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Let (R,m) be a Noetherian local ring and I an ideal of R . Let M be
a finitely generated R-module with dim M = d. It is clear by Matlis
duality that if R is complete then Hd

I (M) satisfies the following
property:

AnnR(0 :Hd
I (M)

p) = p

for all prime ideals p ⊇ AnnR Hd
I (M). (∗)

However, Hd
I (M) does not satisfy the property (∗) in general. In

this paper we characterize the property (∗) of Hd
I (M) in order

to study the catenarity of the ring R/AnnR Hd
I (M), the set of

attached primes AttR Hd
I (M), the co-support CosR (Hd

I (M)), and
the multiplicity of Hd

I (M). We also show that if Hd
I (M) satisfies

the property (∗) then Hd
I (M) ∼= Hd

m(M/N) for some submodule N
of M .

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper, (R,m) is a Noetherian local ring, I is an ideal of R and M is a finitely
generated R-module with dim M = d. Let Var(I) denote the set of all prime ideals of R containing I .
Denote by R̂ and M̂ the m-adic completions of R and M respectively.

It is clear that AnnR(M/pM) = p for all prime ideals p ∈ Var(AnnR M). So, it follows by Matlis
duality that if R is complete then
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AnnR(0 :A p) = p for all p ∈ Var(AnnR A) (∗)

for all Artinian R-modules A. Recently, H. Zöschinger [Zos] proved that the property (∗) is satisfied for
all Artinian R-modules if and only if the natural map R → R̂ satisfies the going up theorem. However,
the property (∗) is not satisfied in general, cf. [CN, Example 4.4].

We know that the local cohomology module Hi
m(M) is Artinian for all i. It is shown that the top

local cohomology module Hd
m(M) satisfies the property (∗) if and only if the ring R/AnnR(Hd

m(M))

is catenary, cf. [CDN, Main Theorem]. Also, Hi
m(M) satisfies the property (∗) for all finitely generated

R-modules M and all integers i � 0 if and only if R is universally catenary and all its formal fibers
are Cohen–Macaulay (see [NA1, Corollary 3.2], [NC, Proposition 3.6]).

Note that the top local cohomology module Hd
I (M) is Artinian, but it may not satisfy the property

(∗) even when R is a quotient of a regular local ring (see Example 3.9). In this paper, we characterize
the property (∗) of Hd

I (M) in order to study the catenarity of the ring R/AnnR Hd
I (M), the set of

attached primes AttR(Hd
I (M)), the co-support CosR(Hd

I (M)) and the multiplicity of Hd
I (M).

Following I.G. Macdonald [Mac], the set of attached primes of an Artinian R-module A is denoted
by AttR A. From now on, we keep the following notations.

Notations 1.1. Let 0 = ⋂
p∈AssR M N(p) be a reduced primary decomposition of the submodule 0 of M .

Set

AssR(I, M) = {
p ∈ AssR M

∣∣ dim(R/p) = d,
√

p + I = m
}
.

Set N = ⋂
p∈AssR (I,M) N(p). Note that N does not depend on the choice of the reduced primary decom-

position of 0 because AssR(I, M) ⊆ min AssR M . The co-support of Hd
I (M), denoted by Cos(Hd

I (M)), is
defined by

CosR
(

Hd
I (M)

) = {
p ∈ Spec(R)

∣∣ Hd-dim(R/p)
pRp

(M/N)p �= 0
}
.

The following theorem is the main result of this paper.

Theorem 1.2. The following statements are equivalent:

(i) Hd
I (M) satisfies the property (∗).

(ii) The ring R/AnnR Hd
I (M) is catenary and

√
p + I = m for all p ∈ AttR Hd

I (M).
(iii) The ring R/AnnR Hd

I (M) is catenary and Hd
I (M) ∼= Hd

m(M/N).
(iv) CosR(Hd

I (M)) = Var(AnnR Hd
I (M)).

This theorem will be proved in Sections 2 and 3 (Theorems 2.7 and 3.7). As consequences, we
show that if Hd

I (M) satisfies the property (∗) then the results on the attached primes, the co-support
and the multiplicity of Hd

I (M) are as good as when R is complete.

2. The property (∗) of Hd
I (M)

Let us recall the following notion introduced in [CN, Definition 4.2].

Definition 2.1. Let A be an Artinian R-module. A is said to satisfy the property (∗) if

AnnR(0 :A p) = p for all p ∈ Var(AnnR A). (∗)
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In this section, we study the property (∗) for Hd
I (M). Before presenting the results, we need some

preliminaries.
The theory of secondary representation was introduced by I.G. Macdonald [Mac]. This theory is

in some sense dual to the more known theory of primary decomposition for Noetherian modules.
Note that every Artinian R-module A has a minimal secondary representation A = A1 + · · · + An,

where Ai is pi -secondary. The set {p1, . . . ,pn} is independent of the choice of the minimal secondary
representation of A. This set is called the set of attached primes of A, and denoted by AttR A.

Lemma 2.2. (See [Mac].) Let A be an Artinian R-module. Then:

(i) A �= 0 if and only if AttR A �= ∅.

(ii) min AttR A = min Var(AnnR A).
(iii) If 0 → A′ → A → A′′ → 0 is an exact sequence of Artinian R-modules then

AttR A′′ ⊆ AttR A ⊆ AttR A′ ∪ AttR A′′.

If A is an Artinian R-module then A has a natural structure as an R̂-module. With this structure,
a subset of A is an R-submodule if and only if it is an R̂-submodule of A. Therefore A is an Artinian
R̂-module.

Lemma 2.3. (See [BS, 8.2.4 and 8.2.5].) AttR A = {P ∩ R | P ∈ AttR̂ A}.

Denote by m̂ the unique maximal ideal of R̂. The attached primes of the R̂-module Hd
I (M) can be

described as follows.

Lemma 2.4. (See [DSc, Corollary 3.3].)

AttR̂ Hd
I (M) = {

P ∈ AssR̂ M̂
∣∣ dim(R̂/P ) = d,

√
P + I R̂ = m̂

}
.

The following result shows that the property (∗) of the top local cohomology module Hd
m(M) can

be characterized by the catenarity of the base ring.

Lemma 2.5. (See [CDN, Main Theorem].) The following statements are equivalent:

(i) Hd
m(M) satisfies the property (∗).

(ii) The ring R/AnnR Hd
m(M) is catenary.

Following T.N. An and the first author [NA2], an Artinian R-module A is quasi unmixed if
dim(R̂/P ) = dim(R̂/AnnR̂ A) for all P ∈ min AttR̂ A. If dim(R̂/P ) = dim(R̂/AnnR̂ A) for all P ∈ AttR̂ A
then A is called unmixed.

Lemma 2.6. (See [NA2, Theorem 1.1].) Assume that A is quasi unmixed. If A satisfies the property (∗) then the
ring R/AnnR A is catenary and dim(R/AnnR A) = dim(R̂/AnnR̂ A).

The following theorem is the first main result of this paper.

Theorem 2.7. Let N be defined as in Notations 1.1, the following statements are equivalent:

(i) Hd
I (M) satisfies the property (∗).

(ii) The ring R/AnnR Hd
I (M) is catenary and

√
p + I = m for all p ∈ AttR Hd

I (M).

(iii) The ring R/AnnR Hd
I (M) is catenary and Hd

I (M) ∼= Hd
m(M/N).
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Proof. If Hd
I (M) = 0 then the result is clear. So, assume that Hd

I (M) �= 0.

(i) ⇒ (ii). Note that dim(R̂/AnnR̂ Hd
I (M)) = d by Lemmas 2.2 and 2.4. So, it follows by Lemma 2.4

that Hd
I (M) is unmixed. Since Hd

I (M) satisfies the property (∗), we get by Lemma 2.6 that
R/AnnR Hd

I (M) is catenary.
It is clear that

Rad
(
AnnR(0 :Hd

I (M)
I)

) ⊇ Rad
(

I + AnnR Hd
I (M)

)
.

Let q ∈ Spec(R) such that q ⊇ I + AnnR Hd
I (M). Since Hd

I (M) satisfies the property (∗), we have
AnnR(0 :Hd

I (M)
I) ⊆ AnnR(0 :Hd

I (M)
q) = q. It follows that

Rad
(
AnnR(0 :Hd

I (M)
I)

) ⊆
⋂

q∈Spec(R)

q⊇I+AnnR Hd
I (M)

q = Rad
(

I + AnnR Hd
I (M)

)
.

Therefore Rad(AnnR(0 :Hd
I (M)

I)) = Rad(I + AnnR Hd
I (M)). Since Hd

I (M) is Artinian, so is 0 :Hd
I (M)

I .

Because Hd
I (M) is I-cofinite by [DM, Theorem 3], it follows that 0 :Hd

I (M)
I is a finitely generated R-

module. Hence 0 :Hd
I (M)

I is of finite length, and hence AnnR(0 :Hd
I (M)

I) is an m-primary ideal of R .

Therefore I + AnnR Hd
I (M) is m-primary. Let p ∈ AttR Hd

I (M). Then p ⊇ AnnR Hd
I (M) by Lemma 2.2.

Therefore I + p is m-primary.
(ii) ⇒ (iii). As in Notations 1.1, let 0 = ⋂

p∈AssR M N(p) be a reduced primary decomposition of the
submodule 0 of M and set N = ⋂

p∈AssR (I,M) N(p), where

AssR(I, M) = {
p ∈ AssR M

∣∣ dim(R/p) = d,
√

I + p = m
}
.

It is easy to check that AssR(M/N) = AssR(I, M) and AssR N = AssR M \ AssR(I, M). From the exact
sequence 0 → N → M → M/N → 0 we get the exact sequence

Hd
I (N) → Hd

I (M) → Hd
I (M/N) → 0.

We claim that Hd
I (N) = 0. Suppose that Hd

I (N) �= 0 and we look for a contradiction. Then there exists
by Lemma 2.2 an attached prime P ∈ AttR̂ Hd

I (N). By Lemma 2.4, we have P ∈ AssR̂ N̂ , dim(R̂/P ) = d

and
√

I R̂ + P = m̂. Since AssR̂ N̂ ⊆ AssR̂ M̂, it follows that P ∈ AssR̂ M̂. Therefore P ∈ AttR̂ Hd
I (M) by

Lemma 2.4. Set p = P ∩ R. Then p ∈ AttR Hd
I (M) by Lemma 2.3. By the assumption (ii), we have√

p + I = m. Since P ∈ AssR̂ M̂ and dim(R̂/P ) = d, we get p ∈ AssR M and dim(R/p) = d. Therefore
p ∈ AssR(I, M). On the other hand, because P ∈ AttR̂ Hd

I (N), we have by Lemma 2.4 that P ∈ AssR̂ N̂ .
Hence p ∈ AssR N and hence p ∈ AssR M \ AssR(I, M). This gives a contradiction. Therefore Hd

I (N) = 0,
the claim is proved.

It follows by the above exact sequence and by the claim that Hd
I (M) ∼= Hd

I (M/N). Since AssR(I, M)

is a finite set and
√

I + p = m for all p ∈ AssR(I, M), we can check that the ideal I + ⋂
p∈Ass(I,M) p is

m-primary. Because AssR(M/N) = AssR(I, M), we have Rad(AnnR(M/N)) = ⋂
p∈AssR (I,M) p. Therefore,

I + AnnR(M/N) is m-primary. So, we have by the Independence Theorem [BS, Theorem 4.2.1] that

Hd
I (M/N) ∼= Hd

I+Rad(AnnR M/N)(M/N) ∼= Hd
m(M/N).

Thus, Hd
I (M) ∼= Hd

m(M/N).



346 L.T. Nhan, T.D.M. Chau / Journal of Algebra 349 (2012) 342–352
(iii) ⇒ (i). Since Hd
I (M) ∼= Hd

m(M/N), we have AnnR(Hd
I (M)) = AnnR(Hd

m(M/N)). Since R/

AnnR Hd
I (M) is catenary, the ring R/AnnR Hd

m(M/N) is catenary. By Lemma 2.5, Hd
m(M/N) satisfies

the property (∗) and hence so does Hd
I (M). �

Corollary 2.8. Let AssR(I, M) be defined as in Notations 1.1. Then we have:

(i) AssR(I, M) ⊆ AttR Hd
I (M). In particular, if AssR(I, M) �= ∅ then Hd

I (M) �= 0.

(ii) Suppose that AssR(I, M) = ∅. Then Hd
I (M) satisfies (∗) if and only if Hd

I (M) = 0.

Proof. (i) Let p ∈ AssR(I, M). Then p ∈ AssR M, dim(R/p) = d and
√

I + p = m. Let P ∈ AssR̂(R̂/pR̂)

such that dim(R̂/P ) = d. Then P ∩ R = p. Since

AssR̂ M̂ =
⋃

q∈AssR M

AssR̂(R̂/qR̂)

by [Mat, Theorem 23.2(ii)], we have P ∈ AssR̂ M̂. Because
√

I + p = m, it follows that
√

I R̂ + P = m̂.

Therefore P ∈ AttR̂ Hd
I (M) by Lemma 2.4. Hence p ∈ AttR Hd

I (M) by Lemma 2.3. Therefore AssR(I, M) ⊆
AttR Hd

I (M). The rest assertion follows by Lemma 2.2.
(ii) Suppose that AssR(I, M) = ∅. It is clear that if Hd

I (M) = 0 then Hd
I (M) satisfies the prop-

erty (∗). Suppose that Hd
I (M) �= 0. Then there exists p ∈ AttR Hd

I (M) by Lemma 2.2. It follows by
Lemmas 2.3 and 2.4 that p ∈ AssR M and dim(R/p) = d. If Hd

I (M) satisfies the property (∗) then√
I + p = m by Theorem 2.7, and hence p ∈ AssR(I, M). This is impossible. �

Remark 2.9. If dim R � 1 then H1
I (M) satisfies the property (∗). This follows by Lemma 2.5 and the

fact that R is catenary and H1
I (M) ∼= H1

I (M1) ∼= H1
m(M1), where M1 = M/

⋃
n�1(0 :M In). Note that

R is not necessarily complete when dim R = 1. Moreover, there exists by D. Ferrand and M. Raynaud
[FR] a Noetherian local ring (R,m) of dimension 1 which cannot be expressed as a quotient of a
Gorenstein local ring.

3. Attached primes, co-support and multiplicity

Using Theorem 2.7, we have the following description of the attached primes of Hd
I (M).

Corollary 3.1. If Hd
I (M) satisfies the property (∗) then

AttR Hd
I (M) = {

p ∈ AssR M
∣∣ dim(R/p) = d,

√
I + p = m

}
.

Proof. Let AssR(I, M) be defined as in Notations 1.1. Then Ass(I, M) ⊆ AttR Hd
I (M) by Corollary 2.8(i).

Let p ∈ AttR Hd
I (M). Then p ∈ AssR M and dim(R/p) = d. Since Hd

I (M) satisfies the property (∗),√
I + p = m by Theorem 2.7. Therefore p ∈ Ass(I, M). Thus,

AttR Hd
I (M) = AssR(I, M) = {

p ∈ AssR M
∣∣ dim(R/p) = d,

√
I + p = m

}
. �

Note that AssR̂(M̂) = ⋃
p∈AssR M AssR̂(R̂/pR̂) for all finitely generated R-modules M , cf. [Mat, The-

orem 23.2(ii)]. However, the dual formula AttR̂ A = ⋃
p∈AttR A AssR̂(R̂/pR̂) for an Artinian R-module A

is not true in general. Below, we give a characterization for Hd
I (M) to satisfy this formula. Following

M. Nagata [Na], R is called unmixed if dim(R̂/P ) = dim(R̂) for all P ∈ Ass(R̂).
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Proposition 3.2. Let AssR(I, M) be defined as in Notations 1.1. Then the following statements are equivalent:

(i) AttR̂ Hd
I (M) = ⋃

p∈AttR Hd
I (M)

AssR̂(R̂/pR̂).

(ii) Hd
I (M) satisfies the property (∗) and R/p is unmixed for all p ∈ AssR(I, M).

Proof. (i) ⇒ (ii). Let q ∈ Var(AnnR Hd
I (M)). By Lemma 2.2, there exists p ∈ AttR Hd

I (M) such that
p ⊆ q. Let Q ∈ Ass(R̂/qR̂). Then Q ∩ R = q. Since the natural map R → R̂ is flat, it satisfies the
going down theorem [Mat, Theorem 9.5]. Therefore there exists P ∈ Spec(R̂) such that P ⊆ Q and
P ∩ R = p. Because P ⊇ pR̂, there exists P ′ ∈ min AssR̂(R̂/pR̂) such that P ′ ⊆ P . Since p ∈ AttR Hd

I (M),
we get by the hypothesis (i) that P ′ ∈ AttR̂ Hd

I (M). Hence P ′ ⊇ AnnR̂ Hd
I (M) by Lemma 2.2 and hence

Q ⊇ AnnR̂ Hd
I (M). Since R̂-module Hd

I (M) satisfies the property (∗), we have AnnR̂(0 :Hd
I (M)

Q ) = Q .

Therefore

q ⊆ AnnR(0 :Hd
I (M)

q) ⊆ AnnR̂(0 :Hd
I (M)

Q ) ∩ R = Q ∩ R = q.

Hence AnnR(0 :Hd
I (M)

q) = q. Thus Hd
I (M) satisfies the property (∗).

Let p ∈ AssR(I, M). Then p ∈ AttR Hd
I (M) by Corollary 2.8(i). Let P ∈ AssR̂(R̂/pR̂). Then P ∈

AttR̂ Hd
I (M) by the assumption (i), and hence dim(R̂/P ) = d by Lemma 2.4. Therefore R/p is un-

mixed.
(ii) ⇒ (i). Let P ∈ AttR̂ Hd

I (M). Set p = P ∩ R. Then p ∈ AttR Hd
I (M) by Lemma 2.3 and dim(R̂/P ) = d

by Lemma 2.4. It follows that dim(R/p) = d. Hence P ∈ AssR̂(R̂/pR̂).

Conversely, let p ∈ AttR Hd
I (M) and P ∈ AssR̂(R̂/pR̂). Since Hd

I (M) satisfies the property (∗) by (ii),
we have p ∈ AssR(I, M) by Corollary 3.1. Therefore p ∈ AssR M , dim(R/p) = d and

√
I + p = m. Hence

P ∈ AssR̂ M̂ by [Mat, Theorem 23.2(ii)]. Since R/p is unmixed by (ii), dim(R̂/P ) = dim(R/p) = d. Since√
I + p = m, it follows that

√
P + I R̂ = m̂. Hence P ∈ AttR̂ Hd

I (M) by Lemma 2.4. �
Let p ∈ Spec R . In [Sm], K.E. Smith studied a functor called “dual to localization”

Fp(−) = HomR
(
HomR

(−, E(R/m)
)
, E(R/p)

)

from the category of R-modules to the category of Rp-modules, where E(−) is the injective hull. Note
that this functor Fp is linear exact, Fp(A) �= 0 if and only if p ⊇ AnnR A, and when R is complete then
Fp(A) is Artinian for any Artinian R-module A.

Proposition 3.3. Let p ∈ Spec(R) and let Fp(−) be the above dual to localization. Let N be defined as in
Notations 1.1. Suppose that R is complete. Then

Fp

(
Hd

I (M)
) ∼= Hd-dim(R/p)

pRp
(M/N)p.

Proof. Since R is complete, Hd
I (M) satisfies the property (∗). Hence Hd

I (M) ∼= Hd
m(M/N) by Theo-

rem 2.7. Since R is complete, it follows from the local duality [BS, 11.2.6] that

Fp

(
Hd

I (M)
) ∼= Fp

(
Hd

m(M/N)
) ∼= Hd-dim(R/p)

pRp
(M/N)p. �

Proposition 3.3 suggests the following notion of co-support of Hd
I (M).

Definition 3.4. Let N be defined as in Notations 1.1. The co-support of Hd
I (M), denoted by

CosR(Hd
I (M)), is defined as follows

CosR
(

Hd
I (M)

) = {
p ∈ Spec(R)

∣∣ Hd-dim(R/p)
pRp

(M/N)p �= 0
}
.
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In general we have the following inclusion.

Lemma 3.5. CosR(Hd
I (M)) ⊆ Var(AnnR Hd

I (M)).

Proof. Let AssR(I, M) and N be defined as in Notations 1.1. Let p ∈ CosR(Hd
I (M)). Then we have

Hd-dim(R/p)
pRp

(M/N)p �= 0. Therefore there exists qRp ∈ AttRp
(Hd-dim(R/p)

pRp
(M/N)p) by Lemma 2.2. It fol-

lows by the weak general shifted localization principle [BS, 11.3.8] that q ∈ AttR Hd
m(M/N). Hence

q ∈ AssR(M/N) by Lemmas 2.3 and 2.4. Since AssR(M/N) = AssR(I, M), we have q ∈ AssR(I, M).

Hence q ∈ AttR Hd
I (M) by Corollary 2.8(i) and hence q ⊇ AnnR Hd

I (M) by Lemma 2.2. Therefore
p ∈ Var(AnnR Hd

I (M)). �
Let i � 0 be an integer. Recall that the i-th pseudo support of M , denoted by Psuppi(M), is defined

by

Psuppi
R(M) = {

p ∈ Spec(R)
∣∣ Hi-dim(R/p)

pRp
(M)p �= 0

}
,

cf. [BS1]. The following lemma follows easily by Definition 3.4.

Lemma 3.6. Let N be defined as in Notations 1.1. Let U M(0) be the largest submodule of M of dimension less
than d. Then we have:

(i) CosR(Hd
I (M)) = Psuppd

R(M/N).

(ii) CosR(Hd
m(M)) = Psuppd

R(M/U M(0)) = Psuppd
R(M).

The following theorem, which is the second main result of this paper, characterizes the property
(∗) of Hd

I (M) in term of the co-support.

Theorem 3.7. The following statements are equivalent:

(i) Hd
I (M) satisfies the property (∗).

(ii) CosR(Hd
I (M)) = Var(AnnR Hd

I (M)).

Proof. (i) ⇒ (ii). Let AssR(I, M) and N be defined as in Notations 1.1. Since Hd
I (M) satisfies the

property (∗), we have Hd
I (M) ∼= Hd

m(M/N) by Theorem 2.7. It follows that Hd
m(M/N) satisfies the

property (∗). So, we have by [NA1, Theorem 3.1] and Lemma 3.6 that

Var
(
AnnR Hd

m(M/N)
) = Psuppd

R(M/N) = CosR
(

Hd
I (M)

)
.

Hence Var(AnnR Hd
I (M)) = Var(AnnR Hd

m(M/N)) = CosR(Hd
I (M)).

(ii) ⇒ (i). Let q ⊇ AnnR(Hd
I (M)). Then q ∈ CosR(Hd

I (M)) by the assumption (ii), and hence

Hd-dim(R/q)
qRq

(M/N)q �= 0. Let Q ∈ Ass(R̂/qR̂) such that dim(R̂/Q ) = dim(R/q). Then Q ∩ R = q and

Q is a minimal prime ideal of qR̂. Since the induced map Rq → R̂ Q is faithfully flat, we have by the
Flat Base Change Theorem [BS, 4.3.2] that

Hd-dim(R̂/Q )

Q R̂ Q

̂(M/N)Q
∼= Hd-dim(R/q)

qRq
(M/N)q ⊗ R̂ Q �= 0. (1)

Let 0 = ⋂
p∈AssR M N(p) be a reduced primary decomposition of 0. Then N = ⋂

p∈AssR (I,M) N(p). For

each p ∈ AssR M, we get by [Mat, Theorem 23.2(ii)] that AssR̂(M̂/̂N(p)) = AssR̂(R̂/pR̂). Therefore ̂N(p)
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has a reduced primary decomposition ̂N(p) = ⋂
P∈Ass(R̂/pR̂) K (p, P ), where K (p, P ) is P -primary. Since

R → R̂ is faithfully flat, it follows that N̂ = ⋂
p∈AssR (I,M)

̂N(p) and 0 = ⋂
p∈AssR M

̂N(p). Therefore we
can check that

N̂ =
⋂

p∈AssR (I,M)

P∈Ass(R̂/pR̂)

K (p, P ) and 0 =
⋂

p∈AssR M
P∈Ass(R̂/pR̂)

K (p, P )

are reduced primary decompositions respectively of N̂ and 0. Let K1 be the intersection of all primary
components K (p, P ) where p ∈ AssR(I, M) and P ∈ AssR̂(R̂/pR̂) such that dim(R̂/P ) = d. It is clear
that K1 ⊇ N̂ and dimR̂ K1 < d. Therefore

dim(K1/N̂)Q < d-dim(R̂/Q ).

So, from the exact sequence 0 → K1/N̂ → M̂/N̂ → M̂/K1 → 0, we have an isomorphism

Hd-dim(R̂/Q )

Q R̂ Q

̂(M/N)Q
∼= Hd-dim(R̂/Q )

Q R̂ Q
(M̂/K1)Q .

Therefore we get by (1) that

Hd-dim(R̂/Q )

Q R̂ Q
(M̂/K1)Q �= 0. (2)

As in Notations 1.1, set

AssR̂(I R̂, M̂) = {
P ∈ AssR̂ M̂

∣∣ dim(R̂/P ) = d,
√

I R̂ + P = m̂
}
.

Then we have by [Mat, Theorem 23.2(ii)] that

AssR̂(I R̂, M̂) = {
P ∈ AssR̂(R̂/pR̂)

∣∣ p ∈ AssR M, dim(R̂/P ) = d,
√

P + I R̂ = m̂
}
.

Set K2 = ⋂
P∈AssR̂ (I R̂,M̂) K (p, P ). Since

√
I R̂ + P = m̂ for all P ∈ ⋃

p∈AssR (I,M) AssR̂(R̂/pR̂), it follows
that

AssR̂(I R̂, M̂) ⊇ {
P ∈ AssR̂(R̂/pR̂)

∣∣ p ∈ AssR(I, M), dim(R̂/P ) = d
}
.

Therefore K2 ⊆ K1. Since dim K1 < d, we have dim(K1/K2)Q < d-dim(R̂/Q ). So, from the exact se-
quence

0 → K1/K2 → M̂/K2 → M̂/K1 → 0

we get an isomorphism

Hd-dim(R̂/Q )

Q R̂ Q
(M̂/K2)Q ∼= Hd-dim(R̂/Q )

Q R̂ Q
(M̂/K1)Q .

Therefore we have by (2) that Hd-dim(R̂/Q )

Q R̂ Q
(M̂/K2)Q �= 0. It means that Q ∈ CosR̂(Hd

I R̂
(M̂)). As Hd

I R̂
(M̂)

satisfies the property (∗), we have CosR̂(Hd̂(M̂)) = Var(AnnR̂(Hd̂(M̂))) by the proof of (i) ⇒ (ii).

I R I R
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Hence Q ⊇ AnnR̂(Hd
I R̂

(M̂)). Since Hd
I R̂

(M̂) satisfies the property (∗) and Hd
I (M) ∼= Hd

I R̂
(M̂) as R̂-

modules, we have

AnnR̂(0 :Hd
I (M)

Q ) = AnnR̂(0 :Hd
I R̂

(M̂)
Q ) = Q .

So, we have

q ⊆ AnnR(0 :Hd
I (M)

q) ⊆ AnnR̂(0 :Hd
I (M)

Q ) ∩ R = Q ∩ R = q.

It follows that AnnR(0 :Hd
I (M)

q) = q. Thus Hd
I (M) satisfies the property (∗). �

Remark 3.8. Theorem 3.7 asserts that if Hd
I (M) satisfies the property (∗) then its co-support is a

closed subset of Spec(R) in the Zariski topology. Note that CosR Hd
I (M) may not closed even when

I = m, cf. [BS1, Example 3.2]. In general, if R/AnnR Hd
m(M) is not catenary then CosR Hd

m(M) is not
closed, cf. [NA1, Corollary 3.4].

Even R is a quotient of a regular local ring and CosR(Hd
I (M)) is closed, Hd

I (M) may not satisfy the
property (∗). Here is an example.

Example 3.9. Let K be a field of characteristic 0. Let S = K [X1, X2, X3] denote the ring of polynomials
over K . Set n = (X1, X2, X3), a = (X2

2 − X2
1 − X3

1), b = (X2) and c = a ∩ b. Let xi denote the image of
Xi in S/c. Let R = (S/c)n/c , m = (x1, x2, x3)R and

I = (x1 + x2 − x2x3)R + (
(x3 − 1)2(x1 + 1) − 1

)
R.

Then (R,m) is a Noetherian local ring with dim R = 2 and

(i) AttR H2
I (R) = {aR,bR};

(ii) Var(AnnR H2
I (R)) = Spec(R) and CosR(H2

I (R)) = Var(bR);
(iii) H2

I (R) does not satisfy the property (∗).

Proof. Note that R/aR is a domain, cf. [BS1, 8.2.9]. It is clear that R/bR is a domain. Therefore
Ass(R) = {aR,bR}. So, dim R = 2.

(i) From the exact sequence 0 → R → R/aR ⊕ R/bR → R/(aR + bR) → 0 with notice that
dim R/(aR + bR) = 1, we have an exact sequence

H1
I

(
R/(aR + bR)

) → H2
I (R) → H2

I (R/aR) ⊕ H2
I (R/bR) → 0.

Therefore it follows by Lemma 2.2(iii) that

AttR H2
I (R) = AttR H2

I (R/aR) ∪ AttR H2
I (R/bR).

Since H2
I (R/aR) �= 0 by [BS1, 8.2.9], we have

∅ �= AttR H2
I (R/aR) ⊆ AssR(R/aR) = {aR}.

So, AttR H2
I (R/aR) = {aR}. Because I + bR is m-primary, H2

I (R/bR) ∼= H2
m(R/bR). Hence AttR H2

I (R/

bR) = {bR}. Therefore AttR H2
I (R) = {aR,bR}.
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(ii) Since AttR H2
I (R) = {aR,bR} = Ass(R), we have Var(AnnR H2

I (R)) = Spec(R) by Lemma 2.2.
Note that 0 = aR ∩ bR is a reduced primary decomposition of the ideal 0 of R , dim(R/(I + bR)) = 0
and dim(R/(I + aR)) = 1 by [BS1, 8.2.9]. Therefore,

CosR
(

H2
I (R)

) = {
p ∈ Spec(R)

∣∣ H2-dim(R/p)
pRp

(R/bR) �= 0
} = Psupp2

R(R/bR).

As R is catenary, H2
m(R/bR) satisfies the property (∗) by Lemma 2.5. So,

Psupp2
R(R/bR) = Var

(
AnnR H2

m(R/bR)
) = Var(bR)

by [NA1, Theorem 3.1]. Thus, CosR(H2
I (R)) = Var(bR).

(iii) Since CosR(H2
I (R)) �= Var(AnnR H2

I (R)), it follows by Theorem 3.7 that H2
I (R) does not satisfy

the property (∗). �
R.N. Roberts [R] introduced the concept of Krull dimension for Artinian modules. D. Kirby [K]

changed the terminology of Roberts and referred to Noetherian dimension to avoid confusion with
Krull dimension defined for finitely generated modules. The Noetherian dimension of an Artinian R-
module A is denoted by N-dimR(A). Note that if q is an ideal of R such that �(0 :A q) < ∞ then
�(0 :A qn) is a polynomial with rational coefficients for n � 0, cf. [K, Proposition 2] and

N-dimR(A) = deg
(
�
(
0 :A qn)) = inf

{
t
∣∣ ∃x1, . . . , xt ∈ m: �

(
0 :A (x1, . . . , xt)R

)
< ∞}

,

cf. [R, Theorem 6]. Assume that N-dimR(A) = t. Let at be the leading coefficient of the polynomial
�(0 :A qn) for n � 0. Following Brodmann and Sharp [BS1], the multiplicity of A with respect to q,
denoted by e′(q, A), is defined by the formula e′(q, A) := att!.

As a consequence, we have the following associativity formula for the multiplicity of Hd
I (M) when

Hd
I (M) satisfies the property (∗).

Corollary 3.10. Let q be an m-primary ideal. Let AssR(I, M) and N be defined as in Notations 1.1. If Hd
I (M)

satisfies the property (∗) then

e′(q, Hd
I (M)

) =
∑

p∈Cos Hd
I (M)

dim(R/p)=d

�Rp

(
H0

pRp
(M/N)p

)
e(q, R/p).

In this case, e′(q, Hd
I (M)) = e(q, M/N) = ∑

p∈AssR (I,M) �Rp
(Mp)e(q, R/p).

Proof. Since Hd
I (M) satisfies the property (∗), Hd

I (M) ∼= Hd
m(M/N) by Theorem 2.7. So, Hd

m(M/N)

satisfies the property (∗). Note that CosR(Hd
I (M)) = Psuppd

R(M/N) by Lemma 3.6. Therefore we get
by [NA1, Corollary 3.4] that

e′(q, Hd
I (M)

) = e′(q, Hd
m(M/N)

) =
∑

p∈Cos Hd
I (M)

dim(R/p)=d

�Rp

(
H0

pRp
(M/N)p

)
e(q, R/p).

Let p ∈ Cos(Hd
I (M)) such that dim(R/p) = d. Then p ∈ min Var(AnnR Hd

I (M)) by Lemma 3.5. Hence
p ∈ AttR Hd

I (M) by Lemma 2.2, and hence p ∈ AssR(I, M) by Corollary 3.1. Therefore p /∈ AssR(N).
Since dim(R/p) = d, we have p /∈ SuppR N. So, Mp

∼= (M/N)p . Note that �(Mp) < ∞. Hence
H0

pR (Mp) = Mp. Combining these facts with notice that

p
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AssR(M/N) = AssR(I, M) = {
p ∈ Cos

(
Hd

I (M)
) ∣∣ dim(R/p) = d

}
,

the rest assertion follows by the associativity formula for the multiplicity e(q, M/N) of M/N with
respect to q. �
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