and $\sigma(Y)$ is an isomorphism for all left S-modules Y.

(3) $Gen_R(U)$ is closed under submodules and U_S is a weak generator (i.e., $U \otimes_S Y = 0$ for a left S-module Y implies $Y = 0$).

(4) $\rho(X)$ is an isomorphism for all X in $\text{Gen}_R(U)$ and U_S is a weak generator.

(5) $\rho(X)$ is an isomorphism for all X in $\text{Gen}_R(U)$ and U_S is faithfully flat (i.e., flat and a weak generator).

Remark. For convenience, we assumed throughout that $S = \text{End}_R(U)$ in Theorem 1.1, but this assumption is superfluous for conditions (2), (4), and (5) as a matter of fact. In this connection, Zimmermann-Huisgen's theorem [lo, Lemma 1.4] that $Gen_k(U)$ is closed under submodules if and only if $\rho(X)$ is an isomorphism for all X in $Gen_R(U)$ and U_S is flat should also be taken into account.

We can now derive the following corollaries from Theorem 1.1:

COROLLARY 1.2. Let $_R U$ be finitely generated quasi-projective, $S = \text{End}_R(U)$, and every submodule of $_R U$ be in $Gen_R(U)$. Let X be in $Gen_R(U)$ and let $Y =$ $\operatorname{Hom}_{R}(U, X)$, Then between submodules X_0 of $_R X$ and submodules Y_0 of $_R Y$ there is a one-to-one correspondence by the following relations:

$$
X_0 = \sum_{f \in Y_0} f(U), \qquad Y_0 = \{ f \in Y \mid f(U) \subset X_0 \}.
$$

Proof. Let X_0 be a submodule of $_R X$ and put $Y_0 = \text{Hom}_R(U, X_0)$. Then clearly $Y_0 = \{f \in Y | f(U) \subset X_0\}$. Since $Gen_R(U)$ is closed under submodules by Theorem 1.1, X_0 is also in $Gen_R(U)$, which means that $X_0 = \sum_{f \in Y_0} f(U)$. Let, conversely, Y_0 be any submodule of ${}_sY$ and put $X_0 = \sum_{f \in Y_0} f(U)$. Then X_0 is in $Gen_R(U)$ and therefore $\rho(X_0): R U \otimes_S Hom_R(U, X_0) \to R X_0$ is an isomorphism by Theorem 1.1. On the other hand, since Y_0 is a submodule of $s_{\text{Hom}_{R}}(U, X_{0})$ and since U_{S} is flat by Theorem 1.1, $U \otimes_{S} Y_{0}$ is regarded as a submodule of $U \otimes_{S} Hom_{R} (U, X_{0})$ in the natural manner. Since, however, the

image of $u \otimes f$ ($u \in U$, $f \in Y_0$) by $\rho(X_0)$ is $f(u)$, it is clear that $U \otimes_S Y_0$ is mapped onto X_0 by $\rho(X_0)$ and therefore $U \otimes_S Y_0 = U \otimes_S \text{Hom}_R(U, X_0)$. Let h: $U \rightarrow X_0$ be an R-homomorphism. Then since $\rho(X_0): U \otimes_S Y_0 \rightarrow X_0$ is an R-isomorphism, there exists a (unique) R-homomorphism g: $U \rightarrow U \otimes_{S} Y_{0}$ such that $h = \rho(X_0) \circ g$. Since, furthermore, $\sigma(Y_0)$: $Y_0 \to \text{Hom}_R(U, U \otimes_S Y_0)$ is an isomorphism by Theorem 1.1, there corresponds to g an element f of Y_0 such that $g(u) = u \otimes f$ for all $u \in U$. Thus we have $h(u) = \rho(X_0)(u \otimes f) = f(u)$ for all $u \in U$, i.e., $h = f$, and this implies that $Y_0 = \text{Hom}_R(U, X_0)$.

COROLLARY 1.3. Let $_R U_S$ be as in Corollary 1.2. Let Y be a left S-module and let $X = U \otimes_{\mathcal{S}} Y$. Then between submodules X_0 of $_R X$ and submodules Y_0 of $_{\mathcal{S}} Y$ there is a one-to-one correspondence by the following relations:

$$
X_0 = U \otimes Y_0, \qquad Y_0 = \{ y \in Y \mid U \otimes y \subseteq X_0 \}.
$$

Proof. Since X is in $Gen_R(U)$ and since $\sigma(Y)$: $Y \to Hom_R(U, X)$ is an isomorphism by Theorem 1.1, it is clear that our corollary is an immediate consequence of Corollary 1.2 by identifying each $y \in Y$ with the corresponding map $\sigma(Y)y = [u \mapsto u \otimes y] \in \text{Hom}_R(U, X)$.

COROLLARY 1.4. Let $R\,U_S$ be as in Corollary 1.2. Then between submodules U_0 of $_RU$ and left ideals L of S there is a one-to-one correspondence by the following</sub> relations:

$$
U_0 = UL, \qquad L = \{s \in S \mid Us \subset U_0\}.
$$

Proof. This is the particular case of Corollary 1.2 where $X = U$ and $Y = S$.

2. SEPARABLE RINGS AND IDEAL ALGEBRAS

Let A be a ring and Z the center of A. Then A is considered an algebra over Z (central Z-algebra). Let Λ^0 be the opposite ring of Λ . Then Λ^0 is also a central Z-algebra and we can define the enveloping algebra $\Lambda^e = A \otimes_Z A^0$ of A (over Z). Let X be a Λ -bimodule. We call X a central Λ -bimodule if X is element-wise commutative with Z . It is well-known that every central Λ -bimodule is regarded as a left Λ^e -module and conversely every left Λ^e -module is converted into a central A-bimodule in the usual way. In particular, Λ is a central A-bimodule and so becomes a left Λ^e -module. Furthermore, for a central Λ -bimodule X, there is a natural isomorphism between Z-modules Hom_{Λ}(Λ , X) and X^{Λ} = ${x \in X \mid ax = xa$ for all $a \in A}$ given by the mapping $f \mapsto f(1), f \in \text{Hom}_{A^e}(A, X)$, and the inverse of this isomorphism is obtained by associating each $x \in X^{\Lambda}$ with $f \in \text{Hom}_{A^e}(A, X)$ defined by $f(a) = ax(= xa), a \in A$.

PROPOSITION 2.1. Let X be a central A-bimodule. Then X is in $Gen_{Ae}(A)$ if and only if $X = AX^A$.

Proof. Suppose that X is in $Gen_{Ae}(A)$. Then X is a sum of submodules $f(A)$ with $f \in \text{Hom}_{A^e}(A, X)$. But then $f(A) = Af(1)$ and $f(1) \in X^A$. Therefore we have $X = AX^A$. Assume conversely that $X = AX^A$. Then X is a sum of submodules Ax with $x \in X^A$. But, for each $x \in X^A$, there is an $f \in \text{Hom}_{A^{\emptyset}}(A, X)$ such that $f(1) = x$, so we have $Ax = f(A)$ and thus $X \in \text{Gen}_{A}(\mathcal{A})$.

COROLLARY 2.2. Let T be a two-sided ideal of A. Then T is in $Gen_{Ae}(A)$ if and only if $T = \Lambda(T \cap Z)$.

PROPOSITION 2.3. The left A^e -module A is quasi-projective if and only if for every ring epimorphism $f: A \to A'$ the image $f(Z)$ of Z coincides with the center of A' .

Proof. Let $f: A \rightarrow A'$ be a ring epimorphism, and let Z' be the center of the ring A'. Then clearly $f(Z) \subseteq Z'$ and so, by means of f, A' can be made into a central A-bimodule, or a left A^e -module, and in this case f becomes a A^e -epimorphism. Let z' be any element of $Z' = (A')^A$. Then there corresponds a A^e homomorphism g: $A \rightarrow A'$ such that $g(1) = z'$. Assume that the A^{ℓ} -module A is quasi-projective. Then there must exist a A^e -endomorphism $h: A \rightarrow A$ such that $f \circ h = g$. It follows therefore that $z' = g(1)$ is the image of $h(1) \in A^A = Z$ by f .

Next let T be any Λ^e -submodule of Λ , and let f be the natural Λ^e -epimorphism $A \rightarrow A/T$. Since T is nothing but a two-sided ideal of A, A/T can also be considered a factor ring and then f becomes a ring epimorphism. Let $g: A \rightarrow A/T$ be any Λ^e -homomorphism. Then $g(1)$ is in the center $(\Lambda/T)^A$ of Λ/T . Assume now that there exists a $z \in Z = A^{\Lambda}$ such that $f(z) = g(1)$. Let $h: \Lambda \to \Lambda$ be a Λ^e endomorphism such that $h(1) = z$. Then we have $f(h(1)) = f(z) = g(1)$, which is, however, equivalent to $f \circ h = g$ because both $f \circ h$ and g are in Hom₁₀(A, A/T) This completes the proof of our proposition.

We now call Λ a separable ring if it satisfies the following two conditions:

(a) For any ring epimorphism $f: A \rightarrow A'$ the image $f(Z)$ of the center Z of Λ coincides with the center of Λ' .

(b) Every two-sided ideal T of A is generated by the ideal $T \cap Z$ of the center Z: $T = \Lambda(T \cap Z)$.

PROPOSITION 2.4. Let Λ satisfy condition (a) or (b). Then every homomorphic image of Λ also satisfies (a) or (b), respectively. In particular, if Λ is a separable ring then every homomorphic image of Λ is a separable ring too.

Proof. Let $f: A \rightarrow A'$ be a ring epimorphism and Z' the center of the ring A' . Suppose that A satisfies (a). Then $f(Z) = Z'$. Let $g: A' \rightarrow A''$ be a ring epi-

morphism. Then $g \circ f: A \to A''$ is also a ring epimorphism and therefore $g(f(Z)) =$ $g(Z')$ is the center of Λ'' . This implies that Λ' satisfies the condition (a).

Suppose next that Λ satisfies (b). Let T' be a two-sided ideal of Λ' . Then the inverse image $T = f^{-1}(T')$ is a two-sided ideal of Λ and so $T = \Lambda I$ with $I = Z \cap T$. From this it follows that $T' = f(T) = f(A)f(I) = A'f(I)$. But since $f(Z) \subset Z'$ we have $A'f(I) \subset A'(Z' \cap T') \subset T'$ and hence $A'(Z' \cap T') = T'$, which shows that Λ' satisfies (b).

Now, according to Proposition 2.3, Λ satisfies the condition (a) if and only if the left Λ^e -module Λ is quasi-projective, while that Λ satisfies the condition (b) is, according to Corollary 2.2, equivalent to the condition that every submodule of the left Λ^e -module Λ is in Gen_{$\Lambda^e(\Lambda)$}. Therefore, by applying Theorem 1.1 to the left Λ^e -module Λ and $Z = \text{End}_{\Lambda^e}(\Lambda)$ and taking the canonical identifications $X^A = \text{Hom}_{A^{\bullet}}(A, X)$ and $\text{Hom}_{A^{\bullet}}(A, A \otimes_Z Y) = (A \otimes_Z Y)^A$ into account, we have

THEOREM 2.5. The following conditions are equivalent:

(1) Λ is a separable ring:

(2) For every A-bimodule X such that $X = AX^{\Lambda}$ the A-bimodule homomorphism $\rho(X)$: $A \otimes_{\mathbb{Z}} X^A \to X$, defined by $\rho(X)(a \otimes x) = ax$ for $a \in A$, $x \in X$, is an isomorphism, and for every Z-module Y the Z-homomorphism $\sigma(Y)$: $Y \rightarrow$ $(A \otimes_{\mathbb{Z}} Y)^A$, defined by $\sigma(Y)y = 1 \otimes y$ for $y \in Y$, is an isomorphism:

Similarly, by specializing Corollaries 1.2, 1.3, and 1.4 to the case where $R = A^e$, $U = A$, and $S = Z$, we have the following three propositions.

PROPOSITION 2.6. Let Λ be a separable ring. Let X be a Λ -bimodule such that $X = AX^A$ and let $Y = X^A$. Then between A-bisubmodules X_0 of X and Z-submodules Y_0 of Y there is a one-to-one correspondence by the following relations:

$$
X_0 = A Y_0, \qquad Y_0 = X_0^A.
$$

PROPOSITION 2.7. Let Λ be a separable ring. Let Y be a Z-module and let $X = A \otimes_{\mathbb{Z}} Y$. Then between A-bisubmodules X_0 of X and Z-submodules Y_0 of Y there is a one-to-one correspondence by the following relations:

$$
X_0 = A \otimes Y_0, \qquad Y_0 = \{ y \in Y \mid 1 \otimes y \in X_0 \}.
$$

PROPOSITION 2.8. Let Λ be a separable ring. Then between two-sided ideals T of Λ and ideals I of the center Z there is a one-to-one correspondence by the following relations:

$$
T = AI, \qquad I = Z \cap T;
$$

moreover, Λ is faithfully flat as a Z-module.

The last assertion of Proposition 2.8 follows from [that (1) implies (5) in] Theorem 1.1.

We now consider another algebra Γ over the center Z of the separable ring Λ . Then $A \otimes_{\mathbb{Z}} I$ becomes a Z-algebra. By Theorem 2.5 the mapping $b \mapsto 1 \otimes b$ $(= b(1 \otimes 1) = (1 \otimes 1)b)$ for $b \in \Gamma$ gives a Z-isomorphism $\sigma(\Gamma): \Gamma \to (\Lambda \otimes_Z \Gamma)^A$, but this is clearly an algebra isomorphism in our case. Therefore, by identifying b with $1 \otimes b$ we can and shall regard Γ as a subalgebra of $\Lambda \otimes_{\mathbb{Z}} \Gamma$.

PROPOSITION 2.9. Let Λ be a separable ring with center Z and let Γ be a Z-algebra with center C. Then C is also the center of $A \otimes_{\mathbb{Z}} \Gamma$, and between twosided ideals P of $A \otimes_{\mathbb{Z}} \Gamma$ and two-sided ideals Q of Γ there is a one-to-one correspondence by the following relations:

$$
P = A \otimes Q, \qquad Q = \Gamma \cap P.
$$

Proof. Let c be an element of $A \otimes_{\mathbb{Z}} \Gamma$. Then that c is in the center of $A \otimes_{\mathbb{Z}} \Gamma$ is equivalent to that c is element-wise commutative with Λ and Γ . But since $(A \otimes_{\mathbb{Z}} \Gamma)^{A} = \Gamma$, this condition means that c is in $\Gamma^{T} = C$. Thus C is the center of $A \otimes_{\mathbb{Z}} \Gamma$. According to Proposition 2.7, between A-bisubmodules P of $A \otimes_{\mathbb{Z}} \Gamma$ and Z-submodules Q of Γ there is a one-to-one correspondence by the relations given in our proposition; observe that each $b \in \Gamma$ is identified with $1 \otimes b$. It is then clear that P is Γ -bisubmodule, or equivalently a two-sided ideal of $A \otimes_{\mathbb{Z}} \Gamma$ if and only if the corresponing Q is a two-sided ideal of Γ .

Remark. In Proposition 2.9, the mapping $a \mapsto a \otimes 1$ for $a \in A$ gives an algebra homomorphism $A \rightarrow A \otimes_Z \Gamma$. Let T be the kernel of this homomorphism. Then T is a two-sided ideal of \varLambda and so we have $T=\varLambda I$ by Proposition 2.8, where $I = Z \cap T$ is the ideal of Z consisting of those element z of Z for which $z \otimes 1 = 0$. But since $z \otimes 1 = 1 \otimes z1$ for every $z \in \mathbb{Z}$, that $z \otimes 1 = 0$ implies that $z = 0$, 1 being the unit element of Γ . Thus I is nothing but the annihilator ideal of the Z-module Γ ; in particular, the map $a \mapsto a \otimes 1$ is a monomorphism if and only if the Z-module Γ is faithful.

PROPOSITION 2.10. Let Λ be a separable ring with center Z and let Γ be a Z-algebra which is a separable ring with center C. Then $A \otimes_{\mathbb{Z}} \Gamma$ is also a separable ring with center C.

Proof. Let P be a two-sided ideal of $A \otimes_{\mathbb{Z}} \Gamma$. Then by Proposition 2.9 $P = A \otimes Q$ with the two-sided ideal $Q = \Gamma \cap P$ of Γ . Since, however, Γ is a separable ring with center C, we have $Q = \Gamma(C \cap Q)$ and therefore $P =$ $A\otimes\Gamma(C\cap Q)=(A\otimes_{\mathbb Z}\Gamma)(C\cap Q);$ if we observe that $C\cap Q=C\cap\Gamma\cap P=0$ $C \cap P$ we have then $P = (A \otimes_Z \Gamma)(C \cap P)$, which shows that $A \otimes_Z \Gamma$ satisfies the condition (b).

Let next $f: A \otimes_{\mathbb{Z}} \Gamma \to (A \otimes_{\mathbb{Z}} \Gamma)/P$ be the natural (ring) epimorphism. Let $\Gamma' = \Gamma/Q$ and let g: $\Gamma \rightarrow \Gamma'$ be the natural epimorphism. Consider then the following exact sequence of Z-modules:

$$
0 \to Q \xrightarrow{i} \Gamma \xrightarrow{g} \Gamma' \to 0,
$$

where i is the inclusion map. Since Λ is a separable ring, Λ is a flat Z-module by Proposition 2.8. Therefore we have the following exact sequence:

$$
0 \longrightarrow A \otimes_{Z} Q \xrightarrow{1 \otimes i} A \otimes_{Z} \Gamma \xrightarrow{1 \otimes g} A \otimes_{Z} \Gamma' \longrightarrow 0.
$$

The isomorphic image of $A \otimes_{\mathbb{Z}} Q$ by $1 \otimes i$ is then $P = A \otimes Q$ and thus we have the natural isomorphism $(A \otimes_{\mathbb{Z}} \Gamma)/P \to A \otimes_{\mathbb{Z}} \Gamma'$ such that the following diagram is commutative:

Let C' be the center of Γ' . Then since Γ is a separable ring g maps C onto C', C and C' are also the centers of $A \otimes_{\mathbb{Z}} \Gamma$ and $A \otimes_{\mathbb{Z}} \Gamma'$, respectively, by Proposition 2.9. From this it follows that the center of $A \otimes_{Z} \Gamma$ is mapped onto the center of $(A \otimes_{\mathbb{Z}} \Gamma)/P$ by f, and this means that the condition (a) is satisfied by $\Lambda \otimes_{\mathbb{Z}} \Gamma$. Thus $\Lambda \otimes_{\mathbb{Z}} \Gamma$ is a separable ring.

It is to be mentioned that every simple ring is trivially a separable ring and its center is a field and conversely every separable ring whose center is a field is a simple ring, and therefore Theorems 2.5, Propositions 2.6, 2.7, 2.9, and 2.10 remain true if the term "separable" is replaced by the term "simple."

THEOREM 2.11. Let Λ be a ring with center Z. Then the following conditions are equivalent:

- (1) Λ is a separable Z-algebra.
- (2) Λ is a separable ring and is a finitely generated Z-module.

Proof. Assume (1). Then [1, Propmosition 1.4] implies that Λ satisfies(a), while [1, Corollary 3.2] implies that Λ satisfies (b); thus Λ is a separable ring. Furthermore, by [1, Theorem 2.1] Λ is a finitely generated Z-module.

Assume conversely (2). Let M be a maximal ideal of Z . Then by Proposition 2.8 AM is a maximal two-sided ideal of A, so the factor ring A/AM becomes a finite-dimensional central simple algebra over the field Z/M . As is well-known, this means that A/M is a central separable algebra over Z/M . Therefore it follows from Endo and Watanabe [4, Proposition 1.1] that Λ is a separable algebra over Z.

Let K be a commutative ring and A an algebra over K. Rao [6] defined A to be an ideal K-algebra if the mapping $I \mapsto AI$ gives a one-to-one correspondence between ideals I of K and two-sided ideals of Λ . In this case, Λ is clearly a faithful K-module, or equivalently K is regarded as a subring of the center Z of Λ . In particular, Proposition 2.8 implies that every separable ring is a central ideal algebra.

PROPOSITION 2.12. A K-algebra Λ is an ideal algebra if and only if it is faithfully flat as a K-module and every two-sided ideal T of Λ is generated by $K \cap T: T = \Lambda(K \cap T).$

Proof. That every ideal K-algebra is a faithfully flat K-module is proved in [6, Proposition 1.2]. Let Λ be an ideal K-algebra and T a two-sided ideal of Λ . Then $T = AI$ for some ideal I of K. Then $K \cap T$ is an ideal of K satisfying $I \subset K \cap T \subset T$. Therefore it follows that $A(K \cap T) = T$.

In order to prove the "if" part, assume that the K-algebra Λ is a faithfully flat K-module. Then Λ is K-faithful, so K is regarded as a subring of Λ . Let I be an ideal of K. Put $I = K \cap AI$. Then *I* is an ideal of K such that $I \subseteq I$ and hence $AI = AJ$. Consider the following obvious exact sequence of K-modules:

$$
0 \to I \to J \to J/I \to 0.
$$

Since Λ is K-flat, we have the following exact sequence:

$$
0 \to A \otimes_K I \to A \otimes_K J \to A \otimes_K (J/I) \to 0.
$$

Furthermore the K-flatness of A implies that $A \otimes_K I$ and $A \otimes_K J$ are canonically identified with AI and AJ, respectively. Therefore it follows that $A \otimes_K (J/I) = 0$. Since A is K-faithfully flat, this implies that $J/I = 0$, i.e., $I = J = K \cap AI$. Thus it is shown that the mapping $I \mapsto AI$, for ideals of K, is one-to-one. Now to assume further that every two-sided ideal T of Λ satisfies $T = \Lambda(K \cap T)$ clearly means that every two-sided ideal of Λ is an image of this mapping, i.e., Λ is an ideal K-algebra.

PROPOSITION 2.13. Let Λ be an ideal K-algebra. If, as a K-module, Λ is projective then K is a direct summand of Λ .

Proof. Since A is an ideal K-algebra, $K \cap AI = I(= KI)$ for every ideal I of K. Since Λ is K-projective and hence K-flat, this implies that the K-module A/K is K-flat by Rotman [7, Theorem 3.37, p. 59]. Applying then [7, Theorem 3.39, p. 61] to the exact sequence $0 \rightarrow K \rightarrow A \rightarrow A/K \rightarrow 0$, we know that there exists a K-homomorphism $h: A \rightarrow K$ such that $h(1) = 1$. This equality implies that the restriction of h to K is the identity map. Therefore it follows that K is a direct summand of the K-module Λ . (In the above Theorem 3.39 (Villa-

mayor's theorem) in [7], F is assumed to be free. But if we use the fact that every projective module is a direct summand of a free module, we can easily derive that the same theorem remains true even if F is assumed to be projective.)

COROLLARY 2.14. Let Λ be a separable ring with center Z and suppose Λ is projective as a Z-module. Then Z is a direct summand of the Z-module Λ .

3. SEPARABLE SUBALGEBRAS OF A SEPARABLE RING

We shall first prove the following lemmas, which may be of some interest for themselves:

LEMMA 3.1. Let A be a separable algebra over a commutative ring K and let M be a left A-module. If M is injective as a K-module then M is an injective A-module.

Proof. Let X and Y be left A-modules and let $h: Y \rightarrow X$ be an A-monomorphism. Assume that M is K -injective. Then considering X , Y as K -modules and h as a K-monomorphism, we have a K-epimorphism $\text{Hom}_{\kappa}(h, M)$: Hom_{κ} $(X, M) \to \text{Hom}_K(Y, M)$. But, as is well known, both $\text{Hom}_K(X, M)$ and Hom_K (Y, M) are converted into A-bimodules in the natural manner and besides $\text{Hom}_{k}(h, M)$ becomes an A-bimodule-epimorphism. Since A is separable over K, it follows that $\text{Hom}_{\kappa}(h, M)$ induces an epimorphism $\text{Hom}_{\kappa}(X, M)^{4} \to \text{Hom}_{\kappa}$ $(Y, M)^A$ [3, Corollary 1.5, p. 43]. If we observe, however, that every $f \in Hom_K$ (X, M) satisfies $(af)(x) = af(x)$ and $(fa)(x) = f(ax)$ for all $a \in A$, $x \in X$, we know that f is in $\text{Hom}_K(X, M)^A$ if and only if f is in $\text{Hom}_A(X, M)$, that is, we have $\text{Hom}_K(X, M)^A = \text{Hom}_A(X, M)$. Similarly we have $\text{Hom}_K(Y, M)^A =$ Hom₄(Y, M), and also the restriction of Hom_K (h, M) to Hom_A (X, M) is clearly nothing but Hom_A(h, M). Thus it is shown that M is A-injective.

LEMMA 3.2. Let A be a separable K-algebra and let M be a left A -module. If M is flat as a K -module then M is a flat A -module.

Proof. Let O be the additive group of rationals and Z the additive group of integers. Put $M^* = \text{Hom}_z(M, Q/Z)$. Then M^* is a right A-module in the natural manner. Assume that M is K-flat. Then M^* is K-injective by [7, Theorem 3.35, p. 58]. Since A is separable K-algebra, we know that M^* is A-injective by applying Lemma 3.1 to M^* . Then again by the above cited theorem we can conclude that M is A -flat.

Remark. Lemmas 3.1 and 3.2 can be regarded apparently as those propositions which are obtained from DeMeyer and Ingraham [3, Proposition 2.31, p. 481 by replacing the projectivity with the injectivity and the flatness, respectively.

LEMMA 3.3. Let U be a finitely generated quasi-projective left R-module such that every R-submodule of U is in $Gen_R(U)$, and let $S = End_R(U)$. Then between R-S-submodules U_0 of U and two-sided ideals S_0 of S there is a oneto-one correspondence by the following relations:

$$
U_0 = US_0, \qquad S_0 = \{s \in S \mid Us \subset U_0\}.
$$

And, if U_0 corresponds to S_0 , the factor module U/U_0 is also a finitely generated quasi-projective left R-module such that every R-submodule of U/U_0 is in Gen_R (U/U_0) , and the factor ring S/S_0 can be identified with $\text{End}_R(U/U_0)$ in the natural manner.

Proof. The first assertion about one-to-one correspondence is an immediate consequence of Corollary 1.4, since it is clear in the corollary that an R-submodule U_0 is an S-submodule if and only if the corresponding left ideal L is a two-sided ideal of S.

Let $s \in S$ be an R-endomorphism of U. Then since $U_0 s \subset U_0$, s induces an R-endomorphism of U/U_0 . Since furthermore $Us\subset U_0$ if and only if $s\in S_0$, S/S_0 can be identified with a subring of $\text{End}_R(U/U_0)$. Let conversely h be any R-endomorphism of U/U_0 . Let $p: U \rightarrow U/U_0$ be the natural R-epimorphism. Then the quasi-projectivity of e^U implies that there exists an endomorphism $s \in S = \text{End}_{\mathbf{z}}(U)$ such that $p \circ s = h \circ p$, which means nothing but that s induces h. Thus we have that $S/S_0 = \text{End}_R(U/U_0)$. The remaining assertions can be proved in a routine way.

LEMMA 3.4. Let U be an R-S-bimodule of Morita type (i.e., $_R U$ is a finitely generated projective generator and $S = \text{End}_R(U)$, or equivalently, U_S is a finitely generated projective generator and $R = \text{End}_S(U)$. Then:

(i) Between two-sided ideals R_0 of R, R-S-submodules U_0 of U and two-sided ideals S_0 of S, there is a one-to-one correspondence by the following relations:

$$
R_0U = U_0 = US_0,
$$

$$
R_0 = \{r \in R \mid rU \subseteq U_0\}, \qquad S_0 = \{s \in S \mid Us \subseteq U_0\};
$$

and, if R_0 , U_0 , and S_0 correspond, the factor module U/U_0 is also of Morita type when regarded as an $R/R_0-S/S_0-bimodule$.

(ii) For any element z of the center Z of R there exists a unique element z^* of S such that $zu = uz^*$ for all $u \in U$, and the mapping $z \mapsto z^*$ gives a canonical isomorphism of Z onto the center Z^* of S.

(iii) R is a separable ring if and only if S is a separable ring.

Proof. (i) The assertion about one-to-one-correspondence and that $S/S_0 = \text{End}_R(U/U_0)$ follow from Lemma 3.3, while that the left R/R_0 -module

 U/U_0 is a finitely generated projective generator is more or less well known and can easily be proved. (ii) Let x be in the center Z of R . Then the mapping $u \mapsto zu$, $u \in U$, is an endomorphism of \mathbb{R}^U , that is, there is a unique element z^* of $S = \text{End}_R(U)$ such that $zu = uz^*$ for all $u \in U$. It then follows that for each $s \in S$ we have $usz^* = xus = uz^*s$ for all $u \in U$ and hence $sz^* = z^*s$, which means that z^* is in the center Z^* of S. In the same way, we can associate with each $z^* \in Z^*$ a unique $z \in Z$ such that $zu = uz^*$ for all $u \in U$. Thus the mapping $z \mapsto z^*$ gives a ring isomorphism $Z \rightarrow Z^*$. (iii) Let R_0 , U_0 , and S_0 be a triple of corresponding two-sided ideal of the R , R -S-submodule of U and two-sided ideal of S, respectively. Let z be an element of Z and z^* the corresponding element of Z^* . Then z is in R_0 if and only if $zU \subset U_0$, and also z^* is in S_0 if and only if $Uz^*\subset U_0$; but since $zU = Uz^*$, this implies that x is in R_0 if and only if z^* is in S_0 . Thus, if we put $I = Z \cap R_0$ and I^* the corresponding ideal of Z^* , we have $I^* = Z^* \cap S_0$. Suppose now that R is a separable ring. Then we have $R_0 = RI$ and therefore $U_0 = R_0 U = IRU =$ $IU = UI^* = USI^*$. But this means that to the two-sided ideal SI^* of S there corresponds the R-S-submodule U_0 (= US_0) of U, so that we have $SI^* = S_0$ since the correspondence is one-to-one. On the other hand, the separability of the ring R implies that the subring Z/I of the factor ring R/R_0 is equal to its center. Applying then (ii) to the $R/R_0-S/S_0$ -bimodule U/U_0 of Morita type, we find that Z/I is, by the mapping $z + I \mapsto z^* + I^*$, carried isomorphically onto Z^*/I^* and Z^*/I^* coincides with the center of S/S_0 . Since these are the case for every two-sided ideal S_0 of S, we see that S is a separable ring.

Remark. As for the one-to-one correspondence between two-sided ideals of R and two-sided ideals of S as in Lemma 3.4, (i), cf. $[3,$ Corollary 3.5, p. 22].

THEOREM 3.5. Let Λ be a separable ring with center Z , and let A be a subring of Λ containing $\mathbb Z$ such that Λ is a separable Z-algebra and is a pure Z-submodule of A. Let Γ be the centralizer of A in A, that is, $\Gamma = \Lambda^A$. Then

- (i) Γ is a separable ring,
- (ii) A is the centralizer of Γ in Λ , that is, $A = \Lambda^r$,

(iii) the right (or left) Γ -module Λ is finitely generated projective and Γ is a Γ -direct summand of Λ .

Proof. Let Λ^0 be an opposite ring of Λ , and let $x \mapsto x^0$, $x \in \Lambda$, be a fixed opposite isomorphism $A \rightarrow A^0$. We may assume that Z is also the center of A^0 and $z^0 = z$ for all $z \in Z$. We denote by A^0 the image of the subring A of A by the fixed opposite isomorphism. Then A^0 is a subring of A^0 containing Z. Consider then the enveloping algebra $\Lambda^{\bullet} = A \otimes_{\mathbb{Z}} \Lambda^0$ of Λ . Since Λ is flat as a Z-module by Proposition 2.8, $A \otimes_{\mathbb{Z}} A^0$ is regarded as a subring of A^e in the

natural manner. Furthermore since A is a pure Z-submodule of A by assumption, $A \otimes_{\mathbb{Z}} A^0$ is also considered as a subring of $A \otimes_{\mathbb{Z}} A^0$ in the natural manner.

We now regard A as a left Λ^e -module in the usual way. Since Λ^e is a separable ring with center Z by Proposition 2.10, the Λ^e -module Λ is faithful because every two-sided ideal of Λ^e is generated by an ideal of Z. We next consider Λ as a left module over the subring $A \otimes_{\mathbb{Z}} A^0$ of A^e . The module A is a cyclic module geneated by 1, or what is the same thing, the mapping $\xi \mapsto \xi 1$ for $\xi \in A \otimes_{\mathbb{Z}} A^{\mathbf{0}}$ gives a $A \otimes_{\mathbb{Z}} A^0$ -epimorphism $\varphi: A \otimes_{\mathbb{Z}} A^0 \to A$. We can also consider A as a left module over the subring $A \otimes_{\mathbb{Z}} A^0$. Then A is clearly a submodule of A , and if we denote by μ the restriction of φ to $A \otimes_{\mathbb{Z}} A^0$ μ is also an $A \otimes_{\mathbb{Z}} A^0$ epimorphism $A \otimes_Z A^0 \rightarrow A$. Since A is a separable Z-algebra, i.e., the $A \otimes_Z A^0$ module A is projective, the epimorphism μ must split, which means that there exists an $A \otimes_{\mathbb{Z}} A^0$ -homomorphism $\nu: A \to A \otimes_{\mathbb{Z}} A^0$ such that $\mu \circ \nu =$ identity map of A. Put $\epsilon = \nu(1)$. Then $\epsilon \in A \otimes_{\mathbb{Z}} A^0$ and satisfies the following three conditions: (1) ϵ 1 = 1, (2) ϵ ² = ϵ , (3) $(a \otimes 1 - 1 \otimes a^0)\epsilon = 0$ for all $a \in A$. For $\epsilon_1 = \mu(\epsilon) = \mu(\nu(1)) = 1$, $\epsilon^2 = \epsilon \nu(1) = \nu(\epsilon) = 1$, $\epsilon_1 = \nu(1) = 1$, and $\epsilon_2 = \epsilon_2$ $1\otimes a^{0}$ $\epsilon = (a\otimes 1-1\otimes a^{0})\nu(1) = \nu((a\otimes 1-1\otimes a^{0})1) = \nu(a-a) = 0$ for all $a \in A$. (Cf. [3, Proposition 1.1].)

Now we define a homomorphism $\psi: A \to A \otimes_{\mathbb{Z}} A^0$ by $\psi(y) = (y \otimes 1) \epsilon$ for $y \in A$. Then ψ is a $A \otimes_{\mathbb{Z}} A^0$ -homomorphism, because $\psi((x \otimes a^0)y) =$ $\psi(xya) = ((xyza) \otimes 1)\epsilon = (xy \otimes 1)(a \otimes 1)\epsilon = (xy \otimes 1)(1 \otimes a^0)\epsilon = (xy \otimes a^0)\epsilon =$ $(x \otimes a^0)(y \otimes 1)\epsilon = (x \otimes a^0)\psi(y)$ for all $x, y \in A$, $a \in A$. Moreover we have $\varphi(\psi(y)) = \varphi((y \otimes 1)\epsilon) = (y \otimes 1) \varphi(\epsilon) = (y \otimes 1)(\epsilon 1) = (y \otimes 1)1 = y$ for all $y \in A$, that is, $\varphi \circ \psi =$ identity map of A. Thus it is shown that φ splits and therefore the cyclic $A \otimes_{\mathbb{Z}} A^0$ -module A is projective.

Let next T be the trace ideal of the $A \otimes_{\mathbb{Z}} A^0$ -module A, i.e., the sum of all $A \otimes_{\mathbb{Z}} A^{\mathbf{0}}$ -homomorphic images of A in $A \otimes_{\mathbb{Z}} A^{\mathbf{0}}$. Then T is a two-sided ideal of $A \otimes_{\mathbb{Z}} A^0$. Therefore, by Proposition 2.9, there is a two-sided ideal Q^0 of A^0 such that $T = A \otimes Q^0$. Applying then the homomorphism $\varphi: A \otimes_Z A^0 \to A$, we have $\varphi(T) = \varphi(A \otimes Q^0) = (A \otimes Q^0)1 = AQ$ where Q is a two-sided ideal of A corresponding to Q^0 . On the other hand, since $\psi: A \rightarrow A \otimes_Z A^0$ is a $A \otimes_{\mathbb{Z}} A^{\mathbf{0}}$ -homomorphism, $\epsilon = \psi(1)$ is in T. Applying again φ , we have $\varphi(\epsilon) =$ $\epsilon_1 = 1 \in \varphi(T) = AQ$. But since AQ is a left ideal of A , this implies that $AQ = A$. Now A is a pure submodule of the flat Z-module Λ by assumption. Therefore the factor module A/A is also a flat Z-module by Stenström [9, Proposition 11.1] Since A is a separable Z-algebra, it follows from Lemma 3.2 that both Λ and A/A are flat even as right A-modules. Then applying [7, Theorem 3.37], we have $Q = AQ = A \cap AQ = A \cap A = A$ and therefore $T = A \otimes_Z A^0$. Thus we have shown that the left $A \otimes_{\mathbb{Z}} A^0$ -module A is a generator.

Since for every $x \in A$ and $a \in A$ the left multiplications of $x \otimes 1$ and $1 \otimes a^0$ on Λ are the same as the left multiplication of x and the right multiplication of a , respectively, and since the endomorphism ring of the left Λ -module Λ is identified with Λ , as the right multiplication ring, it is clear that the endomorphism ring of the left $A \otimes_{\mathbb{Z}} A^0$ -module A coincides with $\Gamma = A^{\mathcal{A}}$. Thus A is a $A \otimes_{\mathbb{Z}} A^0$ - Γ bimodule of Morita type. In particular, Λ is finitely generated and projective as a right *Γ*-module. Furthermore, since $A \otimes_{\mathbb{Z}} A^0$ is a separable ring by Proposition 2.10, it follows from Lemma 3.4(iii) that Γ is a separable ring too. Let now x and a be any elements of A and A, respectively. Then ϵx is in A and we have $a(\epsilon x)$ - $(\epsilon x)a = (a \otimes 1 - 1 \otimes a^0) \epsilon x = 0$, which implies that $\epsilon A C A^A = \Gamma$. Let conversely y be any element of Γ . Since Λ is a $\Lambda \otimes_{\mathbb{Z}} \Lambda^0$ - Γ -bimodule, we have $\epsilon y = \epsilon(1y) = (\epsilon 1)y = 1y = y$. Thus we have $\Gamma \subset \text{ and therefore } = \epsilon \Lambda$. Since ϵ is an idempotent, this implies that Γ is a Γ -direct summand of Λ ; indeed, we have the following well-known direct decomposition: $A = \Gamma(\oplus(1-\epsilon))$ A. Finally, let b be any element of A^r. Then clearly $1 \otimes b^0 (\epsilon A \otimes_{\mathbb{Z}} A^0)$ is an endomorphism of the right Γ -module Λ . Since $\Lambda \otimes_{\mathbb{Z}} \Lambda^0 = \text{End}_{\Gamma}(\Lambda)$, this means that $1 \otimes b^0 \in A \otimes_{\mathbb{Z}} A^0$. However, since A is a separable ring, it follows from Theorem 2.5 that the mapping $y \mapsto 1 \otimes y$ for $y \in A^0$ defines an isomorphism $\sigma(A^0): A^0 \to (A \otimes_Z A^0)^A$. Therefore we have $1 \otimes b^0 \in (A \otimes_Z A^0)^A \cap (A \otimes_Z A^0) =$ $(A \otimes_{\mathbb{Z}} A^0)^A$. On the other hand, again by Theorem 2.5 the restriction of $\sigma(A^0)$ to A^0 defines also an isomorphism $\sigma(A^0)$: $A^0 \rightarrow (A \otimes_Z A^0)$. This implies in particular that $1 \otimes b^0 = 1 \otimes a^0$ for some $a^0 \in A^0$. But since $\sigma(A^0)$ is a monomorphism, this implies that $b^0 = a^0$ and so $b \in A$. Thus we have that $A^r = A$, and this completes the proof of our theorem.

From Theorem 3.5(ii) it follows that the center of Γ coincides with the center of A. If we notice this, we can derive the following corollary:

COROLLARY 3.6. Let Λ be a simple ring with center Z , and let A be a simple subring of Λ containing Z such that A is finite dimensional over Z and the center of A is a separable finite extension field of Z. Let $\Gamma = \Lambda^A$. Then (i) Γ is a simple ring, (ii) $A = \Lambda^r$, and (iii) the right (or left) Γ -module Λ is finitely generated projective and Γ is a Γ -direct summand of Λ .

In this connection, we prove the following theorem, in which the separability for the simple subalgebra A is not assumed:

THEOREM 3.7. Let Λ be a simple ring with center Z , and let Λ be a simple subring of Λ containing Z which is finite dimensional over Z. Let $\Gamma = \Lambda^A$. Then

- (i) $A = A^r$,
- (ii) the right (or left) Γ -module Λ is finitely generated and projective.

Proof. We regard A as a left module over the enveloping algebra Λ^e = $A \otimes_{\mathbb{Z}} A^0$ of A, as in the proof of Theorem 3.5. Since A is a finite-dimensional simple algebra over Z, the enveloping algebra $A^e = A \otimes_{\mathbb{Z}} A^0$ of A is a Frobenius algebra, and therefore A^e , as a left A^e -module, contains an isomorphic image of every simple left A^e -module. In particular, since A is a simple left A^e -module, there exists an A^e-monomorphism $\nu: A \to A^e$. Put $\eta = \nu(1)$. Then $0 \neq \eta \in A^e$

and satisfies $(a \otimes 1 - 1 \otimes a^0)\eta = 0$, because $(a \otimes 1 - 1 \otimes a^0)1 = a - a = 0$. By using η instead of ϵ , we can define a $\Lambda \otimes_{\mathbb{Z}} A^{\theta}$ -homomorphism $\psi: \Lambda \rightarrow$ $A \otimes_{\mathbb{Z}} A^0$ as in the proof of Theorem 3.5; indeed, ψ is defined by $\psi(y) = (y \otimes 1)\eta$ for $y \in \Lambda$. It follows then that $\eta = \psi(1)$ is in the trace ideal T of the left $\Lambda \otimes_{\mathbb{Z}} \Lambda^{0}$ module Λ and in particular $T \neq 0$. But since T is a two-sided ideal of $\Lambda \otimes_{\mathbb{Z}} \Lambda^0$ and $\Lambda \otimes_{\mathbb{Z}} \Lambda^0$ is a simple ring, it follows that $T = \Lambda \otimes_{\mathbb{Z}} \Lambda^0$, i.e., the $\Lambda \otimes_{\mathbb{Z}} \Lambda^0$ module Λ is a generator. It can, however, be seen in the same way as in the proof of Theorem 3.5 that $\Gamma = A^A$ is the endomorphism ring of the $A \otimes_Z A^0$ -module Λ . Therefore, by Morita's theorem, we know that the right Γ -module Λ is finitely generated projective and besides $A \otimes_{\mathbb{Z}} A^0$ coincides with the *I*-endomorphism ring of Λ . By using the last fact, it is also possible to prove that $A^r = A$ in exactly the same way as in the proof of Theorem 3.5.

Remark. If Λ is an Artinian simple ring, then Theorem 3.7 is well known. It is known more precisely in this case that Γ is also an Artinian simple ring and the right (or left) Γ -module Λ is finitely generated free.

REFERENCES

- 1. M. AUSLANDER AND O. GOLDMAN, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367-409.
- 2. G. AZUMAYA, Some aspects of Fuller's theorem, "Module Theory," Lecture Notes in Mathematics, No. 700, pp. 34-45, Springer-Verlag, Berlin/Heidelberg/New York, 1979.
- 3. F. DEMEYER AND E. INGRAHAM, "Separable Algebras over Commutative Rings," Lecture Notes in Mathematics, No. 181, Springer-Verlag, Berlin/Heidelberg/New York, 1971.
- 4. S. ENDO AND Y. WATANABE, On separable algebras over a commutative ring, Osaka J. Math. 4 (1967), 233-242.
- 5. K. R. FULLER, Density and equivalence, J. Algebra 29 (1974), 528-550.
- 6. M. L. R. RAO, Azumaya, semisimple and ideal algebras, Bull. Amer. Math. Soc. 78 (1972), 588-592.
- 7. J. J. ROTMAN, "Notes on Homological Algebra," Van Nostrand-Reinhold, Princeton, N. J., 1970.
- 8. M. SATO, Fuller's theorem on Equivalences, J. Algebra 52 (1978), 274-284.
- 9. B. STENSTRBM, "Rings of Quotients," Grundlehren Math. Wiss., Vol. 217, Springer-Verlag, Berlin/Heidelberg/New York, 1975.
- 10. B. ZIMMERMANN-HUISGEN, Endomorphism rings of self-generators, Pacific J. Math. 61 (1975), 587-602.