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TO NATHAN JACOBSON ON HIS 70TH BIRTHDAY

As a natural generalization of the classical theory of simple algebras, Auslander
and Goldman established the theory of separable algebras in [1]. They proved
in particular that if A is a separable algebra then it has the following two proper-
ties (a) By any ring epimorphism of A onto another ring the center of A is
mapped onto the center of the image ring of A. (b) Every two-sided ideal of 4
is generated by an ideal of its center. In this paper we are concerned with rings
having these two properties, and indeed we call a ring /1 a separable ring if it
satisfies both the conditions (a) and (b). Every separable algebra is thus a
separable ring, but the converse is not true. Our purpose is, however, to show
that separable rings behave quite similarly to simple rings as well as separable
algebras; also ideal algebras, introduced by Rao, are considered in connection
with separable rings. For the theory of separable algebras, as is well-known,
the Morita theory for projective modules gave a nice background, while in
developing our study the recent Fuller theory which extends the Morita theory
to the case of quasi-projective modules provides a substantial background.

1. FuLLER’S THEOREM AND ITS COROLLARIES

Let R be a ring, and let U be a left R-module. We denote by Geng(U) the
class of all left R-modules which are expressed as sums of homomorphic images
of RU. Let S be another ring and let U now be an R-S-bimodule. Then
for every left R-module X and for every left S-module Y we define the canonical
homomorphisms

p(X): RU ®s Homg(U, X) — X,
o(Y): sY — sHomy(U, U ®; Y)

* This research was supported by the NSF under Grant MCS77-01756. The main
results of this paper were announced at the Antwerp Ring Theory Conference in August
1978.

1
0021-8693/80/030001-14$02.00/0

Copyright © 1980 by Academic Press, Inc.
All rights of reproduction in any form reserved.



2 GORO AZUMAYA

by p(X)u ® f) = f(u) for ue U, fe Homg(U, X) and (o(Y)y)u == u ® y for
ye Y, ue U, respectively. Concerning these homomorphisms an important
theorem was obtained by Fuller in [5, Theorem 2.6] and recently some improve-
ment and refinement have been added to it by Sato [8] and Azumaya [2]. Thus
the improved Fuller’s theorem is

Tueorem 1.1. Let U be a left R-module and let S = Endg(U); we view U as
an R-S-bimodule. Then the following conditions are equivalent:

(1) RU is finitely generated quasi-projective and every submodule of U
is in Geng(U).

(2) p(X) is an isomorphism for all X in Geng(U) and o(Y) is an isomorphism
Jor all left S-modules Y.

(3) Geng(U) is closed under submodules and Ug is a weak generator (i.e.,
U®s Y = 0 for a left S-module Y implies Y = 0).

(4) p(X)is an isomorphism for all X in Geng(U) and Uy is a weak generator.

(5) p(X) is an isomorphism for all X in Geng(U) and Uy is faithfully flat
(i.e., flat and a weak generator).

Remark. For convenience, we assumed throughout that S = Endg(U) in
Theorem 1.1, but this assumption is superfluous for conditions (2), (4), and (5)
as a matter of fact. In this connection, Zimmermann-Huisgen’s theorem [10,
Lemma 1.4] that Geng(U) is closed under submodules if and only if p(X) is an
isomorphism for all X in Geng(U) and Uy is flat should also be taken into
account.

We can now derive the following corollaries from Theorem 1.1:

CoroLLARY 1.2. Let U be finitely generated quasi-projective, S = Endg(U),
and every submodule of RU be in Geng(U). Let X be in Geng(U) and let Y =
Homg(U, X), Then between submodules X, of x X and submodules Y, of sY there
1S a one-to-one correspondence by the following relations:

Xo= 3 f(U), Yo={feY|f(U)CX,y}

fex,

Proof. Let X, be a submodule of X and put Yy = Homg(U, X,). Then
clearly Yy = {fe Y | f(U) C X,}. Since Geng(U) is closed under submodules
by Theorem 1.1, X, is also in Geng(U), which means that X, = 3,., f(U).
Let, conversely, Y, be any submodule of ;Y and put X, = 2rer S (U). Then
X, is in Geng(U) and therefore p(Xy): U ® sHomgp(U, Xy) — X, is an
isomorphism by Theorem 1.1. On the other hand, since Y, is a submodule of
sHomg(U, X,) and since Uy is flat by Theorem 1.1, U ®; Y, is regarded as a
submodule of U ®s Hom, (U, X;) in the natural manner. Since, however, the
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image of u @ f (ue U, feY,) by p(X,) is f(u), it is clear that U ®Q; ¥, is
mapped onto X, by p(X,) and therefore U ®s Y, = U ®s Homg(U, X,).
Let A: U— X, be an R-homomorphism. Then since p(Xy): U ®s Yy — X, is
an R-isomorphism, there exists a (unique) R-homomorphism g: U— U ®5 ¥,
such that 2 = p(X,) ¢ g. Since, furthermore, o(Y): Y, — Homg(U, U ®; Y,) is
an isomorphism by Theorem 1.1, there corresponds to g an element f of ¥}, such
that g(u) = u @ f for all ue U. Thus we have h(u) = p(X)u R f) = f(u)
for all ue U, i.e., h = f, and this implies that ¥y = Homg(U, X,).

CoroLLARY 1.3. Let U be as in Corollary 1.2. Let Y be a left S-module and
let X = U ®g Y. Then between submodules X, of x X and submodules Y, of Y
there is a one-to-one correspondence by the following relations:

Xo=U®Y,, Yo ={yeY | URyCX,.

Proof. Since X is in Geng(U) and since o(Y): ¥ — Homg(U, X) is an
isomorphism by Theorem 1.1, it is clear that our corollary is an immediate
consequence of Corollary 1.2 by identifying each y € ¥ with the corresponding
map o(Y)y = [ur>u ® y] € Homy(U, X).

CoroLLARY 1.4. Let U be as in Corollary 1.2. Then between submodules U,
of rU and left ideals L of S there is a one-to-one correspondence by the following
relations:

U, = UL, L ={se8|UsCU,y.

Proof. 'This is the particular case of Corollary 1.2 where X = Uand Y = S.

2. SEPARABLE RINGS AND IDEAL ALGEBRAS

Let A be a ring and Z the center of A. Then A is considered an algebra over Z
(central Z-algebra). Let A° be the opposite ring of A. Then A° is also a central
Z-algebra and we can define the enveloping algebra A¢ = A ®, A° of A (over Z).
Let X be a A-bimodule. We call X a central A-bimodule if X is element-wise
commutative with Z. It is well-known that every central /-bimodule is regarded
as a left A¢-module and conversely every left /1*-module is converted into a
central /-bimodule in the usual way. In particular, A is a central A-bimodule
and so becomes a left A¢-module. Furthermore, for a central /-bimodule X,
there is a natural isomorphism between Z-modules Hom 44, X) and X4 =
{x e X | ax = xa for all a € 4} given by the mapping f+> f(1), f € Hom (4, X),
and the inverse of this isomorphism is obtained by associating each x € X4 with
f e Hom (A, X) defined by f(a) = ax(= xa), ac A.
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ProposITION 2.1. Let X be a central A-bimodule. Then X is in Gen () if
and only if X = AXA.

Proof. Suppose that X i1s in Geng(4). Then X is a sum of submodules
J(A) with fe Hom (4, X). But then f(A1) = Af(1) and f(1) € X4. Therefore
we have X = AX4. Assume conversely that X — AX4. Then X is a sum of
submodules Ax with x € X4. But, for each x € X4, there is an f € Hom 4(4, X)
such that f(1) = x, so we have Ax = f(A) and thus X € Gen 4(A4).

CoROLLARY 2.2. Let T be a two-sided ideal of A. Then T is in Gen 4(A) if and
only if T = AT N 2).

ProposiTION 2.3.  The left Ae-module A is quasi-projective if and only if for
every ring epimorphism f: A — A’ theimage f(Z) of Z cotncides with the center of A'.

Proof. Let f: A — A’ be a ring epimorphism, and let Z’ be the center of the
ring A'. Then clearly f(Z)C Z’ and so, by means of f, A4’ can be made into a
central /A-bimodule, or a left 4°-module, and in this case f becomes a A°-epi-
morphism. Let 2’ be any element of Z' = (A’)4. Then there corresponds a A¢-
homomorphism g: /1 > A’ such that g(1) = z’. Assume that the /A°-module A
is quasi-projective. Then there must exist a /1°-endomorphism k: 4 — A such
that f o & = g. It follows therefore that 2’ = g(1) is the image of #(1)e 41 = Z
by f.

Next let T'be any A¢-submodule of A4, and let f be the natural /A°-epimorphism
A — AJT. Since T is nothing but a two-sided ideal of 4, A/T can also be consi-
dered a factor ring and then f becomes a ring epimorphism. Let g: A-—> A|T
be any A°-homomorphism. Then g(1) is in the center (A/T)4 of A/T. Assume
now that there exists a 2 € Z = A4 such that f(2) = g(1). Let hi: A — A be a A*-
endomorphism such that (1) = 2. Then we have f(h(1)) = f(2) = g(1), which
is, however, equivalent to f o &2 = g because both f o 2 and g are in Hom 4(A4, A/T)
This completes the proof of our proposition.

We now call A a separable ring if it satisfies the following two conditions:

(a) For any ring epimorphism f: 4 — A’ the image f(Z) of the center Z
of A coincides with the center of A"

(b) Every two-sided ideal T of A is generated by the ideal TN Z of the
center Z: T = AT N Z).

ProposiTION 2.4. Let A satisfy condition (a) or (b). Then every homomorphic
image of A also satisfies (a) or (b), respectively. In particular, if A is a separable
ring then every homomorphic image of A is a separable ring too.

Proof. Letf: A —> A’ be a ring epimorphism and Z' the center of the ring A’.
Suppose that / satisfies (a). Then f(Z) = Z'. Let g: A’ — A" be a ring epi-
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morphism. Theng o f: 4 — A" is also a ring epimorphism and therefore g(f(Z)) =
2(Z") is the center of A”. This implies that A’ satisfies the condition (a).

Suppose next that A satisfies (b). Let 7" be a two-sided ideal of A’. Then
the inverse image T = f~1(7") is a two-sided ideal of A and so T = AT with
I =2Zn T From this it follows that T' = f(T) = f(A) f(I) = A’f(I). But
since f(Z)C Z’ we have Af(I)C A'(Z' " T')C T'and hence A(Z' N T") = T,
which shows that A’ satisfies (b).

Now, according to Proposition 2.3, A satisfies the condition (a) if and only
if the left A¢-module A is quasi-projective, while that A satisfies the condition
(b) is, according to Corollary 2.2, equivalent to the condition that every sub-
module of the left A°-module A is in Gen 46(A). Therefore, by applying Theorem
1.1 to the left A¢-module A and Z = End () and taking the canonical identi-
fications X4 = Hom (4, X) and Hom (4, A ®;Y) = (4 &, Y)* into

account, we have

TueoreM 2.5. The following conditions are equivalent:

(1) A is a separable ring:

(2) For every A-bimodule X such that X = AX4 the A-bimodule homo-
morphism p(X): A Rz X4— X, defined by p(X)a @ x) = ax for ac 4, xe X,
is an isomorphism, and for every Z-module Y the Z-homomorphism o(Y): Y —
(A ®z Y)4, defined by o(Y)y = 1 Q@ y for y € Y, is an isomorphism:

Similarly, by specializing Corollaries 1.2, 1.3, and 1.4 to the case where
R = A, U = 4, and S = Z, we have the following three propositions.

PROPOSITION 2.6. Let A be a separable ring. Let X be a A-bimodule such that
X = AX4 and let Y = X4. Then between A-bisubmodules X of X and Z-sub-
modules Y, of Y there is a one-to-ome correspondence by the following relations:

X, =AY,, Y,=X2

PropoSITION 2.7. Let A be a separable ring. Let Y be a Z-module and let
X = A ®; Y. Then petween A-bisubmodules X, of X and Z-submodules Y, of Y
there is a one-to-one correspondence by the following relations:

Xy =4RY,, Vo={yeV|1®@ye X}

ProrosITION 2.8. Let A be a separable ring. Then between two-sided ideals
T of A and ideals I of the center Z there is a one-to-ome correspondence by the
following relations:

T—Al, I=ZNT;

moreover, /A is faithfully flat as a Z-module.
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The last assertion of Proposition 2.8 follows from [that (1) implies (5) in]
Theorem 1.1.

We now consider another algebra I" over the center Z of the separable ring /.
Then A4 ®, I' becomes a Z-algebra. By Theorem 2.5 the mapping 61> 1 ® b
(=61®1) = (1 ® 1)b) forb e I'gives a Z-isomorphism o(I"): I' > (4 ®, )4,
but this is clearly an algebra isomorphism in our case. Therefore, by identifying
b with 1 & we can and shall regard I" as a subalgebra of 4 ®, I'.

PropPoOSITION 2.9. Let A be a separable ring with center Z and let I' be a
Z-algebra with center C. Then C is also the center of A Q, I', and between two-
sided ideals P of A X, I" and two-sided ideals Q of I there is a one-to-one cor-
respondence by the following relations:

P=A®Q, OQO=TINP

Proof. Letcbean element of 4 (9, I'. Then that ¢ is in the center of 4 ®, I"
is equivalent to that ¢ is element-wise commutative with /4 and I'. But since
(A ®, I')* = T, this condition means that ¢ is in I7 = C. Thus C is the
center of A ®; I". According to Proposition 2.7, between A-bisubmodules P
of A ®; I" and Z-submodules Q of I there is a one-to-one correspondence by
the relations given in our proposition; observe that each be I' is identified
with 1 &) b. It is then clear that P is I-bisubmodule, or equivalently a two-sided
ideal of A ®; I' if and only if the corresponing Q is a two-sided ideal of I

Remark. In Proposition 2.9, the mapping a+>a @1 for ac A gives an
algebra homomorphism A — A4 ®; I. Let T be the kernel of this homo-
morphism. Then T is a two-sided ideal of 4 and so we have T = AI by Proposi-
tion 2.8, where ] = Z N T'is the ideal of Z consisting of those element z of Z
for whichz ® 1 = 0. Butsince 2 @ 1 = 1 ¥ =21 for every z € Z, that g & 1=0
implies that 21 == 0, 1 being the unit element of I'. Thus 7 is nothing but the
annijhilator ideal of the Z-module I'; in particular, the map ar~a ® 1 is a
monomorphism if and only if the Z-module I' is faithful.

ProrosITION 2.10. Let A be a separable ring with center Z and let I' be a
Z-algebra which is a separable ring with center C. Then A X, I is also a separable
ring with center C.

Proof. Let P be a two-sided ideal of A ®, I Then by Proposition 2.9
P = A ®Q with the two-sided ideal Q = I'n P of I'. Since, however, I" is a
separable ring with center C, we have Q = I'(C N Q) and therefore P =
ARICNQ) = (AR, I'(CNQ);if weobservethat CNQ = CNI'NP=
C N P we have then P = (A ®, I')(C N P), which shows that 4 ), I satisfies
the condition (b).



SEPARABLE RINGS 7

Let next f: A ®; I'— (A ®, I')/P be the natural (ring) epimorphism. Let
I" =TJQ and let g: I'— I'" be the natural epimorphism. Consider then the
following exact sequence of Z-modules:

005 TS0,

where 7 is the inclusion map. Since A is a separable ring, /A is a flat Z-module
by Proposition 2.8. Therefore we have the following exact sequence:

0—A®02E AR, T8 A®, I"—0.

The isomorphic image of 4 ®;Q by 1 ®7 is then P = 4 ® Q and thus we
have the natural isomorphism (4 ®; I')/P — A ®, I such that the following
diagram is commutative:

A@ T

/X

A @ NP— AR T

Let C' be the center of I". Then since I is a separable ring ¢ maps C onto C’,
C and C" are also the centers of A Q) I"and 4 ®; I, respectively, by Proposi-
tion 2.9. From this it follows that the center of 4 ®, I" is mapped onto the
center of (A ®, I')/P by f, and this means that the condition (a) is satisfied by
A ®z I'. Thus A ®, I is a separable ring.

It is to be mentioned that every simple ring is trivially a separable ring and its
center is a field and conversely every separable ring whose center is a field is a
simple ring, and therefore Theorems 2.5, Propositions 2.6, 2.7, 2.9, and 2.10
remain true if the term “separable” is replaced by the term “simple.”

Taeorem 2.11. Let A be a ring with center Z. Then the following conditions
are equivalent:

(1) A is a separable Z-algebra.
(2) A is a separable ring and is a finitely generated Z-module.

Proof. Assume (1). Then [1, Propmosition 1.4] implies that A satisfies(a),
while [1, Corollary 3.2] implies that /A satisfies (b); thus A is a separable ring.
Furthermore, by [1, Theorem 2.1] 4 is a finitely generated Z-module.

Assume conversely (2). Let M be a maximal ideal of Z. Then by Proposition
2.8 AM is a maximal two-sided ideal of 4, so the factor ring 4/AM becomesa
finite-dimensional central simple algebra over the field Z/M. As is well-known,
this means that /4/AM is a central separable algebra over Z/M. Therefore it
follows from Endo and Watanabe [4, Proposition 1.1] that A is a separable
algebra over Z.
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Let K be a commutative ring and 4 an algebra over K. Rao [6] defined 4 to
be an ideal K-algebra if the mapping I+ /I gives a one-to-one correspondence
between ideals I of K and two-sided ideals of /. In this case, / is clearly a
faithful K-module, or equivalently K is regarded as a subring of the center
Z of A. In particular, Proposition 2.8 implies that every separable ring is a
central ideal algebra.

PropositioN 2.12. A K-algebra A is an ideal algebra if and only if it is
Jaithfully flat as a K-module and every two-sided ideal T of A is generated by
KNnT:T=A4KnT).

Proof. That every ideal K-algebra is a faithfully flat K-module is proved
in [6, Proposition 1.2]. Let 4 be an ideal K-algebra and T a two-sided ideal of 4.
Then T = AI for some ideal I of K. Then K " T is an ideal of K satisfying
ICKn TCT. Therefore it follows that AKX N T") = T.

In order to prove the “if”’ part, assume that the K-algebra A is a faithfully
flat K-module. Then A is K-faithful, so K is regarded as a subring of 4. Let I be
an ideal of K. Put J = K N Al Then J is an ideal of K such that IC J and
hence AI = A]. Consider the following obvious exact sequence of K-modules:

0—1—J— JII—0.
Since A is K-flat, we have the following exact sequence:

0> A @xl—>AQx]—AR(JI)—0.

Furthermore the K-flatness of /1 implies that A X I and A @), [ are canonically
identified with A7 and A], respectively. Therefore it follows that A @y (J/I) =0.
Since A is K-faithfully flat, this implies that J/I =0, i.e., [ =] =K nN AL
Thus it is shown that the mapping I+ A, for ideals of K, is one-to-one. Now
to assume further that every two-sided ideal T of A satisfies 7' = A(K N T)
clearly means that every two-sided ideal of A is an image of this mapping, i.e.,
A is an ideal K-algebra.

PROPOSITION 2.13. Let A be an ideal K-algebra. If, as a K-module, A is
profective then K is a direct summand of /.

Proof. Since A is an ideal K-algebra, K N Al = I(= KI) for every ideal I
of K. Since A is K-projective and hence K-flat, this implies that the K-module
A/K is K-flat by Rotman {7, Theorem 3.37, p. 59]. Applying then [7, Theorem
3.39, p. 61] to the exact sequence 0 — K — A — A/K — 0, we know that there
exists a K-homomorphism 4: /4 — K such that A(1) = 1. This equality implies
that the restriction of 4 to K is the identity map. Therefore it follows that K
is a direct summand of the K-module A. (In the above Theorem 3.39 (Villa-
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mayor’s theorem) in [7], F is assumed to be free. But if we use the fact that every
projective module is a direct summand of a free module, we can easily derive
that the same theorem remains true even if F is assumed to be projective.)

CoroLLARY 2.14. Let /A be a separable ring with center Z and suppose A is
projective as a Z-module. Then Z is a direct summand of the Z-module A.

3. SEPARABLE SUBALGEBRAS OF A SEPARABLE RING

We shall first prove the following lemmas, which may be of some interest
for themselves:

LemmMa 3.1, Let A be a separable algebra over a commutative ring K and let M
be a left A-module. If M is injective as a K-module then M is an injective A-module.

Proof. Let X and Y be left 4-modules and let #: ¥ — X be an A-mono-
morphism. Assume that M is K-injective. Then considering X, Y as K-modules
and % as a K-monomorphism, we have a K-epimorphism Homg(h, M): Hom,
{X, M)— Hom(Y, M). But, as is well known, both Hom(X, M) and Hom,
(Y, M) are converted into A-bimodules in the natural manner and besides
Homy(h, M) becomes an A-bimodule-epimorphism. Since A is separable over K|
it follows that Homg(h, M) induces an epimorphism Homg(X, M)4 — Homy
(Y, M)* [3, Corollary 1.5, p. 43]. If we observe, however, that every f € Homg
(X, M) satisfies (af )(x) = af(x) and (fa)(x) = f(ax) for all ac 4, xe X, we
know that f is in Hom(X, M)4 if and only if f is in Hom (X, M), that is, we
have Homg(X, M)4 == Hom4(X, M). Similarly we have Hom, (Y, M)4 =
Hom (Y, M), and also the restriction of Homg(h, M) to Hom, (X, M) is
clearly nothing but Hom (A, M). Thus it is shown that M is A-injective.

LEmMMA 3.2. Let A be a separable K-algebra and let M be a left A-module.
If M is flat as a K-module then M is a flat A-module.

Proof. Let Q be the additive group of rationals and Z the additive group
of integers. Put M* = Homy(M, Q/Z). Then M* is a right A-module in the
natural manner. Assume that M is K-flat. Then M* is K-injective by [7,
Theorem 3.35, p. 58]. Since A4 is separable K-algebra, we know that M* is
A-injective by applying Lemma 3.1 to M*. Then again by the above cited
theorem we can conclude that M is 4-flat.

Remark. Lemmas 3.1 and 3.2 can be regarded apparently as those proposi-
tions which are obtained from DeMeyer and Ingraham [3, Proposition 2.31,
p. 48] by replacing the projectivity with the injectivity and the flatness, respec-
tively.
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Lemma 3.3. Let U be a finitely generated quasi-projective left R-module
such that every R-submodule of U is in Geng(U), and let S = Endg(U). Then
between R-S-submodules Uy of U and iwo-sided ideals Sy of S there is a one-
to-one correspondence by the following relations:

U, = US,, S,={seS|UsCU,).

And, if U, corresponds to S, , the factor module U]U, is also a finitely generated
quasi-projective left R-module such that every R-submodule of U|U, is in Geny
(UJUy), and the factor ring S|S, can be identified with Endg(U|U,) in the natural
manner.

Proof. The first assertion about one-to-one correspondence is an immediate
consequence of Corollary 1.4, since it is clear in the corollary that an R-sub-
module Uy is an S-submodule if and only if the corresponding left ideal L is a
two-sided ideal of S.

Let s&.S be an R-endomorphism of U. Then since Ugs C Uy, s induces an
R-endomorphism of UjU, . Since furthermore Us C U, if and only if s€ S,
S/S, can be identified with a subring of Endg(U/U,). Let conversely # be any
R-endomorphism of U/U, . Let p: U —» UJU, be the natural R-epimorphism.
Then the quasi-projectivity of U implies that there exists an endomorphism
s€8 = Endg(U) such that pos = hop, which means nothing but that s
induces 4. Thus we have that S/S, = Endgz(U/U,;). The remaining assertions
can be proved in a routine way.

LemMA 3.4. Let U be an R-S-bimodule of Morita type (i.e., U is a
[finitely generated projective generator and S = Endg(U), or equivalently, Ug is a
[initely generated projective generator and R = Endg(U)). Then:

(i) Between two-sided ideals Ry of R, R-S-submodules U, of U and
two-sided ideals S, of S, there is a one-to-one correspondence by the following
relations:

RU = U, = US,,
R, ={reR|rUC U}, Sy ={se S| UsC Uy};

and, if Ry, U, , and S, correspond, the factor module U|U, is also of Morita type
when regarded as an R|R-S|Sy-bimodule.

(ii) For any element z of the center Z of R there exists a unique element z*
of S such that zu = uz* for all u € U, and the mapping z 1+~ z* gives a canonical
isomorphism of Z onto the center Z* of S.

(ii1) R 1s a separable ring if and only if S is a separable ring.
Proof. (i) The assertion about one-to-one-correspondence and that
S/Se == Endg(U/U,) follow from Lemma 3.3, while that the left R/R,-module
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U|U, is a finitely generated projective generator is more or less well known and
can easily be proved. (ii) Let = be in the center Z of R. Then the mapping
#+—> 2u, u € U, is an endomorphism of zU, that is, there is a unique element z*
of S = Endg(U) such that zu = ug* for all ue U. It then follows that for
each s& S we have usz* = zus = uz*s for all ue U and hence sz* = 2%,
which means that 2* is in the center Z* of S. In the same way, we can associate
with each 2* € Z* a unique 2z € Z such that 2u = uz* for all ue U. Thus the
mapping 2 — 2* gives a ring isomorphism Z — Z*. (iii) Let R, U, , and S; be
a triple of corresponding two-sided ideal of the R, R-S-submodule of U and
two-sided ideal of S, respectively. Let z be an element of Z and 2* the cor-
responding element of Z*, Then 2 is in R, if and only if 2U C U, and also z*
is in S, if and only if Uz* C U, ; but since 2U = Uz*, this implies that z is
in R, if and only if 2* is in S . Thus, if we put I = Z N R, and I* the cor-
responding ideal of Z*, we have I* = Z* N S;. Suppose now that R is a
separable ring. Then we have R, = RI and therefore U, = R\U = IRU=
IU = UI* = USI*. But this means that to the two-sided ideal SI* of S
there corresponds the R-S-submodule U, (= US,) of U, so that we have
SI* = S, since the correspondence is one-to-one. On the other hand, the
separability of the ring R implies that the subring Z/I of the factor ring R/R,
is equal to its center. Applying then (ii) to the R/RyS/S,-bimodule U/U, of
Morita type, we find that Z/I is, by the mapping = 4+ I+ z* - I'*, carried
isomorphically onto Z*/I* and Z*/I* coincides with the center of S/S, . Since
these are the case for every two-sided ideal S, of S, we see that S is a separable
ring.

Remark. As for the one-to-one correspondence between two-sided ideals
of R and two-sided ideals of S as in Lemma 3.4, (i), cf. [3, Corollary 3.5, p. 22].

Treorem 3.5. Let A be a separable ring with center Z, and let A be a subring
of A containing Z such that A is a separable Z-algebra and is a pure Z-submodule
of A. Let I be the centralizer of A in A, that is, I' = A4, Then

(i) [I'is a separable ring,
(i) A is the centralizer of I'in A, that is, A = A7,

(iii) the right (or left) I'-module A is finitely generated projective and I' is
a I'-direct summand of A.

Proof. Let A° be an opposite ring of 4, and let x> a9 x € 4, be a fixed
opposite isomorphism /A — A% We may assume that Z is also the center of A°
and 2% = 2 for all z € Z. We denote by A4° the image of the subring 4 of 4 by
the fixed opposite isomorphism. Then A° is a subring of A° containing Z.
Consider then the enveloping algebra /¢ = A ®; A° of A. Since A is flat as a
Z-module by Proposition 2.8, 4 X, A° is regarded as a subring of A° in the
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natural manner. Furthermore since 4 is a pure Z-submodule of /1 by assumption,
A ®z A° is also considered as a subring of A4 ), A° in the natural manner.

We now regard / as a left A°-module in the usual way. Since A¢ is a separable
ring with center Z by Proposition 2.10, the A°-module /1 is faithful because every
two-sided ideal of /¢ is generated by an ideal of Z. We next consider /1 as a left
module over the subring 4 &), A% of A°. The module A is a cyclic module
geneated by 1, or what is the same thing, the mapping ¢~ £l for e 4 ®), A°
gives a A Q) A%epimorphism ¢: 4 ), A°— /4. We can also consider /1 as a
left module over the subring 4 &), A% Then A is clearly a submodule of A,
and if we denote by p the restriction of ¢ to 4 X, A4 n is also an A &), A%
epimorphism 4 8, A% — A. Since 4 is a separable Z-algebra, i.¢., the 4 ¥, 4°-
module 4 is projective, the epimorphism p must split, which means that there
exists an 4 ®; A%-homomorphism v: 4 — A4 %) A° such that p o v = identity
map of A. Put € = »(1). Then e 4 ®, A® and satisfies the following three
conditions: (I) el =1, ) € =¢ (3) (a®1 — 1 a%e =0 for all ac 4.
For el = ple) = u((1)) =1, ¢ = a(l) = v(el) = v(1) = ¢, and (a ® | —
1®a = (@@l —1®a)v(1l) =((a®1 —-1Ra%]) =va—a) =0
for all a € A. (Cf. [3, Proposition 1.1].)

Now we define a2 homomorphism ¢: 4— A4 &, A® by H(y) = (¥ @ l)e
for yeA. Then ¢ is a A X, A%homomorphism, because ¢{((x Q) a%)y) =
Wxya) = (x98) ® De = (39 ® 1)@ ©® 1)e = (23 @ 1)1 ® e = (yQa’)e =
(xR a)y R e = (x ® a®) Y(y) for all x, ye A, aec 4. Moreover we have
HH) — H(3 @ D) — (¥ ® 1) ple) = (¥ ® 1)el) = (¥ ® 1)1 =  for all
ye, that is, ¢ oy = identity map of 4. Thus it is shown that ¢ splits and
therefore the cyclic 4 ¥, A%module A is projective.

Let next T be the trace ideal of the A &, A%module 4, i.e., the sum of all
A ®; A*-homomorphic images of A4 in 4 &), A° Then T is a two-sided ideal
of A Rz A°. Therefore, by Proposition 2.9, there is a two-sided ideal Q° of A°
such that 7 = A ® 0% Applying then the homomorphism ¢: 4 ®, A% 4,
we have ¢(T') = ¢(4 ® Q% = (4 ® O°)1 = AQ where Q is a two-sided ideal
of A corresponding to 0% On the other hand, since : A+ A4 R, A% is a
A ®; A%homomorphism, e = (1) is in 7. Applying again ¢, we have ¢(c) =
el = 1e¢(T) = AQ. Butsince AQ is a left ideal of /1, this implies that AQ = A.
Now A4 is a pure submodule of the flat Z-module 4 by assumption. Therefore
the factor module 4/4 is also a flat Z-module by Stenstrém [9, Proposition 11.1]
Since 4 is a separable Z-algebra, it follows from Lemma 3.2 that both /A and
AJA are flat even as right A-modules. Then applying [7, Theorem 3.37], we
have Q = AQ = ANAQ = AN A = 4 and therefore T = A &, A° Thus
we have shown that the left 4 ), A%module 4 is a generator.

Since for every x € A and a € 4 the left multiplications of x ® 1 and 1 & a°
on A are the same as the left multiplication of x and the right multiplication of 4,
respectively, and since the endomorphism ring of the left A-module A is identified
with A, as the right multiplication ring, it is clear that the endomorphism ring
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of the left 4 ), A°-module A coincides with I" = A4. Thus A is a A ®, A°-I'-
bimodule of Morita type. In particular, 4 is finitely generated and projective as a
right I'~module. Furthermore, since 4 X, A° is a separable ring by Proposition
2.10, it follows from Lemma 3.4(iii) that I"is a separable ring too. Let now x and
a be any elements of A and 4, respectively. Then ex is in 4 and we have a(ex) —
(ex)a =(a®1 —1®a’ ex =0, which implies that ¢ AC A4 =1T. Let
conversely ¥ be any element of I'. Since A is a 4 ®; A%I-bimodule, we
have ey = €(1y) == (el)y = 1y = y. Thus we have I'C and therefore = e/l.
Since € is an idempotent, this implies that I' is a I-direct summand of 4;
indeed, we have the following well-known direct decomposition: A = I" @ (1 —¢)
A. Finally, let & be any element of A7. Then clearly 1 &) 8%ed ®; A°) is an
endomorphism of the right -module 4. Since 4 ®); A° = End(A), this means
that 1 ® 8% 4 ®, A°. However, since A is a separable ring, it follows from
Theorem 2.5 that the mapping y+— 1 ® ¥ for y € A° defines an isomorphism
o(A%: 20— (A ®, A%)4. Therefore we have | ® 8° e (A ®z 44N (ARz A°) =
(A ®z A%A. On the other hand, again by Theorem 2.5 the restriction of o(A%
to A® defines also an isomorphism ¢(A4°%): A° — (A4 ®; A%. This implies in
particular that 1 ® 8* = 1 &) a® for some a® € A° But since o(A°) is a mono-
morphism, this implies that 4° == & and so b € 4. Thus we have that AT = 4,
and this completes the proof of our theorem.

From Theorem 3.5(ii) it follows that the center of I" coincides with the center
of A. If we notice this, we can derive the following corollary:

COROLLARY 3.6. Let A be a simple ring with center Z, and let A be a simple
subring of A containing Z such that A is finite dimensional over Z and the center of A
is a separable finite extension field of Z. Let I' = AA. Then (i) I' is a simple ring,
(ii) 4 = AL, and (iii) the right (or left) I'-module A is finitely generated projective
and I' is a I'-direct summand of .

In this connection, we prove the following theorem, in which the separability
for the simple subalgebra 4 is not assumed:

Tueorem 3.7. Let A be a simple ring with center Z, and let A be a simple
subring of A containing Z which is finite dimensional over Z. Let I' = A4. Then

i) 4=4a5,
(i) the right (or left) I'-module A is finitely generated and projective.

Proof. We regard A as a left module over the enveloping algebra A2 =
A ®z A° of A, as in the proof of Theorem 3.5. Since 4 is a finite-dimensional
simple algebra over Z, the enveloping algebra 4° = 4 ®; A° of 4 is a Frobenius
algebra, and therefore 4¢, as a left A°-module, contains an isomorphic image of
every simple left A¢-module. In particular, since 4 is a simple left 4°-module,
there exists an A°-monomorphism »: 4 — A4¢ Put 5 = y(1). Then 0 % y e 4
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and satisfies (a ® 1 — 1 @ a®n = 0, because (a ® 1 — 1 ®a®)l =a—a =0.
By using 7 instead of ¢, we can define a A X, A%homomorphism ¢: A —
A ®;z A®as in the proof of Theorem 3.5; indeed, ¢ is defined by ¢(y) = (y ® 1)y
for y € A. It follows then that 7 == )(1) is in the trace ideal T of the left 4 ®), A%
module A and in particular T 5 0. But since 7 is a two-sided ideal of 4 &, A°
and 4 &, A°is a simple ring, it follows that T' = 4 ®, 4°, i.e., the 4 R, A°-
module A is a generator. It can, however, be seen in the same way as in the proof
of Theorem 3.5 that I" = A is the endomorphism ring of the 4 &), A% -module
A. Therefore, by Morita’s theorem, we know that the right I-module A is
finitely generated projective and besides A &), A° coincides with the Iendo-
morphism ring of 4. By using the last fact, it is also possible to prove that
AF = A in exactly the same way as in the proof of Theorem 3.5.

Remark. 1If A is an Artinian simple ring, then Theorem 3.7 is well known.
It is known more precisely in this case that I" is also an Artinian simple ring
and the right (or left) I~module A is finitely generated free.
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