Integration of energy and electron transfer processes in the photosynthetic membrane of *Rhodobacter sphaeroides*

Michaël L. Cartron a, John D. Olsen a, Melih Sener b,c, Philip J. Jackson a,d, Amanda A. Brindley a, Pu Qian a, Mark J. Dickman d, Graham J. Leggett c, Klaus Schulten b,c, C. Neil Hunter a,*

a Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
b Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
c Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
d CHELS Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK

ABSTRACT

Photosynthesis converts absorbed solar energy to a protonmotive force, which drives ATP synthesis. The membrane network of chlorophyll–protein complexes responsible for light absorption, photochemistry and quinol (QH2) production has been mapped in the purple phototrophic bacterium *Rhodobacter* (*Rba.*) *sphaeroides* using atomic force microscopy (AFM), but the membrane location of the cytochrome bc1 (cyt bc1) complexes that oxidise QH2 to quinone (Q) to generate a protonmotive force is unknown. We labelled cyt bc1 complexes with gold nanobeads, each attached by a Histidine6-OH (His6-OH)-tag to the C-terminus of cyt c. Electron microscopy (EM) of negatively stained chromatophore vesicles showed that the majority of the cyt bc1 complexes occur as dimers in the membrane. The cyt bc1 complexes appeared to be adjacent to reaction centre light-harvesting 1-PufX (RC–LH1–PufX) complexes, consistent with AFM topographs of a gold-labelled membrane. His-tagged cyt bc1 complexes were retrieved from chromatophores partially solubilised by detergent; RC–LH1–PufX complexes tended to co-purify with cyt bc1 whereas LH2 complexes became detached, consistent with clusters of cyt bc1 complexes close to RC–LH1–PufX arrays, but not with a fixed, stoichiometric cyt bc1–RC–LH1–PufX supercomplex. This information was combined with a quantitative mass spectrometry (MS) analysis of the RC, cyt bc1, ATP synthase, cytaa3 and cytb3 membrane complexes, to construct an atomic-level model of a chromatophore vesicle comprising 67 LH2 complexes, 11 LH1 and cyt bc1 complexes that oxidise QH2 to quinone (Q) to generate a proton gradient. ATP turnover rates were calculated for the membrane-bound quinone pool and for ATP synthesis from reduced quinone, with the latter being half of the former. Thus, the photosystem architecture of the chromatophore is optimised for growth at low light intensities.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Photosynthetically-driven cyclic electron transport requires two membrane-bound components in purple bacteria, the RC–LH1 core complex and the cyt bc1 complex. In many purple phototrophs the excitation energy is absorbed by a third complex, LH2, many copies of which form a peripheral antenna for absorbing and transferring excitation energy to LH1 complexes that surround the RC. Excitation of a special pair of bacteriochlorophylls (BChls) within the RC releases an electron that passes rapidly along a series of pigments until it arrives at an exchangeable quinone, Q8. Successive excitations generate two electrons necessary to convert the Q8 quinone to a quinol which then undocks from the RC and diffuses through the lipid bilayer to a cyt bc1 complex. Here, quinol molecules are oxidised, protons are discharged into the enclosed lumen of the photosynthetic membrane and cytochrome c2d, bound to the periplasmic surface of the cyt bc1 complex, is reduced. Repeated turnovers of this cyclic system are made possible by the membrane-extrinsic cytochrome c2 and the membrane-intrinsic quinone/quinol (Q/QH2) molecules, each shuttling between the RC–LH1 and cyt bc1 complexes [1]. The same principles, of light harvesting, photochemistry and Q/QH2 traffic between the RC and a membrane-bound cytochrome complex, apply to most photosynthetic organisms. However, energy migration among LH complexes and Q/QH2 traffic between RC–LH1 and cyt bc1 complexes have conflicting requirements; dense packing of RC–LH1 and LH2 complexes fosters rapid energy transfer, but hinders lateral diffusion of Q/QH2, effectively weakening the linkage between

http://dx.doi.org/10.1016/j.bbabio.2014.02.003
0005-2728/© 2014 Elsevier B.V. All rights reserved.
RC photochemistry and QH₂ oxidation at the Q₁ site of the cytbc₁ complex. This linkage has been studied using short flashes of light to initiate electron transfer and QH₂ formation, and conflicting models for cyclic electron flow arose from experiments using intracytoplasmic membrane vesicles (‘chromatophores’) from Rba. sphaeroides. Joliot et al. [2] proposed that the RC and cytbc₁ form a supercomplex whereas others, notably Crofts and co-workers [3], explained their results without invoking a fixed structural and functional relationship between RC and cytbc₁ complexes. These opposing concepts for the supramolecular organisation of photosynthetic membranes, derived from kinetic experiments, are equivalent to the ‘solid state’ and ‘liquid state’ models proposed by Rich [4].

More recently Comayras and co-workers used a kinetic approach to study the distribution of RCs and quinones in Rba. sphaeroides, and concluded that within a chromatophore membrane there are confined quinone domains associated with up to six RCs [5]. Direct structural evidence is now required to determine the membrane location of the cytbc₁ complex in Rba. sphaeroides. A previous atomic force microscopy (AFM) study of the Rba. sphaeroides photosynthetic membrane [6] showed that dimeric RC–LH₁–PufX cores are connected to large arrays of closely-packed LH₂ complexes but cytbc₁ complexes were not detected; the cytbc₁ structure [7] shows that the cytbc₁-exposed face has very little surface topology to aid its identification by AFM, and only the cytoplasmic side of the membrane is generally observed in such experiments. Here, we have used a combination of electron microscopy (EM) and AFM to identify cytbc₁ complexes and determine their location and aggregation state in a chromatophore vesicle. We overcame the membrane topology problem by attaching a His-tag (His₁₀)–PufX core to the C-terminus of cytbc₁, which enabled labelling by Ni-NTA-Nanogold® beads functionalised with Ni-nitrotriacetic acid (Ni-NTA) groups. Pulldown experiments were also used to examine cytbc₁–RC–LH₁–PufX associations. This new mapping information, together with quantitative mass spectrometry and membrane modelling, has allowed computation of energy conversion efficiencies for an atomic-level chromatophore vesicle.

2. Materials and methods

2.1. Growth of Rba. sphaeroides and conjunctive transfer of pK18mobsacB

The strains used in this study were (1) Rba. sphaeroides 2.4.1 wild type, (2) Rba. sphaeroides BC1C10H (fbcC::thrombin-His₁₀), (3) Escherichia (E.) coli S17-1 [8], and (4) E. coli Rosetta II, pLysS (Novagen).

Single colonies of Rba. sphaeroides strains were inoculated into 10 ml of M22 + medium and grown for 48 hours at 34 °C in the dark with shaking, then 1 ml sub-cultured into 70 ml of M22 + in a 100 ml conical flask and incubated overnight at 34 °C with shaking. Further subculturing was used for growth under photosynthetic conditions in volumes up to 20 l.

The vector pK18mobsacB (ATCC® 87097™) was used to introduce the gene encoding the C-terminal His-tagged cytbc₁ into the Rba. sphaeroides genome. The flanking regions of 1090 bp and 849 bp were made by PCR of genomic DNA using the primers listed below:

Primer 1: FbcC BamHI CCGGATCCCTGACCTGGGTCCGCGC
Primer 2: FbcC SacI GGGGAGAGCTCGTTCGTCTTCTTGCCC
Primer 3: FbcC SalI GTTCGACAGGAGACGGCGCGCTTCC
Primer 4: FbcC HindIII CTGAAGCTTCTCAGTGAAGCGGGCTAGG

pET52b + (Novagen) was used to provide the thrombin cleavage site and the 10-His tag which was introduced at the C-terminus of FbcC. The sequence of the C-terminal extension to cytbc₁ was LALVRGSSAHHHHHHHHHH. pK18mobsacB derivatives were transferred to Rba. sphaeroides using the conjugation-competent E. coli strain S17-1. Positive mutants were identified using colony PCR.

2.2. Membrane preparation

Cells harvested from a 2.5 l culture were resuspended in 30 ml of membrane buffer (20 mM MOPS, 600 mM NaCl, pH 7), a few grains of DNase I and lysozyme were added to the suspension and the cells were then disrupted in a French pressure cell at 18,000 psi; two cycles of French pressing were used to ensure the majority of cells were disrupted. The lysate was centrifuged at 15,000 rpm for 25 min, and the supernatant layered onto a discontinuous 20%/30%/40%/50% (w/w) sucrose step gradient. A. Unlabelled wild-type vesicles at the 20–30% interface (upper box). B. wild-type vesicles labelled with Ni-NTA-Nanogold®. The vesicles migrate lower in the gradient due to unspecific gold labelling; the colouration at the 30–40% interface reflects the optical properties of the gold beads. C. Unlabelled His–cytbc₁ (strain BC1C10H) vesicles. D. BC1C10H vesicles labelled with Ni-NTA-Nanogold®; as a result of labelling the original membrane band is almost absent. The band at the 30–40% interface consists of partially-labelled vesicles. The lower box highlights the location of the specifically labelled vesicles at the 40–50% interface. The gold beads confer a pink hue on the membranes.

2.3. Nanogold labelling of chromatophores and membrane patches

30 µl of A_{530} = 27 of chromatophores from the Rba. sphaeroides BC1C10His-tag mutant was incubated with 200 nM NiNTA-Nanogold® (Nanoprobes); this concentration minimised a crosslinking effect, whereby Ni-NTA groups on a gold bead interact with more than one His-tagged cytbc₁ complex and promote formation of vesicle clusters. The membranes and gold beads were incubated in a 50 µl volume for up to 3 hours, then made up to 3 ml with buffer A (20 mM HEPES pH 7.5, 10 mM EDTA) and loaded onto a discontinuous 20%/30%/40%/50% (w/w) sucrose gradient in buffer A, and centrifuged in a Beckman SW41 rotor at 40,000 rpm for 4 hours. The nanogold-labelled bands, present just above the 40–50% interface (Fig. 1), were collected with a micropipette and immediately transferred onto carbon grids, as described above, for EM analysis.
The same procedure was adopted for labelling and isolation of nanogold-labelled membrane patches, except that after the initial 3-hour incubation β-dodecyl maltoside (β-DDM) was added to the mix to a final concentration of 0.1 mM, and incubated for an hour. The mix was then layered onto a discontinuous 20%/30%/40%/50% (w/w) sucrose gradient containing 0.025 mM TDM (n-tetradecyl-β-D-maltopyranoside; Anatrace, USA). The resultant patches were analysed by TEM and AFM.

2.4. Electron microscopy

Samples were applied to glow-discharged carbon coated copper grids and negatively stained with 0.75% w/v uranyl formate. Images were recorded at 100 kV on a Philips CM100 microscope equipped with a Gatan Ultrascan 667 CCD camera at 61,005 × magnification.

2.5. Atomic force microscopy

Membrane patches were typically diluted 1:10 in 20 mM HEPES pH 7.5 before adding 5 μl of the diluted suspension to 45 μl of binding buffer, 20 mM HEPES pH 7.5, 150 mM KCl, 25 mM MgCl2, on a freshly cleaved mica disc (Agar Scientific). The sample was incubated for 1 hour at RT in a Petri dish with a piece of moistened paper towel to minimise drying. The binding buffer was removed with a pipette and the sample rinsed twice with 50 μl of imaging buffer, 20 mM HEPES pH 7.5, 100 mM KCl, SNL cantilevers, spring constant 0.24 N m⁻¹, resonant frequency 56 kHz (Bruker), were used in a Nanoscope Multimode 8 (Bruker) in Peakforce QNM imaging mode. Scan speeds were typically 1 Hz or less. The data were analysed and processed using NanoScope Analysis software (Bruker).

2.6. Progressive solubilisation of chromatophores and retrieval of His–cytbc₆ complexes on affinity columns

All steps were performed, as far as possible, at 4 °C. Approximately 60 ODU (at 850 nm) of purified chromatophores in an end volume of 3 ml were used for each concentration of β-DDM (Glycon, Germany). A 10% β-DDM stock was made in buffer A (20 mM MOPS, 600 mM NaCl, pH 7) and the appropriate volume was slowly added to the membrane suspension to achieve final β-DDM concentrations of 0.1%, 0.5%, 1%, 2% and 2.5%. Following incubation at 4 °C with stirring for 40 minutes the samples were loaded onto individual Ni²⁺-NTA columns (5 ml) equilibrated with buffer A. The columns were washed with 2 column volumes of Buffer A, then with sufficient Buffer B (20 mM MOPS, 600 mM NaCl, 20 mM imidazole, pH 7) until the flow-through was clearly, typically 15 ml, and the sample eluted with buffer C (20 mM MOPS, 600 mM NaCl, 500 mM imidazole, pH 7). The final elution volume was typically around 3.5 ml, of which 200 μl was immediately transferred to a cuvette and absorbance spectroscopy performed as detailed in the next section. The remaining eluate was used for determination of protein and bacteriochlorophyll concentration, and for quinone and lipid extraction.

Three membrane samples were treated with 0.1, 0.5, 1.0, 2.0, or 2.5% β-DDM detergent, and the extracts fractionated using a total of 15 affinity columns. Each of the three eluates at a given starting detergent concentration was analysed for complexes or extracted for quinones and lipids in duplicate.

2.7. Absorbance spectroscopy

Absorbance spectra of purified chromatophore and membrane fractions were recorded on a Cary 50 UV-Vis spectrophotometer between 250 and 950 nm. When assessing the levels of the cytbc₆ complex the absorbance spectrum was recorded, then a few grains of sodium dithionite were added to reduce the samples, and the spectrum re-recorded. The extinction coefficients used were 7430 mM⁻¹ cm⁻¹ for the RC–LH₁–PufX complex, 3720 mM⁻¹ cm⁻¹ for LH2 [18]. The concentrations of b- and c-type cytochromes were estimated using the extinction coefficients ε₅₆₅₁–₅₇₅₇ of 22 mM⁻¹ cm⁻¹ and ε₅₃₅₁–₅₄₀ of 19 mM⁻¹ cm⁻¹, respectively [9]. Baselines were corrected and spectra were processed with Excel/Origin software as required.

2.8. Quinone and lipid extraction

All steps were performed as far as possible at 4 °C. Quinones and lipids were extracted following the same protocol. Eight volumes of 50/50 methanol/chloroform were added to one volume of untreated chromatophore vesicles. The mixture was vortexed several times and centrifuged, the colourless pellet was discarded and the coloured methanol/chloroform extract used for the lipid or quinone analysis. This procedure was repeated in triplicate for each sample solubilised with β-DDM.

2.8.1. Lipid analysis

Phospholipids were analysed and quantified according to [10]. All the extracted samples were dried into a glass tube to which was added 0.3 ml 70% perchloric acid, then the tubes were heated in a block for 3 h at 180 °C. 1 ml water, 0.4 ml 1.25% (w/v) ammonium hepta-molybdate and 0.4 ml of 5% ascorbic acid were then added to each sample, vortexed and incubated for 5 minutes in a 100 °C water bath. The tubes were cooled in cold water (4 °C) before the absorbance was measured at 797 nm. Each sample was measured in triplicate. Individual phospholipids were separated by thin-layer chromatography and quantified as above, using published methods [11].

2.8.2. Quinone analysis

Quinones were analysed and quantified as described [12] with minor modifications. Quinones were extracted as described above. 50 μl of each sample was loaded onto an UltraspHERE ODS column (Beckman Coulter) and equilibrated with 100% methanol at a flow rate of 1 ml min⁻¹. HPLC traces were analysed at 260, 270, 280, 290 and 300 nm and the areas under the peaks integrated. The column was calibrated with 5000, 2500, 1250, 625, 312.5, 156.25, 78.1, 39 and 19.5 μg ml⁻¹ of coenzyme Q10 (Sigma) dissolved in 100% methanol.

2.9. Preparation of ¹⁵N-labelled artificial protein standard

The ¹⁵N-labelled internal standard was constructed as an artificial protein composed of concatenated tryptophic peptide sequences [13,14] that are known to represent the target proteins in proteomic analysis. The N-terminal extension AWSSWK was added to increase the absorbance of the artificial protein at 280 nm, thereby enhancing the accuracy of the quantification. The sequence was back-translated into the DNA sequence and optimised for expression in bacteria. The corresponding gene was synthesised (Bio Basic) with N-terminal NdeI and C-terminal BamHI sites to enable sub-cloning into a pET14b vector (Novagen), incorporating an N-terminal His-tag sequence. E. coli (Rosetta II, pLyS, Novagen) was grown at 37 °C in 1.5 L M9 medium containing (¹⁵NH₄)₂SO₄ (99 atom%, Cambridge Isotope Laboratories) to an OD of 0.7 at 600 nm. Overproduction of the protein was induced by the addition of 0.4 mM IPTG and the culture transferred to 20 °C for 16 hours. Cells were pelleted at 4000 × g for 30 min at 4 °C and then re-suspended in 20 ml IMAC buffer (25 mM Tris/HCl pH 7.4, 300 mM NaCl, 5 mM imidazole). The cells were broken by sonication on ice in 10 × 30-second bursts and the insoluble fraction pelleted by centrifugation at 33,000 × g for 30 min at 4 °C. The pellet was washed in IMAC buffer and re-centrifuged. The insoluble fraction was re-suspended in IMAC buffer containing 8 M urea and sonicated on ice in 10 × 30-s bursts. The urea extract was stirred for 1 hour at 4 °C and clarified by centrifugation at 33,000 × g for 30 minutes at 20 °C. The supernatant was applied to a 5 ml Ni²⁺-charged chelating Sepharose column (GE Healthcare) equilibrated in IMAC buffer containing 8 M urea. The column was washed with 50 ml IMAC buffer containing 8 M urea followed by 50 ml IMAC buffer
containing 8 M urea and 50 mM imidazole. The 15N-(His$_6$)-protein standard was eluted from the column with IMAC buffer containing 8 M urea and 250 mM imidazole and its concentration determined from the calculated molar extinction coefficient at 280 nm (www.expasy.org/protparam/).

2.10. Quantification of proteotypic peptides from subunits of the reaction centre, cytochrome bc$_2$, ATP synthase and terminal cytochrome c oxidases by liquid chromatography coupled to mass spectrometry

Chromatophores were buffer exchanged into 50 mM NH$_4$HCO$_3$, 0.1 mM DTT, 5 mM MgCl$_2$ using a PD-10 column (GE Healthcare) and the protein concentration determined at 1.39 mg/ml by Bradford assay. 0.2 ml membrane (278 μg) was mixed with 50 pmol 15N-labelled protein standard and 11 μg trypsin (proteomics grade, Sigma) in a total volume of 0.8 ml 0.05% ProteaseMax surfactant (Promega) in 50 mM NH$_4$HCO$_3$. Digestion was carried out at 48 °C for 6 hours before transfer to 37 °C. 0.2 ml aliquots were removed at 3, 6 and 23 hours and immediately added to 20 μl 5% trifluoroacetic acid (TFA) to stop digestion and hydrolyse the surfactant. After incubation for 5 minutes at RT, samples were centrifuged at 16,000 × g for 5 minutes and the supernatant applied to a C18 SpinTip (Protea Biosciences) according to the manufacturer’s instructions. The eluted tryptic peptides were dried in a vacuum centrifuge, re-dissolved in 20 μl 0.1% TFA, 3% acetonitrile and 2 μl aliquots (equivalent to 6.95 μg membrane protein and 1.25 pmol 15N-labelled protein standard) were analysed in duplicate by nanoflow liquid chromatography (Ultimate 3000 RSLCnano, Dionex) coupled to a Maxis UHR-TOF mass spectrometer (Bruker). Peptide separation was performed using 5 mm × 300 μm trapping and 150 mm × 75 μm analytical PepMap C$_{18}$ reverse-phase columns (Dionex) with linear gradient elution from 4% solvent A (0.1% formic acid in water) to 40% solvent B (0.1% formic acid in 80% acetonitrile) over 90 minutes at 0.3 μl min$^{-1}$. Mass spectra were acquired in profile mode with automatic dependent MS/MS scans.

The identities of the tryptic peptides, both unlabelled (from chromatophore) and 15N-labelled (from the artificial protein standard) counterparts, were confirmed by searching the Rba. sphaeroides complete proteome database (ExPASy) using Mascot Server v. 2.2.01 (Matrix Science). DataAnalysis v. 4.0 software (Bruker) was used to extract ion chromatograms for the target peptide ions from the profile MS data and average the spectra across the relevant peaks. The averaged spectra were then processed to display the monoisotopic ion intensity values for each 14N/15N pair which enabled the quantification of these peptides (see Table S2).

2.11. Modelling chromatophore structure and function

Placement of light harvesting proteins LH2 and LH1-RC was performed as reported earlier [16,17] employing the area-preserving inverse-Mollweide transformation to map planar AFM images upon spherical domains and manually adjusting protein locations to remove steric clashes. The size and shape of the vesicle are observed by EM (Fig. 2). In the following, the ATP turnover rate of the chromatophore under steady-state illumination is computed. This computation is achieved by relating the ATP production rate, $k_{ATP}(I)$, for a given illumination I to the quinol turnover in the chromatophore, which in turn is expressed in terms of the RC cycling time $τ_{RC}(I)$. The RC cycling time $τ_{RC}(I)$ is the mean time for the mobile quinone at the RC to be replaced upon conversion to quinol; $τ_{RC}(I)$ depends on illumination and, through quinone diffusion dynamics, on the spatial arrangement of membrane proteins. The cycling time, $τ_{RC}(I)$, acts as an important rate-determining constant of the system. It is prohibitive and also unnecessary to simulate the diffusion processes of the quinone/quinol in the chromatophore directly. Instead, the cycling time, $τ_{RC}(I)$, is estimated from experimental observations [24]. Since spatial details and time dependence of quinone/quinol diffusion dynamics are not modelled, only steady state processes are considered below.

Bioenergetic processes other than ATP synthesis that utilize the proton-motive force, such as NADH/NADPH synthesis or motility, across pigment clusters is a Markovian process and can be described by the modified Förster formalism [23].

$$H^f = \sum_{i=1}^{N_1} N_i \delta^2(i) + \sum_{i,j=0} N_{ij} \delta_{ij} + \sum_{m,n=1}^{N_2} J_{mn} \delta_{m,n},$$

where δ_{ij} are the Q$_x$-states of individual BCHls forming a basis for H^f. The rate of excitation transfer between a donor pigment cluster D and an acceptor pigment cluster A is given by the modified Förster formula (see [23] for a review)

$$k_{DA} = 2 \pi \int d^2 \alpha \int d^2 \beta \int d^2 \gamma \int d^2 \delta \rho_{DA}(\alpha, \beta, \gamma, \delta),$$

where $\rho_{DA}(\alpha, \beta, \gamma, \delta)$ is the eigenvalues for the effective Hamiltonians H^D and H^A, given by Eq. (1), corresponding to the donor and acceptor clusters, D and A, respectively. J_{mn} are spectral overlaps, in units of 1/energy, computed in [23,50]; ε_m are eigenvalues of H^D for pigment cluster D, given by $\varepsilon_m = \varepsilon_m(\alpha, \beta, \gamma, \delta)$. A. Excitation transfer across the chromatophore is subsequently governed by a first order kinetics matrix κ constructed from the inter-cluster transfer rates k_{DA} according to

$$k_{DA} = \kappa_{DA} = (\kappa_{DA})_{m,n} = \sum_{j} \delta_{mn} \kappa_{DA} + \kappa_{CS} \delta_{CS}.$$

where δ_{mn} and δ_{CS} denote the dissipation and the RC charge separation rates, respectively; $\delta_{CS} = 1$ if the pigment cluster I belongs to a RC and $\delta_{CS} = 0$ otherwise. The rate matrix κ has dimension N equal to the total number of pigment clusters in the network; these clusters involve the LH2, LH1 and RC pigments.

The quantum yield, q, of the chromatophore pigment network, defined as the probability of an absorbed photon to cause charge separation, can accordingly be expressed in terms of the matrix κ in Eq. (3) [17,23]

$$q = -\kappa_{CS} (\kappa^{-1})_{0,0},$$

where 0 denotes the N-dimensional vector of initial probabilities for the system and $\langle \kappa^{-1} \rangle_{0,0} = \sum_{I} \delta_{CS}$. The quantum yield of $q = 0.91$ determined thus for the vesicle shown in Fig. 7A is consistent with earlier studies [16,17]. The quantum yield is computed for the chlorophyll network; photons absorbed by carotenoids are accounted for by the chlorophyll q value. Following excitation transfer, the quinols that are produced at the RC migrate to cytbc$_1$, which subsequently generates a proton-motive force to be utilized for ATP production at the ATP synthase.

In the following, the ATP turnover rate of the chromatophore under steady-state illumination is computed. This computation is achieved by relating the ATP production rate, $K_{ATP}(I)$, for a given illumination I to the quinol turnover in the chromatophore, which in turn is expressed in terms of the RC cycling time for quinones, $τ_{RC}(I)$. The RC cycling time, $τ_{RC}(I)$, is the mean time for the mobile quinone at the RC to be replaced upon conversion to quinol; $τ_{RC}(I)$ depends on illumination and, through quinone diffusion dynamics, on the spatial arrangement of membrane proteins. The cycling time, $τ_{RC}(I)$, acts as an important rate-determining constant of the system. It is prohibitive and also unnecessary to simulate the diffusion processes of the quinone/quinol in the chromatophore directly. Instead, the cycling time, $τ_{RC}(I)$, is estimated from experimental observations [24]. Since spatial details and time dependence of quinone/quinol diffusion dynamics are not modelled, only steady state processes are considered below.

Bioenergetic processes other than ATP synthesis that utilize the proton-motive force, such as NADH/NADPH synthesis or motility,
are not considered. Therefore, the cytoplasmic state of the cell is not modelled directly, and the cytoplasm is assumed to function as a perfect sink instead. Accordingly, the ATP turnover rates estimated in this study should be viewed as upper limits.

For typical low-light intensities accessible to purple bacteria, quinol turnover and subsequent ATP production are rate-limited primarily by processes in cytbc1, as suggested also by other studies [25]. In the following, rate limitation at the ATP synthase is not considered explicitly since the reported maximal ATP turnover rate of 270 ± 40 ATP/s per ATP synthase [26] far exceeds ATP turnover achievable through photosynthetic quinol turnover processes even at saturation light intensities. Rate limitation due to the proton or cytochrome c5 pools are also considered irrelevant for typical growth conditions as the respective processes become limiting only at very high light intensities or for vesicles containing a much greater number of cytbc1 complexes than observed.

Under steady state conditions, the rate with which closed (i.e. unavailable for excitation processing) RCs open (i.e. become ready again for receiving an excitation to initiate quinone photochemistry) must equal the rate with which open RCs close. Therefore, follows

\[\frac{1}{\tau_{RC}(I)} (n_{RC} - n_{RC}^{open}(I)) = \frac{1}{2} \eta_{Q}(I) \rho_{RC}(I). \]

where \(1/\tau_{RC}(I)\) is the rate with which closed RCs reopen; \(n_{RC}\) and \(n_{RC}^{open}(I)\) denote the total number of RCs in the system and those that are open, respectively; \(q\) is given by Eq. (4); \(\rho_{RC}(I) = n_{RC}^{open}(I)/n_{RC}\) is the fraction of RCs that are open; the prefactor 1/2 accounts for each quinol turnover requiring two electrons; the light intensity \(I\) is given in terms of photons absorbed by the system chlorophyll and carotenoids per second.

The probability for open RCs, \(p_{RC}(I)\), can be related to the cycling time, \(\tau_{RC}(I)\), using Eq. (5),

\[p_{RC}(I) = \left(1 + \frac{1}{2} Iq \tau_{RC}(I) \frac{1}{n_{RC}} \right)^{-1}. \]

Since the cycling time, \(\tau_{RC}(I)\), cannot be computed currently from a simulation of quinone diffusion processes, it is approximated below as an interpolation [27] between a low light limit, \(\tau_{L}\), and a high light limit, \(\tau_{H}\), adopted on the basis of experimental data. At the low light limit, where the quinone/quinol pool comprises almost entirely of quinones, a quinol departing the RC is replaced with a quinone from the immediate vicinity of the RC within time, \(\tau_{L}\), which is observed in low-light adapted LH2-rich chromatophores to be \(\tau_{L} = 3\) ms [24]. At the high light limit, where the pool comprises mostly of quinols, the replacement rate of quinones at the RC is limited by the total quinol processing rate, \(B = n_{Q} \tau_{Q}^{-1}\), at the native cytbc1 dimeric complexes of the chromatophore, \(\tau_{Q}\) denoting the quinol turnover time at a dimeric cytbc1 complex. The high light limit of the cycling time, \(\tau_{H}\), can be determined by observing that the total quinol turnover rates at the RCs and cytbc1 complexes must balance for steady state illumination at large \(I\), from which follows

\[\tau_{H} = \tau_{L} \frac{n_{RC}}{n_{Q}}. \]

The probability, \(pQ(I)\), that a cytbc1 dimeric complex is involved in quinol turnover and is unavailable for further quinols, is given by \(p_{Q}(I) = 1 - \exp(-\frac{1}{2} Iq/B)\); the rate \(Iq\) corresponds to the maximal electron turnover rate at the RCs and the factor 1/2 accounts for every quinol requiring two electron transfers. Accordingly, the interpolation of the cycling time, \(\tau_{RC}(I)\), between the low and high illumination values, \(\tau_{L}\) and \(\tau_{H}\), respectively, is given by the formula

\[\tau_{RC}(I) = \tau_{L} + (\tau_{H} - \tau_{L})(1 - e^{-\frac{1}{2} Iq B^{-1}}). \]

One can finally express the ATP turnover rate, \(k_{ATP}(I)\), in terms of the illumination \(I\) and the utilisation probability, \(\eta_{Q}(I)\), for quinol turnover using Eqs. (6)–(8)

\[k_{ATP}(I) = \frac{1}{2} \eta_{Q}(I) = \frac{1}{2} Iq \left(1 + \frac{1}{2} Iq \tau_{RC}(I) \frac{1}{n_{RC}} \right)^{-1}, \]

where the prefactor 1/2 follows because the synthesis of one ATP requires the translocation of four protons and every electron cyclised at a cytbc1 dimeric complex translocates two protons. Here, the probability, \(\eta_{Q}(I) = q \rho_{RC}(I)\), for an absorbed photon to be utilized for quinol turnover is the product of the probability for the photon to initiate charge transfer at a RC, namely \(q\), given by Eq. (4), and the probability for the RC to be open, \(\rho_{RC}(I)\), given by Eq. (6). The description in terms of Eqs. (5–8) is provided in more detail in a forthcoming publication.

3. Results

3.1. Site-directed gold labelling of cytbc1 complexes in intact chromatophores, and their detection by electron microscopy and AFM

A gene encoding the C-terminal His-tagged cytbc1 was integrated into the Rba. sphaeroides genome, replacing the native cytbc1 (fbcC) gene and ensuring a native copy number for the tagged protein. The resulting
strain, BC1C10H bearing a His_{10} tag on the cytoplasmic face of cyt_{b1}, grew photosynthetically at normal rates. Chromatophores were prepared from a photosynthetically grown culture of this strain were labelled with 5 nm Ni-NTA-gold beads in the absence of detergent, and fractionated on a sucrose step gradient as described in Materials and methods. Controls with either no gold label or no His-tag were also analysed (Fig. 1) and only gold-labelled BC1C10H vesicles produced a new band at the 40–50% interface, with the original membrane band at the 20–30% step almost absent. Labelled chromatophores from the 40–50% fraction were negatively stained and analysed by EM. The images (Fig. 2A–F) show that the majority of the cyt_{b1} complexes (nanogold edge-to-edge separation 2.4 ± 0.5 nm (S.D.) n = 118), occur as dimers in the membrane, consistent with the reported structure [7], and a recent kinetic study [28]. We used a nanogold concentration that minimised formation of vesicle clusters, which can be created by Ni-NTA groups on a gold bead interacting with His-tagged cyt_{b1} complexes from different vesicles. Thus, only one half of a dimer might be labelled, giving apparent cyt_{b1} monomers. Apparent monomers can also arise from one gold bead binding to both His-tags of the dimer, although the possibility of monomeric cyt_{b1} dimers cannot be excluded. Another striking feature of these images is the tendency of cyt_{b1} to form small clusters of two or more dimers.

The gold-labelled chromatophores harvested from the band at the 40–50% interface (Fig. 1, lane D) were also analysed by Peak Force Tapping AFM under liquid to attempt to identify protruding gold beads on the exposed cytoplasmic face of the chromatophore, as initially seen in EM (Figs. 2 and 3A). In Fig. 3 we compare an EM image of labelled chromatophores with a possibly interlinked pair of chromatophores adsorbed to mica and imaged by AFM; interlinked vesicles have been seen in cryo-EM of frozen sectioned cells [29]. Fig. 3A shows the typical circular appearance of native chromatophores when dried down upon a carbon film EM grid; the diameter is greater than that of a chromatophore under liquid as these vesicles collapse upon desiccation, forming appressed discs [29]. In the AFM image of chromatophores under liquid in Fig. 3B the maroon-coloured extensions are protein-free lipid zones, as judged by their ~4 nm height above the mica substrate (also see Fig S1). The vesicles, which appear to be connected, are ~26 and ~30 nm high (see the section in Fig. S1A), similar to previous AFM measurements of isolated WT chromatophores of 37.6 ± 4.1 nm [19]; the smaller height here could indicate partial flattening of the chromatophores.

Discrete raised topology can be seen on the upper surfaces in Fig. 3B and one particular region of four similar height features is outlined by the red box on the right-hand vesicle. These paired, regular features give a low deformation signal (Fig. 3C, red box), in comparison with the white areas of the chromatophores where the AFM tip (the direction of the scan is shown by the white arrow) pushes into the vesicle side producing a high deformation signal. These four topological features (Fig. 3C, red box) are tentatively assigned to NiNTA functionalised gold beads attached to cyt_{b1} dimers. This cluster lies adjacent to the more closely spaced features denoted by pairs of coloured asterisks.
Fig. 5. Comparison of AFM images of a membrane patch containing gold-labelled cytbc1 complexes and a non-labelled control patch. A1. 3D view of a gold-labelled patch showing the LH2 regions (green outline) and RC–LH1–PuF dimer regions (white outline). The magenta section across the 15.6 nm-high feature (A4) is compatible with a gold bead atop a cytbc1 complex dimer. The blue section shows the 8.3 nm separation (A5) typical of a core dimer. A2. Model of how the complexes reside in the membrane in relation to the mica surface; the large tip convolution prevents direct visualisation of the complexes adjacent to the putative gold label but both zigzags of LH2 and arrays of RC–LH1–PuF dimers can be seen going underneath this feature. A3. Deformation channel data for the image in A1 showing (left) a clear circular feature (magenta arrow) centred on the maximum height of the high topological feature in Fig. 5A1, and (right) a graphic demonstrating how the sides of the AFM tip would initially displace the gold bead laterally, then tap directly down upon it, then push it aside during the scanning process. B1. 3D view of a non-labelled patch with LH2 and RC–LH1–PuF regions denoted by the green and white outlines; no discrete 15.6 nm-high features were observed for any of the unlabelled membrane patches. B2. Graphic demonstrating the possible co-location of RC–LH1–PuF and cytbc1, showing the curvature of the membrane and the consequent lack of contact of the complexes with the mica substrate. B3. Model of the membrane in B1, showing how cytbc1 can be accommodated between rows of RC–LH1–PuF complexes. B4. Section along the area between rows of cores, putatively containing cytbc1 complexes and corresponding to the grey lines in B1, B3, showing that the cytoplasmic surfaces of the putative proteins are 9 nm above the mica. B5. Section across the area putatively containing cytbc1 complexes and corresponding to the cyan lines in B1, B3, showing that the patch is not flat on the mica but actually curved, probably as a result of the aligned RC–LH1–PuF complexes which are known to curve the membrane.
that are consistent with the 8–10 nm separation distance of RH subunits within a RH–LH1–PuxX dimer [29]. These AFM images suggest that in these untreated native membrane vesicles of Rh. sphaeroides a group of dimeric cytbc1 complexes sits adjacent to a short array of RH–LH1–PuxX dimer complexes.

3.2. Detection of gold-labelled cytbc1 complexes in membrane patches by electron microscopy and AFM

In order to gain a clearer picture of the distribution of cytbc1 complexes, with respect to both RH–LH1–PuxX and LH2 complexes, we labelled intact chromatophore membranes from the His10-cytbc1 mutant with NINTA-nanogold, then opened them out using 0.1 mM TDM to form a cluster adjacent to both the densely-packed LH2 antenna domain and the RH–LH1–PuxX dimer arrays. The membrane areas assigned for LH2:RH–LH1–PuxX:cytbc1, taking into account the known sizes of these complexes, are in the ratio 58:37:4. The molar ratios of these complexes were calculated from our proteomic and spectroscopic analyses and, also taking into account their known sizes, the membrane areas for LH2:RH–LH1–PuxX:cytbc1 are predicted to be 52:44:3. Finally, we counted the pixels in Fig. 4A, and the membrane areas (including lipids) assigned for LH2:RH–LH1–PuxX:cytbc1 are 66:25:9. It is interesting to note the agreement between the first two ratios; the largest discrepancy between these two and the third ratio is for the region assigned to cytbc1, suggesting lipid enrichment in these areas of membrane.

The regions adjoining gold-labelled cytbc1 were also examined by AFM; the membrane patches are in direct contact with the mica substrate, unlike the upper membrane surface of intact vesicles, so it is possible to make more accurate estimates of the heights and deformation characteristics of the various complexes. Fig. 5A1 shows rows of RH–LH1–PuxX dimers, delineated by white lines, and zig-zag areas of LH2 (green lines), which we compare with a typical non-labelled patch imaged to higher resolution, Fig. 5B1. A section across the region of high topology (Fig. 5A1, magenta line) indicates a height of 15.6 nm, consistent with at least one gold nanobead attached to an underlying cytbc1 complex; see the schematic representation in Fig. 5A2. The four scans prior to that shown in Fig. 5A are displayed in Fig. S2, and demonstrate that this topological feature survives the plunge freezing and freeze-fracturing process whereas a second, membrane-extrinsic feature arising from non-specifically bound surface protein is removed. The non-labelled patch (Fig. 5B2) showed no equivalent discrete high feature and consisted of a curved membrane composed largely of LH2 and RH–LH1–PuxX regions. The simultaneously recorded deformation channel for the membrane in Fig. 5A1 produces a clear, circular signal (Fig. 5A3), likely arising from the response of the AFM to lateral movement of the gold nanobead, which is connected to the C-terminus of cytbc1 by a flexible 20-residue linker. Interaction of the scanning AFM probe with peripheral regions of the gold bead and consequent displacement of the bead gives a circular, high deformation signal. In the central region the deformation signal is similar to that of the surrounding protein, consistent with the AFM tip depressing directly down on the nanobead, thus compressing the underlying cytbc1, as illustrated in the associated cartoon (Fig. 5A3). The position of this central region corresponds to the 15.6 nm topological feature in Fig. 5A1, supporting its assignment as a gold-labelled cytbc1 complex.

The feature assigned to the cytbc1 complex in Fig. 5A1 & A3 lies adjacent to a region consisting of LH2 complexes and to an array of paired topological features outlined in white (Fig. 5A1). A section across one of these pairs (Fig. 5A1, blue line, Fig. 5A5) shows a separation of

Table 1

Quantification of the composition of cytbc1 pull-downs. Rows refer to the molar ratio of a given component per cytbc1 dimer eluted from each affinity column in detergent-free buffer. Membranes were extracted in triplicate with 0.1, 0.5, 1.0, 2.0, or 2.5% β-DDM, then fractionated using a total of 15 affinity columns, each of the three eluates at a given detergent concentration was analysed for complexes or extracted for quinones and lipids in duplicate. The levels of protein complexes in the starting chromatophore vesicles were quantified by mass spectrometry; lipids and quinones were quantified following extraction as detailed in the Materials and methods section. The levels of protein complexes in the affinity column eluates were quantified by absorption spectroscopy, also detailed in the Materials and methods section. The figures in the column are shown with the standard deviation.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Moles of component per cytbc1 dimer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RH–LH1–PuxX</td>
</tr>
<tr>
<td>Intact chromatophore</td>
<td>3.4 ± 0.4</td>
</tr>
<tr>
<td>0.1% β-DDM</td>
<td>0.43 ± 0.11</td>
</tr>
<tr>
<td>0.5% β-DDM</td>
<td>0.54 ± 0.17</td>
</tr>
<tr>
<td>1.0% β-DDM</td>
<td>0.47 ± 0.15</td>
</tr>
<tr>
<td>2.0% β-DDM</td>
<td>0.31 ± 0.12</td>
</tr>
<tr>
<td>2.5% β-DDM</td>
<td>0.31 ± 0.12</td>
</tr>
</tbody>
</table>

Fig. 6. Selective retention of RH–LH1–PuxX complexes following affinity purification of His-tagged cytbc1 complexes. All cytbc1, LH2, and RH–LH1–PuxX levels are expressed as a percentage of the starting molar ratio of each component per cytbc1 dimer in the intact membrane (0% β-DDM), as in the first row of Table 1. The error bar is the standard error of the mean. β-DDM refers to the concentration of detergent used for the initial solubilisation of the membrans (see Materials and methods). All subsequent steps, including washing and elution of the affinity columns, were performed with detergent-free buffer.
Table 2
Quantification of RC, cytbc, ATP synthase and terminal cyt oxidases within chromatophores by mass spectrometry. Chromatophores were co-solubilised with a 15N-labelled artificial protein standard composed of concatenated sequences of tryptic peptides which are known to represent the target proteins in proteomic analysis. This mixture was subjected to trypsin digestion; each digestion time-point was analysed by nanoflC-MS/MS in duplicate. For each tryptic peptide, the time-point which gave the highest intensity was used for quantification using the ratio between its (15N) monoisotopic ion and the 14N-labelled counterpart at known concentration. Method details are provided in the Materials and methods section and in Supplementary Information. Although some of the peptides had similar intensity results over two or more time-points, only the highest intensity time-point was used in the final dataset. The final numbers for each proteotypic peptide in the Table are the mean of 2 replicates.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Tryptic peptide</th>
<th>Quantity (nmol/g total protein)</th>
<th>Stoicho-metry (ratio per 1 PuM)</th>
<th>Stoicho-metry (ratio per 24 PuM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC PuM</td>
<td>AYEIQINSFQVQR</td>
<td>724 ± 1</td>
<td>1.00 ± 0.00</td>
<td>240.0 ± 0.0</td>
</tr>
<tr>
<td>RC PuF</td>
<td>ALLSFER</td>
<td>778 ± 112</td>
<td>1.07 ± 0.15</td>
<td>258 ± 3</td>
</tr>
<tr>
<td>Cytbc, FbcC</td>
<td>SLSEPGCPGPIPEQVR</td>
<td>257 ± 3</td>
<td>0.36 ± 0.00</td>
<td>8.5 ± 1</td>
</tr>
<tr>
<td>Cytbc, FbcF</td>
<td>SVEQLQVLVDTAR</td>
<td>203 ± 14</td>
<td>0.28 ± 0.02</td>
<td>6.7 ± 0.5</td>
</tr>
<tr>
<td>ATP synthase AtpF</td>
<td>LAAADQVASSAEACAVR</td>
<td>65 ± 9</td>
<td>0.09 ± 0.01</td>
<td>2.1 ± 0.3</td>
</tr>
<tr>
<td>ATP synthase AtpX</td>
<td>SDAAADDVAAVAR</td>
<td>61 ± 2</td>
<td>0.08 ± 0.00</td>
<td>2.0 ± 0.1</td>
</tr>
<tr>
<td>ATP synthase AtpA</td>
<td>GQXAEISALK</td>
<td>134 ± 6</td>
<td>0.18 ± 0.01</td>
<td>4.4 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>VVGLGNIQPDCK</td>
<td>143 ± 9</td>
<td>0.20 ± 0.01</td>
<td>4.8 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>TAIALDTINQK</td>
<td>143 ± 1</td>
<td>0.20 ± 0.00</td>
<td>4.7 ± 0.0</td>
</tr>
<tr>
<td>Cyt oxidase CcoD</td>
<td>SSEEYANWLEGQAR</td>
<td>0 ± 0</td>
<td>0.00 ± 0.00</td>
<td>0.0 ± 0</td>
</tr>
<tr>
<td>Cyt oxidase CcoO</td>
<td>AQQANFAADDTCQLEER</td>
<td>31 ± 0</td>
<td>0.04 ± 0.00</td>
<td>1.0 ± 0</td>
</tr>
</tbody>
</table>

8.3 nm, consistent with the RC–RC distance measured from the structural model of the dimeric RC–LH1–PuX complex (Fig. 5A2), and with previous AFM data on this membrane-bound complex [29]. Sections across seven of these pairs (Fig. S3) show that they are separated by 7.5 ± 0.8 nm, as reported earlier for core dimers appressed to the mica surface [29], indicating that this region of the membrane adjacent to the gold bead consists of dimeric RC–LH1–PuX complexes. The low resolution and tip convolution effects do not allow us to assess the distances between the surrounding complexes and the cytbc. The higher resolution image of the unlabelled membrane (Fig. 5B1) allows the unambiguous assignment of the LH2 region and arrays of dimeric RC–LH2–PuX complexes; additionally the image shows a monomeric core complex immediately adjacent to one row of core dimers. The two core complex arrays surround a zone of limited topology (Fig. 5B4 & B5), which indicates the presence of additional membrane proteins. This region of the membrane is modelled in Fig 5B2 & B3, shown in side and top views, respectively, using measurements taken from the data in Fig. 5B1, together with the crystal structures of the Rba. sphaeroides cytbc complex (2QJP) and the core dimer [30]. The model shows that two cytbc complexes can be readily accommodated between the two rows of dimers, and the sections (Fig. 5B4 & B5) demonstrate that the heights measured from the mica to the cytoplasmic surface of the unknown proteins are consistent with the presence of cytbc complexes, probably not fully in contact with the mica substrate. Thus the AFM data on membrane patches are consistent with the EM images in Fig. 4, and with the AFM images of intact untreated chromatophores, Fig. 3A–E, showing that cytbc complexes are found adjacent to RC–LH1–PuX dimer arrays.

3.3. Retrieval of co-purifying complexes using the His-tagged cytbc

We sought biochemical evidence for associations between cytbc1 and RC–LH1–PuX complexes; chromatophore vesicles were partially solubilised by β-DM detergent, then Ni-NTA affinity chromatography was used to retrieve His-tagged cytbc1 together with any associated complexes. Increasing concentrations of β-DM (0.1, 0.5, 1.0, 2.0 and 2.5%) progressively stripped proteins, lipids and quinones from the immediate environment of His–cytbc1, thereby probing the environment around this complex. The composition of the cytbc1 pulldown at each initial β-DM concentration is displayed in Table 2, expressed as moles of each component per mole of eluted cytbc1 dimer. Absorption spectra of each pulldown are displayed in Fig. S4. The levels of protein complexes in the starting chromatophore vesicles were quantified by mass spectrometry; lipids and quinones were quantified following extraction as detailed in the Materials and methods section. The data in Table 1 and in Fig. 6 show that even the lowest detergent concentration removes approximately 50% of proteins, lipids and quinones, pointing to an unusually detergent-susceptible environment around the cytbc1. As the solubilising detergent concentration increases there is a tendency for the remaining RC–LH1–PuX complexes to co-purify with cytbc1, whereas a greater proportion of the LH2 complexes become detached.

3.4. Quantitation of the major membrane protein complexes in chromatophore membranes

In order to build a quantitative structural model of a chromatophore vesicle we used mass spectrometry (MS) to count the number of RC, cytbc, ATP synthase, cytbc3 and cytbc1 membrane protein complexes. For this quantitative MS analysis an 15N-labelled internal standard was constructed as an artificial protein composed of concatenated tryptic peptide sequences [13,14] overproduced in E. coli and purified on a Ni2+-charged chelating Sepharose column. Chromatophores were mixed with 15N-labelled artificial protein standard and, following digestion, tryptic peptides were analysed in duplicate by nanoflow liquid chromatography coupled to a Maxis UHR-TOF mass spectrometer. Cytbc complexes were quantified using tryptic peptides from the FbcC (cytbc1) and FbcB (Rieske) proteins; ATP synthase was quantified by its membrane-anchored peripheral stalk subunits AtPf (b) and AtPX (b’) which are present at one copy each per complex [31]. The α-subunit (AtPA), residing in the membrane-extrinsic F1 sector, occurs in a stoichiometry of 3 per complex [30]. Our observation of a stoichiometry of 4–5 AtPA per chromatophore instead of the 6 expected for two ATP synthases highlights the partial loss of F1 during chromatophore isolation and demonstrates an advantage, in this case, of using an MS-based determination of the stoichiometry of membrane-anchored proteins over a functional assay. The αb3 and cbh2 terminal cyt oxidases were quantified by their CoxII and CcoO subunits, respectively. The former was found to be absent from chromatophores while the cbh2 cyt oxidase was detected at a copy number of 1. This expression pattern is as expected, given the anaerobic culture conditions used in this study [32]. These results (Table 1) indicate a cytbc1:RC stoichiometry of 0.28–0.36, equivalent to 3–4 cytbc1 dimers in a chromatophore containing 24 RCs (see Fig. 7). The ATP synthase has a stoichiometry of 0.08–0.09, relative to the RC, equivalent to 2 complexes per chromatophore.

3.5. Integration of light-harvesting function in a chromatophore vesicle based on an atomic-level structural model

The model of a photosynthetic membrane vesicle combines earlier AFM [6,19], EM [33–35], crystallography [36] and spectroscopy [37] data with the current MS (Table 1), EM and AFM data (Figs. 2–5). This vesicle, adapted from a prior model [17,16], has an inner diameter...
environment around core dimers and also around the cytbc1 complexes, providing a buffer against rapid fluctuations of light intensity, and ensuring robustness of cyclic electron transfer. Associations of two or more RC–LH1–PufX dimers could provide channels for short-range Q/QH2 quinone diffusion between RC Qa sites and cytbc1 complexes [30], contributing to the driving force for the forward reactions in the cytbc1 catalytic cycle [42].

The primary function of the chromatophore is to capture, transfer, and convert solar energy for ATP production. We used the atomic-level model shown in Fig. 7 to describe the interconnected energy, electron and proton transfer processes in a chromatophore vesicle (see Material and methods as well as a forthcoming publication). For the purposes of this study we assumed that cytochrome c2 diffusion and ATP/ADP conversion are not rate-limiting sub-processes. A comparison of the turnover rates of constituent proteins indicates that cytbc1 complexes are rate-determining components at almost all illuminations. To test this assumption we consider a control vesicle containing only one cytbc1 dimer complex, with 7 additional LH2 complexes compensating for the surface area of the 3 cytbc1 complexes removed from the model shown in Fig. 7A. Fig. 7B, dashed line, shows that this control vesicle containing only one cytbc1 dimer can only achieve 37% of the steady-state ATP production rate at a typical low light intensity of 3% full sunlight, compared to a vesicle with 4 cytbc1 dimers (Fig. 7B, solid line). For the vesicle shown in Fig. 7A the ATP turnover rate is 84–119 ATP/s for light intensities of 10–30 W/m2 (typical illumination conditions). Such low light conditions (~3% or less of full sunlight) almost saturate the energy conversion mechanism of the chromatophore; at full sunlight (~1 kW/m2) ATP turnover increases only to 158 ATP/s. Thus, the chromatophore achieves half-maximal ATP turnover already at around 1% of full sunlight, indicating optimal adaptation for low light intensities.

4. Discussion

By using negative stain EM, high resolution AFM, affinity chromatography and quantitative MS we have established the membrane environment and the typical stoichiometries of the cytbc1 complex in chromatophores of Rba. sphaeroides with respect to the RC–LH1–PufX and LH2 complexes and also the ATP synthase. Identification of cytbc1 required genomic integration of the modified βbcC gene, replacing the native gene, to introduce a His10-tag onto the C-terminus of cytC1. Gold labelling of the tagged complex provided the topology normally absent from the cytoplasmic face of this cytbc1 complex, and the means to find this complex using AFM. The electron-dense gold label also facilitated identification of cytbc1 by EM. The EM and AFM data are consistent with cytbc1 complexes positioned adjacent to RC–LH1–PufX complexes.

Pulldown experiments on chromatophore membranes with His-tagged cytbc1 as bait (Table 2 and Fig. 6) showed that approximately 90% of the chromatophore protein, lipids and quinones are removed by the lowest concentration (0.1%) of β-DDM detergent. This detergent-susceptible environment could arise from an enrichment of lipids and quinones round the His–cytbc1 complexes; RC–LH1–PufX complexes sequester up to half the chromatophore quinones (Table 2 and [5,11]), implying quinone enrichment of the local cytbc1–RC–LH1–PufX membrane environment under steady state illumination conditions as these mobile carriers cycle between the complexes. A quinone-rich phase was proposed to surround the RC1 dimer complex but 7 additional LH2 complexes; LH2 complexes and also the ATP synthase. Identiifications of cytbc1 and LH1–LH2 complexes are rate-determining components at almost all illuminations. To test this assumption we consider a control vesicle containing only one cytbc1 dimer complex, with 7 additional LH2 complexes compensating for the surface area of the 3 cytbc1 complexes removed from the model shown in Fig. 7A. Fig. 7B, dashed line, shows that this control vesicle containing only one cytbc1 dimer can only achieve 37% of the steady-state ATP production rate at a typical low light intensity of 3% full sunlight, compared to a vesicle with 4 cytbc1 dimers (Fig. 7B, solid line). For the vesicle shown in Fig. 7A the ATP turnover rate is 84–119 ATP/s for light intensities of 10–30 W/m2 (typical illumination conditions). Such low light conditions (~3% or less of full sunlight) almost saturate the energy conversion mechanism of the chromatophore; at full sunlight (~1 kW/m2) ATP turnover increases only to 158 ATP/s. Thus, the chromatophore achieves half-maximal ATP turnover already at around 1% of full sunlight, indicating optimal adaptation for low light intensities.

4. Discussion

By using negative stain EM, high resolution AFM, affinity chromatography and quantitative MS we have established the membrane environment and the typical stoichiometries of the cytbc1 complex in chromatophores of Rba. sphaeroides with respect to the RC–LH1–PufX and LH2 complexes and also the ATP synthase. Identification of cytbc1 required genomic integration of the modified βbcC gene, replacing the native gene, to introduce a His10-tag onto the C-terminus of cytC1. Gold labelling of the tagged complex provided the topology normally absent from the cytoplasmic face of this cytbc1 complex, and the means to find this complex using AFM. The electron-dense gold label also facilitated identification of cytbc1 by EM. The EM and AFM data are consistent with cytbc1 complexes positioned adjacent to RC–LH1–PufX complexes.

Pulldown experiments on chromatophore membranes with His-tagged cytbc1 as bait (Table 2 and Fig. 6) showed that approximately 90% of the chromatophore protein, lipids and quinones are removed by the lowest concentration (0.1%) of β-DDM detergent. This detergent-susceptible environment could arise from an enrichment of lipids and quinones round the His–cytbc1 complexes; RC–LH1–PufX complexes sequester up to half the chromatophore quinones (Table 2 and [5,11]), implying quinone enrichment of the local cytbc1–RC–LH1–PufX membrane environment under steady state illumination conditions as these mobile carriers cycle between the complexes. A quinone-rich phase was proposed to surround the RC1 dimer complex but 7 additional LH2 complexes; LH2 complexes and also the ATP synthase. Identiifications of cytbc1 and LH1–LH2 complexes are rate-determining components at almost all illuminations. To test this assumption we consider a control vesicle containing only one cytbc1 dimer complex, with 7 additional LH2 complexes compensating for the surface area of the 3 cytbc1 complexes removed from the model shown in Fig. 7A. Fig. 7B, dashed line, shows that this control vesicle containing only one cytbc1 dimer can only achieve 37% of the steady-state ATP production rate at a typical low light intensity of 3% full sunlight, compared to a vesicle with 4 cytbc1 dimers (Fig. 7B, solid line). For the vesicle shown in Fig. 7A the ATP turnover rate is 84–119 ATP/s for light intensities of 10–30 W/m2 (typical illumination conditions). Such low light conditions (~3% or less of full sunlight) almost saturate the energy conversion mechanism of the chromatophore; at full sunlight (~1 kW/m2) ATP turnover increases only to 158 ATP/s. Thus, the chromatophore achieves half-maximal ATP turnover already at around 1% of full sunlight, indicating optimal adaptation for low light intensities.

4. Discussion

By using negative stain EM, high resolution AFM, affinity chromatography and quantitative MS we have established the membrane environment and the typical stoichiometries of the cytbc1 complex in chromatophores of Rba. sphaeroides with respect to the RC–LH1–PufX and LH2 complexes and also the ATP synthase. Identification of cytbc1 required genomic integration of the modified βbcC gene, replacing the native gene, to introduce a His10-tag onto the C-terminus of cytC1. Gold labelling of the tagged complex provided the topology normally absent from the cytoplasmic face of this cytbc1 complex, and the means to find this complex using AFM. The electron-dense gold label also facilitated identification of cytbc1 by EM. The EM and AFM data are consistent with cytbc1 complexes positioned adjacent to RC–LH1–PufX complexes.

Pulldown experiments on chromatophore membranes with His-tagged cytbc1 as bait (Table 2 and Fig. 6) showed that approximately 90% of the chromatophore protein, lipids and quinones are removed by the lowest concentration (0.1%) of β-DDM detergent. This detergent-susceptible environment could arise from an enrichment of lipids and quinones round the His–cytbc1 complexes; RC–LH1–PufX complexes sequester up to half the chromatophore quinones (Table 2 and [5,11]), implying quinone enrichment of the local cytbc1–RC–LH1–PufX membrane environment under steady state illumination conditions as these mobile carriers cycle between the complexes. A quinone-rich phase was proposed to surround the RC1 dimer complex but 7 additional LH2 complexes; LH2 complexes and also the ATP synthase. Identiifications of cytbc1 and LH1–LH2 complexes are rate-determining components at almost all illuminations. To test this assumption we consider a control vesicle containing only one cytbc1 dimer complex, with 7 additional LH2 complexes compensating for the surface area of the 3 cytbc1 complexes removed from the model shown in Fig. 7A. Fig. 7B, dashed line, shows that this control vesicle containing only one cytbc1 dimer can only achieve 37% of the steady-state ATP production rate at a typical low light intensity of 3% full sunlight, compared to a vesicle with 4 cytbc1 dimers (Fig. 7B, solid line). For the vesicle shown in Fig. 7A the ATP turnover rate is 84–119 ATP/s for light intensities of 10–30 W/m2 (typical illumination conditions). Such low light conditions (~3% or less of full sunlight) almost saturate the energy conversion mechanism of the chromatophore; at full sunlight (~1 kW/m2) ATP turnover increases only to 158 ATP/s. Thus, the chromatophore achieves half-maximal ATP turnover already at around 1% of full sunlight, indicating optimal adaptation for low light intensities.
caused by the packing mismatch between LH2 and core complexes, with the majority of the RC–LH1–PufX complexes not in direct contact with cytbc_1.

This arrangement might appear to hinder the quinones as they shuttle rapidly between non-adjacent RC–LH1–PufX and cytbc_1 complexes, but the recent structural study of the *Rba. sphaeroides* RC–LH1–PufX complex [30] proposes a channel for quinones to migrate along rows of core dimers. Moreover, imperfect packing of LH2 complexes round the RC–LH1–PufX complexes (see Fig. 7) could create the space for quinone migration along the external faces of RC complexes.[30]

The dimer structure identified a gap in the LH1 ring adjacent to PufX that allows exchange of quinones and quinols through the LH1 barrier. This work also identified a cavity within the LH1 ring, close to the RC Q$_s$ site [30]. Finally, the structure raised the possibility that quinones can migrate between the two halves of the RC–LH1–PufX dimer, consistent with kinetic data demonstrating quinone sharing by the two RCs within a dimer [5]. These three structural features of the complex could allow rows of core dimers to form channels for quinone diffusion to a nearby cytbc_1 complex. Such an arrangement is depicted in Fig. 7, where three of the cytbc_1 dimers are positioned at the end of two rows of three RC–LH1–PufX complexes. Thus, even ‘remote’ RC–LH1–PufX dimers are in communication with two or more cytbc_1 Crofts [44] pointed out that, rather than a particular RC having sole access to a dedicated cytbc_1 within a supercomplex, quinols or cytochrome c_2 can visit several cytbc_1 complexes, and this seems likely on the basis of our EM and AFM data.

Another possible consequence of the proximity of cytbc_1 and RC–LH1–PufX complexes is an effective confinement of the extrinsic mobile electron carrier cytochrome c_2, which, as discussed in [1], also must cycle between these complexes to fill the electron hole created by RC photochemistry and enable repeated turnovers of the cytbc_1 complex. In *Rba. sphaeroides* this confinement within the chromatophore interior is enhanced by the tight curvature of the chromatophore vesicle which, if it encloses perhaps 12 cytochrome c_2 molecules, results in a cytochrome c_2 concentration of 0.6 mM. The distances over the internal vesicle surface for diffusion of cytochrome c_2 between the RC and cytc_1 are in the 10–30 nm range, apparently sufficient for cyclic electron transfer.

Although LH2 complexes do not bind or sequester quinone [11], AFM mapping of membranes from an LH2-only mutant of *Rba. sphaeroides* showed that LH2 packing could allow percolation of quinones. There are as many 500 quinones in a chromatophore that are not sequestered by the RC–LH1–PufX complexes; although some of them contribute to a quinone- and lipid-rich phase surrounding the RC–LH1–PufX and cytbc_1 complexes [5] it is possible that the remainder form a more slowly diffusible pool that equilibrates over the whole vesicle on timescales longer than the 1–2 ms required for cyclic electron flow, thus providing a secondary buffer. Such a ‘slow’ quinone pool could also be important for the function of other complexes such as the cytochrome *cbb_3* oxidase, which we found at a level of one per chromatophore (Table 1), but currently we have no information on the membrane location of respiratory chain components.

The chromatophore vesicle represents a membrane surface area of ~7500 nm2 that apparently partitions to some degree into zones for solar energy collection (LH2), photochemistry (RC–LH1–PufX) and secondary electron transfer (cytbc_1). Thus light-driven cyclic electron flow appears primarily to be sustained by short-range diffusion between cytbc_1 and RC–LH1–PufX complexes, rather than random migration of quinones over the whole chromatophore vesicle. Our proposal parallels the organisation of the equivalent membrane complexes in stacked plant thylakoid membranes, where kinetic studies showed that plastoquinone diffusion between Photosystem II and dimeric cytbf complexes is confined within small membrane domains [45], as proposed earlier [43]. With regard to supercomplexes in oxygen-evolving photosynthesising organisms, cytbf complexes associate with Photosystem I under conditions that favour cyclic electron flow in *Chlamydomonas* [46,47].

Kinetic models of the chromatophore that account for the interlinked processes of light absorption, energy transfer, electron flow, generation of a protonotive force and ATP synthesis have been formulated before [25,48]. In this study, we have updated our existing structural model of the chromatophore vesicle [16,17] to take into account the new information on the stoichiometries of the major membrane components and their locations obtained using EM, AFM and MS. We constructed an *in silico* model chromatophore to test the efficiency of this self-contained energy transduction vesicle to produce ATP as a function of illumination. The model clearly demonstrates a robust system that is optimized for the production of ATP under low light illumination, the expected growth conditions for the purple phototrophs such as *Rba. sphaeroides* in a stratified lake. The chromatophore architecture presented above in Fig. 7A, particularly the observed number and organisation of cytbc_1 complexes, optimizes photosynthetic function at low and fluctuating light intensities. The conversion of absorbed energy to ATP appears to be determined by the number of cytbc_1 complexes, as seen in Fig. 7B; cytbc_1 was also identified as the ‘kinetic bottleneck’ in [25]. We propose that quinone-enriched zones in proximity to the cytbc_1 complexes and the RC Q_s site [11,30,33,34] act as kinetic buffers that smooth the effects of fluctuating light (at sub-second timescales), allowing continuous ATP production during intermittent dark periods. This supramolecular arrangement ensures that quinone diffusion is not rate limiting [5,49]. Therefore, the photosynthetic apparatus displays robustness (against rapid fluctuations in light intensity) and optimality (of composition for typical growth conditions), thus illustrating adaptiveness, not only at the level of individual proteins as reported earlier [50,51] but also at a system level integration of function.

Author contributions

Acknowledgements

M.L.C. and G.J.L. were supported by funding from the Engineering and Physical Sciences Research Council, UK (EPSRC, Grant EP/J012060/1), P.Q., P.J.J., A.A.B., J.D.O., M.J.D., and C.N.H. gratefully acknowledge funding from the Biotechnology and Biological Sciences Research Council (U.K.). This work was also supported as part of the Photosynthetic Antenna Research Center (PARC), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, and Office of Basic Energy Sciences under Award Number DE-SC0001035. PARC’s role was to partially fund the Multimode VIII AFM system and to provide partial support for C.N.H. and A.A.B., M.S. and K.S. were supported by the National Science Foundation (MCB-1157615 and PHY0822613) and the National Institutes of Health (9P41GM104601). The authors would like to thank Dr Cvetelin Vasiliev, Professor Per Bullough, Elizabeth Martin and David Motherson for helpful advice.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.bbabio.2014.02.003.

References
