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Let (R, m) be a Noetherian local ring and I an ideal of R. Let M be
a finitely generated R-module with dim M =d. It is clear by Matlis
duality that if R is complete then H?(M) satisfies the following
property:

Anng (0 :H',j(M) p)=p

for all prime ideals p 2 Anng H?(M). (%)

However, H‘,i(M) does not satisfy the property (x) in general. In
this paper we characterize the property (x) of H?(M) in order
to study the catenarity of the ring R/Anng Hf(M), the set of
attached primes Attg H‘Ii(M), the co-support CosR(H‘,j(M)), and
the multiplicity of HY(M). We also show that if HY(M) satisfies
the property (+) then HY(M) = H% (M/N) for some submodule N
of M.
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1. Introduction

Throughout this paper, (R, m) is a Noetherian local ring, I is an ideal of R and M is a finitely
generated R-module with dim M =d. Let Var(I) denote the set of all prime ideals of R containing I.
Denote by R and M the m-adic completions of R and M respectively.

It is clear that Anng(M/pM) =p for all prime ideals p € Var(Anng M). So, it follows by Matlis

duality that if R is complete then
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Anng(0:4 p) =p forallp € Var(Anng A) (%)

for all Artinian R-modules A. Recently, H. Zoschinger [Zos] proved that the property (x) is satisfied for
all Artinian R-modules if and only if the natural map R — R satisfies the going up theorem. However,
the property (x) is not satisfied in general, cf. [CN, Example 4.4].

We know that the local cohomology module Hin(M) is Artinian for all i. It is shown that the top
local cohomology module an(M) satisfies the property () if and only if the ring R/AnnR(H‘tin(M))
is catenary, cf. [CDN, Main Theorem]. Also, Hin(M) satisfies the property (x) for all finitely generated
R-modules M and all integers i > 0 if and only if R is universally catenary and all its formal fibers
are Cohen-Macaulay (see [NA1, Corollary 3.2], [NC, Proposition 3.6]).

Note that the top local cohomology module Hf(M) is Artinian, but it may not satisfy the property
(x) even when R is a quotient of a regular local ring (see Example 3.9). In this paper, we characterize
the property (%) of H?(M) in order to study the catenarity of the ring R/Anng H‘,i(M), the set of
attached primes AttR(H‘f(M)), the co-support CosR(H?(M)) and the multiplicity of H?(M).

Following I.G. Macdonald [Mac], the set of attached primes of an Artinian R-module A is denoted
by Attg A. From now on, we keep the following notations.

Notations 1.1. Let 0 = ﬂpeASSRM N(p) be a reduced primary decomposition of the submodule 0 of M.
Set

Assg(I, M) ={p € Assg M | dim(R/p) =d, /p+I=m}.

Set N = ﬂpeAssR(,‘M) N(p). Note that N does not depend on the choice of the reduced primary decom-

position of 0 because Assg(I, M) C minAssg M. The co-support of H‘,j(M), denoted by Cos(H‘,j(M)), is
defined by

Cosg (H{ (M)) = {p € Spec(R) | Hygo" /P (M/N), # 0}.

The following theorem is the main result of this paper.

Theorem 1.2. The following statements are equivalent:

(i
(ii
(iii
(iv

HY(M) satisfies the property ().

The ring R/ Anng H‘;(M) is catenary and /p + [ = m for all p € Attg H‘,’(M).
The ring R/ Anng HY(M) is catenary and HY(M) = HS, (M/N).
Cosg(HY(M)) = Var(Anng HY(M)).

- Z Z

This theorem will be proved in Sections 2 and 3 (Theorems 2.7 and 3.7). As consequences, we
show that if H‘,’(M) satisfies the property (%) then the results on the attached primes, the co-support
and the multiplicity of H?(M) are as good as when R is complete.

2. The property (x) of Hf (M)

Let us recall the following notion introduced in [CN, Definition 4.2].

Definition 2.1. Let A be an Artinian R-module. A is said to satisfy the property (x) if

Anng(0:4 p) =p forall p € Var(Anng A). (%)
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In this section, we study the property (x) for H‘,’(M). Before presenting the results, we need some
preliminaries.

The theory of secondary representation was introduced by I.G. Macdonald [Mac]. This theory is
in some sense dual to the more known theory of primary decomposition for Noetherian modules.
Note that every Artinian R-module A has a minimal secondary representation A = Ay + --- + Ap,
where A; is p;-secondary. The set {p1,..., pn} is independent of the choice of the minimal secondary
representation of A. This set is called the set of attached primes of A, and denoted by Attg A.

Lemma 2.2. (See [Mac].) Let A be an Artinian R-module. Then:
(i) A#0ifand only if Attg A # 0.

(ii) minAttg A = minVar(Anng A).
(iii) If0 - A’ — A — A” — 0is an exact sequence of Artinian R-modules then

Attg A” C Attg A C Attg A U Attg A”.
If A is an Artinian R-module then A has a natural structure as an R-module. With this structure,
a subset of A is an R-submodule if and only if it is an R-submodule of A. Therefore A is an Artinian
R-module.

Lemma 2.3. (See [BS, 8.2.4 and 8.2.5].) Attg A= {P N R | P € Att A}.

Denote by m the unique maximal ideal of R. The attached primes of the R-module H‘;(M) can be
described as follows.

Lemma 2.4. (See [DSc, Corollary 3.3].)
Attz HI(M) = [P € Assz M | dim(R/P) =d, v'P + IR = f}.

The following result shows that the property (x) of the top local cohomology module H‘fn(M) can
be characterized by the catenarity of the base ring.

Lemma 2.5. (See [CDN, Main Theorem].) The following statements are equivalent:

(i) H%(M) satisfies the property (x).
(ii) The ring R/ Anng H‘fn(M) is catenary.

Following T.N. An and the first author [NA2], an Artinian R-module A is quasi unmixed if

dim(/li/P) = dim(ﬁ/ Anng A) for all P € minAtt; A. If dim(ﬁ/P) = dim(ﬁ/ Anng A) for all P € Attz A
then A is called unmixed.

Lemma 2.6. (See [NA2, Theorem 1.1].) Assume that A is quasi unmixed. If A satisfies the property (x) then the
ring R/ Anng A is catenary and dim(R/ Anng A) = dim(R/ Anng A).

The following theorem is the first main result of this paper.
Theorem 2.7. Let N be defined as in Notations 1.1, the following statements are equivalent:
(i) HY(M) satisfies the property (x).

(ii) The ring R/ Anng HY (M) is catenary and /p + 1 = m for all p € Attg H4(M).
(iii) The ring R/ Anng H‘,j(M) is catenary and H‘,’(M) = Hﬂl(M/N).
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Proof. If H?(M) =0 then the result is clear. So, assume that H‘,i(M) #0.

(i) = (ii). Note that dim('ﬁ/Annﬁ H?(M)) =d by Lemmas 2.2 and 2.4. So, it follows by Lemma 2.4
that H‘,j(M) is unmixed. Since H?(M) satisfies the property (%), we get by Lemma 2.6 that
R/Anng H‘,j(M) is catenary.

It is clear that

Rad(Anng (0 29y, 1)) 2 Rad(I + Anng H{ (M)).

Let q € Spec(R) such that q 2 I + Anng Hf(M). Since H’,i(M) satisfies the property (x), we have
Anng (0 H () I) € Anng (0 H (M) q) = q. It follows that

Rad(Anng (0 :yyg ) 1) < N q = Rad(I + Anng H{(M)).

geSpec(R)
g2I+Anng H{(M)

Therefore Rad(Anng(0 He (M) 1)) = Rad(I + Anng H?(M)). Since Hj’(M) is Artinian, so is 0 1 (M) I.
Because H?(M) is I-cofinite by [DM, Theorem 3], it follows that 0 H (M) I is a finitely generated R-
module. Hence 0 ‘(M) I is of finite length, and hence Anng (0 “He (M) I) is an m-primary ideal of R.
Therefore I + Anng H‘Ij(M) is m-primary. Let p € Attg H‘}(M). Then p D Anng H‘Ij(M) by Lemma 2.2.
Therefore I + p is m-primary.

(ii) = (iii). As in Notations 1.1, let 0 = ﬂpeASSRM N(p) be a reduced primary decomposition of the
submodule 0 of M and set N = (), caqs, (1, m) N(p), where

Assg(I,M) = {p € Assg M | dim(R/p) =d, /I +p=m}.

It is easy to check that Assg(M/N) = Assg(I, M) and Assg N = Assg M \ Assg (I, M). From the exact
sequence 0 > N - M — M/N — 0 we get the exact sequence

H4(N) — HY(M) — HY(M/N) — 0.

We claim that H‘;(N) =0. Suppose that H‘;(N) # 0 and we look for a contradiction. Then there exists
by Lemma 2.2 an attached prime P € Atty H?(N). By Lemma 2.4, we have P € Assp N, dim(E/P) =d
and IR + P = . Since Assz N C Assz M, it follows that P € Assz M. Therefore P € Atty HY(M) by
Lemma 2.4. Set p = P N R. Then p € Attg H‘Ij(M) by Lemma 2.3. By the assumption (ii), we have
Jp+1=m. Since P e AssksI\A/I and dim(ﬁ/P) =d, we get p € Assg M and dim(R/p) = d. Therefore
p € Assg(I, M). On the other hand, because P € Atty H‘,j(N). we have by Lemma 2.4 that P € Assi N.
Hence p € Assg N and hence p € Assg M \ Assg (I, M). This gives a contradiction. Therefore H‘Ij(N) =0,
the claim is proved.

It follows by the above exact sequence and by the claim that H‘,’(M) = H?(M/N). Since Assg (I, M)
is a finite set and «/T+p =m for all p € Assg(I, M), we can check that the ideal I+ (,cassr,m) P iS
m-primary. Because Assg(M/N) = Assg(I, M), we have Rad(Anng(M/N)) = ﬂpeAssR(,!M) p. Therefore,
I + Anng(M/N) is m-primary. So, we have by the Independence Theorem [BS, Theorem 4.2.1] that

d ~ pgd ~ pqd
HI(M/N) = HY g acanng w/ny (M/N) = HE (M/N).

Thus, H4(M) = H%, (M/N).
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(iii) = (i). Since H‘,i(M) = an(M/N), we have AnnR(H?(M)) =AnnR(H?n(M/N)). Since R/
Anng HY(M) is catenary, the ring R/Anng H% (M/N) is catenary. By Lemma 2.5, H% (M/N) satisfies
the property (x) and hence so does H‘,j(M). a

Corollary 2.8. Let Assg (I, M) be defined as in Notations 1.1. Then we have:

(i) Assg(I, M) C Attg H?(M). In particular, if Assg (I, M) # @ then H?(M) #0.
(ii) Suppose that Assg (I, M) = ¢. Then H%(M) satisfies (x) if and only if H4(M) = 0.

Proof. (i) Let p € Assg(I, M). Then p € Assg M, dim(R/p) =d and /I+p=m. Let P € Ass§(/li/p/R\)
such that dim(R/P) =d. Then P N R =p. Since

Assy M= U Assﬂﬁ/qﬁ)
qeAssg M

by [Mat, Theorem 23.2(ii)], we have P € Assg M. Because /T+p =m, it follows that vIR + P = .
Therefore P € Atty H‘,j(M) by Lemma 2.4. Hence p € Attg H‘,’(M) by Lemma 2.3. Therefore Assg(I, M) C
Attg H‘Ij(M)‘ The rest assertion follows by Lemma 2.2.

(i) Suppose that Assg(I, M) = . It is clear that if HY(M) =0 then HY(M) satisfies the prop-
erty (x). Suppose that H?(M) # 0. Then there exists p € Attg H‘,’(M) by Lemma 2.2. It follows by
Lemmas 2.3 and 2.4 that p € Assg M and dim(R/p) =d. If H?(M) satisfies the property (x) then
/T+p=m by Theorem 2.7, and hence p € Assg(I, M). This is impossible. O

Remark 2.9. If dimR < 1 then H}(M) satisfies the property (x). This follows by Lemma 2.5 and the
fact that R is catenary and H} (M) = H}(My) = H1 (My), where My = M/ Un>1(0 :m ). Note that
R is not necessarily complete when dim R = 1. Moreover, there exists by D. Ferrand and M. Raynaud
[FR] a Noetherian local ring (R, m) of dimension 1 which cannot be expressed as a quotient of a
Gorenstein local ring.

3. Attached primes, co-support and multiplicity

Using Theorem 2.7, we have the following description of the attached primes of H‘;(M).

Corollary 3.1. If H ‘,’(M ) satisfies the property (x) then

Attg HY(M) = [p € Assg M | dim(R/p) =d, /I +p=m}.

Proof. Let Assg(I, M) be defined as in Notations 1.1. Then Ass(I, M) C Attg H‘Ij(M) by Corollary 2.8(i).
Let p € Attg HY(M). Then p € Assg M and dim(R/p) = d. Since H{(M) satisfies the property (%),
J/IT+p=m by Theorem 2.7. Therefore p € Ass(I, M). Thus,

Attg H‘,j(M) =Assg(I, M) = {p € Assg M ] dim(R/p) =d, /I+p= m}. a

Note that Assz(M) = UpeASSRMAss;g(ﬁ/pﬁ) for all finitely generated R-modules M, cf. [Mat, The-
orem 23.2(ii)]. However, the dual formula Att; A = UpeAttRA Assﬂﬁ/pﬁ) for an Artinian R-module A

is not true in general. Below, we give a characterization for H‘;(M) to satisfy this formula. Following
M. Nagata [Na], R is called unmixed if dim(R/P) =dim(R) for all P € Ass(R).



LT. Nhan, T.D.M. Chau / Journal of Algebra 349 (2012) 342-352 347

Proposition 3.2. Let Assg (I, M) be defined as in Notations 1.1. Then the following statements are equivalent:

(i) Attg HIM) = U, ca, Hi o) Assz(R/pR).
(ii) H‘}(M) satisfies the property (x) and R /p is unmixed for all p € Assg (I, M).

Proof. (i) = (ii). Let g € Var(Anng H4(M)). By Lemma 2.2, there exists p € Attg HY(M) such that
pCq. Let Q € Ass(R/qR) Then Q N R = gq. Since the natural map R — R is flat, it satisfies the
going down theorem [Mat, Theorem 9.5]. Therefore there exists P € Spec(R) such that P € Q and
PN R =p. Because P 2 pR there exists P’ € mmAssR(R/pR) such that P’ C P. Since p € Attg Hd(M)
we get by the hypothesis (i) that P’ € Atty Hd(M). Hence P’ O Anng Hd(M) by Lemma 2.2 and hence
Q 2 Anng H?(M). Since R-module Hj’(M) satisfies the property (), we have Anng(0 HY (M) Q)=Q
Therefore

q € Anng (0 ‘H (M) q) € Anng (0 “H () Q)NR=QNR=q.

Hence Anng (0 gy D =4 Thus H‘,j(M) satisfies the property (x).
1

Let p € Assg(I, M). Then p € Attg H‘Ij(M) by Corollary 2.8(i). Let P € Assy (R/pR) Then P €
Atty H‘I”(M) by the assumption (i), and hence dim('ﬁ/P) =d by Lemma 2.4. Therefore R/p is un-
mixed.

(ii) = (i). Let P € Attz HY(M). Set p = PNR. Then p € Attg H!(M) by Lemma 2.3 and dim(R/P) =d
by Lemma 2.4. It follows that dim(R/p) = d. Hence P € Assz(R/pR).

Conversely, let p € Attg Hd(M) and P € Ass3 (R/pR) Since Hd(M) satisfies the property (x) by (ii),
we have p € Assg(I, M) by Corollary 3.1. Therefore p € Assg M, dlm(R/p) d and /T+p =m. Hence
Pe ASSAM by [Mat, Theorem 23. 2(11)] Since R/p is unmixed by (ii), dlm(R/P) =dim(R/p) =d. Since

T+ p=m, it follows that \/m =m. Hence P € Atty H‘f(M) by Lemma 2.4. O
Let p € SpecR. In [Sm], K.E. Smith studied a functor called “dual to localization”
Fy(—) = Homg (Homg (—, E(R/m)), E(R/p))
from the category of R-modules to the category of R,-modules, where E(—) is the injective hull. Note
that this functor F is linear exact, F,(A) # 0 if and only if p © Anng A, and when R is complete then

Fp(A) is Artinian for any Artinian R-module A.

Proposition 3.3. Let p € Spec(R) and let F,(—) be the above dual to localization. Let N be defined as in
Notations 1.1. Suppose that R is complete. Then

Fp(HY(M)) = H d d““(R/ P(M/N),.

Proof. Since R is complete, H?(M) satisfies the property (x). Hence H‘,j(M) = Hﬂl(M/N) by Theo-
rem 2.7. Since R is complete, it follows from the local duality [BS, 11.2.6] that

~ ~ d d R
Fp (HY(M)) = Fp (HS, (M/N)) = ”“‘ M(M/N),. O
Proposition 3.3 suggests the following notion of co-support of H?(M).

Definition 3.4. Let N be defined as in Notations 1.1. The co-support of H‘}(M). denoted by
CosR(H‘,j(M)), is defined as follows

Cosg (H{ (M) = {p € Spec(R) | Hygo" /P (M/N), 0}
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In general we have the following inclusion.
Lemma 3.5. Cosg (HY(M)) C Var(Anng HY(M)).

Proof. Let Assg(I, M) and N be defined as in Notations 1.1. Let p € CosR(H‘,j(M)). Then we have
Hg-};ﬂ;m(R/M(M/N)p # 0. Therefore there exists qRy, € Attg, (H‘;-’S;m(R/p)(M/N)p) by Lemma 2.2. It fol-
lows by the weak general shifted localization principle [BS, 11.3.8] that q € Attg H‘rjn(M/N). Hence
q € Assg(M/N) by Lemmas 2.3 and 2.4. Since Assg(M/N) = Assg(I, M), we have q € Assg(l, M).
Hence q € Attg H‘f(M) by Corollary 2.8(i) and hence g 2 Anng H‘f(M) by Lemma 2.2. Therefore

p € Var(Anng HY(M)). O

Let i >0 be an integer. Recall that the i-th pseudo support of M, denoted by Psupp’(M), is defined
by

) i-dim(R
Psuppk (M) = {p € Spec(R) | H;R‘p”‘( ® (M), # 0},
cf. [BS1]. The following lemma follows easily by Definition 3.4.

Lemma 3.6. Let N be defined as in Notations 1.1. Let Uy (0) be the largest submodule of M of dimension less
than d. Then we have:

(i) Cosg(H{(M)) =Psuppg (M/N).
(ii) Cosg(H{, (M) = Psupp (M/Up (0)) = Psuppf (M).

The following theorem, which is the second main result of this paper, characterizes the property
(*) of HY(M) in term of the co-support.

Theorem 3.7. The following statements are equivalent:

(i) Hf(M) satisfies the property (x).
(i) Cosg(HY(M)) = Var(Anng H}(M)).

Proof. (i) = (ii). Let Assg(I, M) and N be defined as in Notations 1.1. Since H‘,’(M) satisfies the
property (x), we have H‘,j(M) = H?n(M/N) by Theorem 2.7. It follows that HﬂI(M/N) satisfies the
property (x). So, we have by [NA1, Theorem 3.1] and Lemma 3.6 that

Var(Anng HS (M/N)) = Psupp% (M/N) = Cosg (H{(M)).

Hence Var(Anng H¢(M)) = Var(Anng H%, (M/N)) = Cosg (H4(M)).

(ii) = (i). Let g 2 AnnR(H‘Ij(M)). Then q € CosR(H‘Ij(M)) by the assumption (ii), and hence
H‘;;S;‘“(R/ V(M/N)q # 0. Let Q €. Ass(R/qR) such that dim(ﬁ/Q)A — dim(R/q). Then Q NR =q and
Q is a minimal prime ideal of qR. Since the induced map Ry — Rq is faithfully flat, we have by the

Flat Base Change Theorem [BS, 4.3.2] that

d-dim(R/Q) 77 v~ pyd-dim(R/q) ~
HQEIZI ! )(M/N)Q:HqR;m /a (M/N)q ® Rq #0. (1)

Let 0= cass, m N(p) be a reduced primary decomposition of 0. Then N = (", ass,1,m) N(P). For
each p € Assg M, we get by [Mat, Theorem 23.2(ii)] that Assg(lVI/ﬁ(F)) :Assg(ﬁ/pﬁ). Therefore ﬁ(p?)
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has a reduced primary decomposition N/(B = mPeAss(ﬁ/pﬁ) K(p, P), where K(p, P) is P-primary. Since

R — R is faithfully flat, it follows that N = MpeAss .M N/(B and 0= ﬂpeASSRMN/(B. Therefore we
can check that

N= (] K@P) and 0= () K@.P)
peAssRA(l,I\i) peAsEB MA
PeAss(R/pR) PeAss(R/pR)

are reduced primary decompositions respectively of N and 0. Let Ky be the intersection of all primary
components K(p, P) where p € Assg(I, M) and P € Assj (R/pR) such that dlm(R/P) =d. It is clear
that K1 2 N and dimg K1 < d. Therefore

dim(K;/N)q < d-dim(R/Q).

So, from the exact sequence 0 — Kﬁﬁ — 1\71//1\7 — 1\71/K1 — 0, we have an isomorphism

H* d““(R/Q)(A/I/I\J) ~H

dim(R/Q) 75
oRy o B/ K)q.

d-
Q
Therefore we get by (1) that
d-dim(R/Q) , 5

HQﬁQ (M/K1)q #0. (2)

As in Notations 1.1, set
Assp(IR, M) = {Pe Assz M | dim(R/P)=d, VIR+P = m}.
Then we have by [Mat, Theorem 23.2(ii)] that
Assp(IR, M) = {P € Assg =(R/pR) | p e Assg M, dim(R/P)=d, VP +IR = m}.

Set K2 = Mpessyir.any KB, P). Since VIR+ P = for all P € Uyenssym Assz(R/pR), it follows
that

Assg(IR, M) 2 {P € Assz(R/pR) | p € Assg(I, M), dim(R/P) =d}.

Therefore K, € K. Since dimK; < d, we have dim(K1/K2)q < d—dim(ﬁ/Q). So, from the exact se-
quence

0— K1/K2 — M/Ky — M/K; — 0
we get an isomorphism

Therefore we have by (2) that HE dlm(R/Q)(M/I(Z)Q # 0. It means that Q € Cosp (Hd (M)) As Hd (M)
satisfies the property (x), we have Cosp (Hd (M)) = Var(Anng (Hd (M))) by the proof of (i) = (ii).
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Hence Q 2 Annﬁ(ka(A’Z)). Since H‘Iik(IVI) satisfies the property () and Hf(M) = H;%(IVI) as R-
modules, we have

Annz(0: =Annz(0: o =Q.
R( H?(M) Q) R( H(Ijﬁ(M) Q) Q
So, we have
q € Anng (0 ‘H (M) q) € Anng(0 “Hd () Q)NR=QNR=q.
It follows that Anng (0 “He (M) q) = q. Thus H‘Ij(M) satisfies the property (x). O

Remark 3.8. Theorem 3.7 asserts that if H?(M) satisfies the property () then its co-support is a
closed subset of Spec(R) in the Zariski topology. Note that Cosg H‘Ij(M) may not closed even when
I =m, cf. [BS1, Example 3.2]. In general, if R/Anng Hﬁl(M) is not catenary then Cosg HfL(M) is not
closed, cf. [NA1, Corollary 3.4].

Even R is a quotient of a regular local ring and CosR(H‘Ii(M)) is closed, H‘;(M) may not satisfy the
property (x). Here is an example.

Example 3.9. Let K be a field of characteristic 0. Let S = K[X1, X2, X3] denote the ring of polynomials

over K. Set n= (X1, X2, X3), a= (X5 — X? — X3), b= (X2) and c=anNb. Let x; denote the image of
Xiin S/c. Let R=(5/¢)nsc, m = (X1, X2, X3)R and

I'=(x1+x —X2x3)R + ((x3 — 1)?(xs + 1) = 1)R.
Then (R, m) is a Noetherian local ring with dimR =2 and

(i) Attg H#(R) = {aR, bR};
(i) Var(Anng H2(R)) = Spec(R) and Cosg(H?(R)) = Var(bR);
(iii) H,z(R) does not satisfy the property (x).
Proof. Note that R/aR is a domain, cf. [BS1, 8.2.9]. It is clear that R/bR is a domain. Therefore
Ass(R) = {aR, bR}. So, dimR = 2.

(i) From the exact sequence 0 —- R — R/aR & R/bR — R/(aR + bR) — 0 with notice that
dimR/(aR 4+ bR) =1, we have an exact sequence

H](R/(aR +bR)) — H}(R) — H?(R/aR) & H (R/bR) — 0.
Therefore it follows by Lemma 2.2(iii) that
Attg H?(R) = Attg H?(R/aR) U Attg H?(R/bR).
Since Hf(R/aR) # 0 by [BS1, 8.2.9], we have
(% # Attg H?(R/aR) C Assg(R/aR) = {aR}.

So, Attg H#(R/aR) = {aR}. Because I + bR is m-primary, H?(R/bR) = H2 (R/bR). Hence Attg H?(R/
bR) = {bR}. Therefore Attg H?(R) = {aR, bR}.
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(ii) Since Attg H%(R) = {aR, bR} = Ass(R), we have Var(Anng HIZ(R)) = Spec(R) by Lemma 2.2.
Note that 0 = aR N bR is a reduced primary decomposition of the ideal 0 of R, dim(R/(I + bR)) =0
and dim(R/(I + aR)) =1 by [BS1, 8.2.9]. Therefore,

Cosg (HZ(R)) = {p € Spec(R) | Hi;;tm“/p)(}e/b}e) 0} = Psupp (R/bR).
As R is catenary, an(R/bR) satisfies the property (x) by Lemma 2.5. So,
Psupp%(R/bR) = Var(Anng HZ (R/bR)) = Var(bR)

by [NA1, Theorem 3.1]. Thus, CosR(HIZ(R)) =Var(bR).
(iii) Since CosR(H%(R)) # Var(Anng H% (R)), it follows by Theorem 3.7 that Hf(R) does not satisfy
the property (x). O

R.N. Roberts [R] introduced the concept of Krull dimension for Artinian modules. D. Kirby [K]
changed the terminology of Roberts and referred to Noetherian dimension to avoid confusion with
Krull dimension defined for finitely generated modules. The Noetherian dimension of an Artinian R-
module A is denoted by N-dimg(A). Note that if q is an ideal of R such that £(0:4 q) < oo then
£(0:4 g") is a polynomial with rational coefficients for n > 0, cf. [K, Proposition 2] and

N-dimg (A) = deg(€(0:4 q")) = inf{t | 3x1, ..., x € m: £(0:4 (x1,...,X)R) < o0},

cf. [R, Theorem 6]. Assume that N-dimg(A) =t. Let a; be the leading coefficient of the polynomial
£(0:4 g") for n > 0. Following Brodmann and Sharp [BS1], the multiplicity of A with respect to g,
denoted by e’(q, A), is defined by the formula e’(g, A) :=a¢t!.

As a consequence, we have the following associativity formula for the multiplicity of H‘,j(M) when

H4(M) satisfies the property (x).

Corollary 3.10. Let q be an m-primary ideal. Let Assg(I, M) and N be defined as in Notations 1.1. If H‘}(M)
satisfies the property (x) then

e(a. H{(M) = > tr,(Hpg, (M/N)y)e(a, R/p).

peCos HY (M)
dim(R/p)=d

In this case, ¢/ (q, H{ (M)) = e(q, M/N) = " cass1.m) £R» (Mp)e(a, R/p).

Proof. Since H‘Ij(M) satisfies the property (x), H‘}(M) = H?n(M/N) by Theorem 2.7. So, H?H(M/N)
satisfies the property (x). Note that CosR(H‘Ij(M)) = Psupp'fz(M/N) by Lemma 3.6. Therefore we get
by [NA1, Corollary 3.4] that

e'(a, H{(M)) =€/ (a, HL(M/N)) = >~ €r, (Hpg, (M/N)y)e(a, R/p).

peCos HY (M)
dim(R/p)=d

Let p € Cos(H‘,i(M)) such that dim(R/p) =d. Then p € minVar(Anng H‘,i(M)) by Lemma 3.5. Hence

p € Attg H?(M) by Lemma 2.2, and hence p € Assg(I, M) by Corollary 3.1. Therefore p ¢ Assg(N).
Since dim(R/p) = d, we have p ¢ Suppg N. So, M, = (M/N),. Note that ¢(My) < oo. Hence
Hng (My) = M,. Combining these facts with notice that
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Assg(M/N) = Assg(I,M) ={p € Cos(H{(M)) | dim(R/p) =d},

the rest assertion follows by the associativity formula for the multiplicity e(q, M/N) of M/N with
respect to q. O
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