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ABSTRACT 

Let the n X ta complex matrix A have complex eigenvalues A,, A,, . . . , A,,. Upper 

and lower bounds for C(Re&)’ and X(ImX,)’ are obtained, extending similar bounds 
for Xl&l2 obtained by Eberlein (1965), Henrici (1962), and Kress, de Vries, and 
Wegmann (1974). These bounds involve the traces of A*A, B’, C2, and d, where 

B=i(A+A*), C=i(A-A*)/& and D=AA-A*A, and strengthen some of the 

results in our earlier paper “Bounds for eigenvalues using traces” in Linear Algebra 
and A&. [ 121. 

1. INTRODUCTION 

Let A = (adi) be an n x n (nonzero) complex matrix with conjugate traus- 
pose A*, and let &,A,, . . . , A,, be the eigenvalues of A. Then 

7 l/\i12( lPl12= F; laii12=trA*A (1.1) 
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(cf. Schur [lo]), where llAl[ is the Euclidean norm of A. Let 

B= i(A+A*), 

C= ;(A-A*). 

We call B the Hermitian real part and C the Hermitian imuginuy part of A. 
Then (cf. [7, p. 3091) 

x (Be&)‘< llBl12= z 
i i.i 

7 (ImU2 < lICl12= z 

(1.2) 

)$(aii-aji)12=trC2. (1.3) 

Equality in any one of the three inequalities (l.l), (1.2), and (1.3) implies 
equality in all three and occurs if any only if A is normal, i.e., AA* =A*A. 

In [12] the above inequalities were used to deduce bounds for the 
eigenvalues of A of the following type: 

where l&,1, pk, and V~ are the kth ordered mod& real parts, and imaginary 
parts of the eigenvalues of A respectively, while 

T=A,B,C. 

In [l], Eberlein showed that 

7 IhI” =G llAl12- f 5) (1.4 

where 

D=AA* -A*A. 
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This inequality was strengthened by Kress, de Vries, and Wegmann [4]: 

7 l&l2 < ( 11414- f llDl12)1’2. (1.5) 

A corresponding lower bound given in [2] is 

IlA112 - ( +)1’211Dll ( 7 hl”. 0.6) 

The purpose of this paper is to first deduce additional inequalities for 

Z,(ReTQ2 and Ci(ImQ2, which improve (1.2) and (1.3), and then use these 
inequalities to improve the bounds given in [12]. 

Section 2 presents several preliminary inequalities for real eigenvalues as 

well as the upper and lower bounds for Zi]&12, Z,(ReXJ2, and Z ,(ImQ2. 
The eigenvalue bounds are given in Theorems 3.1 and 3.2 in Sec. 3. We 

conclude with several examples in Sec. 4. 

2. PRELIMINARIES 

Our bounds will be deduced from the following bounds for real eigenval- 
ues, presented in [12]. (For related results see, e.g., [5], [8], [ll].) 

LEMMA 2.1. Let A be an Nan complex matrix with real ordered 
eigenvalues 

Let 

and 

be their mean and variance respectively. Then for I< i < k < n, 

???s( n~~:1)1’2~~~~~~~m+~(~)1’2, (2.1) 

m+(n-k)r-1(n-1)-1~2s<~ ,$ 4, (2.2a) 
t==l 
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where r=max(k,n- k), 

n_i+l igkAi <m-(k-1)T-‘(n-~)-“2s, (2.2b) 

where r=max(n-k+l,k-l), 

(xi-A,) <sn”2 
( 

1 + n_:+1)1’2, 
i (2.3) 

(2.5) 

Now suppose that A is an n X n complex matrix with (complex) eigenval- 
ues-&A,, . . . ,A,,. Define 

KAU = ( llAl14- + llDl12)1’2, (2.6) 

IIJX 

( lPl14- $IIDl12)1’2 if IIBII > Ilcll. 

K;= 
II412 _ r m 

I2 llAl12 
otherwise, 

(llCll”- $llDl12)1’2 if [ICI/ > (JB(J K 

c” llCJ7- L !!x 

l2 IJAIl ’ 
othenvise, 

1'211D,[. 
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LEMMA 2.2. If A is an n Xn complex matrix, then for T= A, B,C, 

K; < 2 (&T(2 <K;. (2.7) I 

Proof. If T=A, then (2.7) is just (1.5) and (1.6). Now, if R=A+M is a 

Schur triangular form of A, i.e., A=URU*, U is unitary, A is diagonal and M 

is upper triangular, then 

= lIMl12. 

The left-hand side of (2.7) with T= A, and Eberlein’s inequality (1.4), are 
therefore equivalent to 

1 llDl12 
-- < llMl(2< 
6 llAl12 

PII. 

Furthermore 

IIAl14-( 7 lN2)2= 11414+ llMl14+Wl1211Ml12- (T I;LI”)’ 

= llW14+Wl1211Ml12. 

The right-hand side of (2.7) with T= A is now equivalent to 

(2.8) 

(2.9) 

But 

llBl12- 7 (Rehi)2=]~~(M+M*))12=~llMl12 (2.10) 

and 

llCl12- $1 WV2= $(M-~J~*)~~~=$IIMII~. 
II 

(2.11) 
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Therefore, from (2.8), (2.10), and (2.11), we get that 

(2.12) 

Similarly 

lM4- [ 7 (Reh)2]2=$[ llM114+4~~~(A+A*)~12~~M~~2]; (2.13) 

llCl14- [ T (ImV”]‘= a [ &-A*) 211Ml)2 . 
II I 

(2.14) 

Now, since 

lPl12= ll;(~+~*)l12+ #fl12 

= T (ReAJ2+ ~IlMll”, 

and 

llAl12= T Ihi12= 7 (Rexi)2+ =j: (IlG)2p 

we see that when IJBJ12 > llCl12, then 

2~~~(A+A*)~~2> ljA112. 

Therefore, (2.9), (2.13), and (2.15) imply that 

(2.15) 

7 I&?” Q ( lIBl14- $ llDl12)1’2 when IIJYI 2 IIW (2.16) 
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Similarly, 

T I&?” < ( llCl14- i llDl12)1’2 when llcll > IIBII~ (2.17) 

The result now follows by combining (2.12), (2.16), and (2.17). n 

3. BOUNDS FOR EIGENVALUES 

We can now deduce the bounds for the eigenvalues of an arbitrary 
matrix. Let A be an n x n complex matrix with eigenvalues h,,X,, . . .,a. 
Define 

so that the ordered vectors (4’) satisfy 

hfLq-> *-a aA=, T=A,B,C. 

Further, define 

T=A,B,C, 

trB m”=m’=- trC 
B 

B n’ 
mu=m’=- 

C 
c 12’ 

(s;)2= 
KT - ItrT12/n 

n , T=A, B, C, 

(&)2=max{ 0, K’-‘zT12’n), T=A,B,C, 

where KT, Ki are as in (2.6). 
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THEOREM 3.1. Let A be an n X n complex matrix, and bt (Xi=), r+, 4, 
s,U,ands~bedefinedasabove.ThenfmT=A,B,Candl<i<k<n, 

rr$+(n-k)r-1(n-l)-“2s~< i ,$ hi’, 
1-l 

(34 

(3.2a) 

where r = ma.x( k, n - k), 

(3.2b) 

where r=max(n-k+l,k-l), 

)1’2, (3.3) 

2s&n/(n2-1)“2<h~-&T ifnisodd. (3.5) 

Proof. Note that 

by the triangle and Cauchy-Schwarz inequalities and Lemma 2.2. Further- 
more, 

s;<s, <s;, T=A,B,C. 

The inequalities (3.1) to (3.5) now follow upon substituting the vectors (hT), 
T= A, B, C, for the vector (&) in Lemma 2.1. n 
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When A is real, then we know that the complex eigenvalues of A occur in 

conjugate pairs. Moreover, when A is nonnegative, then the Perron- 
Frobenius theorem implies that the largest eigenvalue of A, in modulus, is 
real and nonnegative. This extra information enables us to strengthen several 
of the bounds for the imaginary parts of the eigenvalues. 

THEOREM 3.2. Suppose that A is real and 

if A is nonnegative, 

otherwise, 

where [ -1 denotes integer part. Then for 1 < i <k < p, 

( max(0,$)}1’2~ f glV, 

(3.6) 

(3.7) 

,x,c-A;, < ( “;,“‘)“‘( f + ,_;,,)““. (3.8) 

Proof. Since A is real, the eigenvalues of A occur in conjugate pairs. 
Furthermore, as mentioned above, if A is nonnegative, then the largest 
eigenvalue of A in modulus is real (and nonnegative). Therefore, there are at 
most 2p nomeal eigenvalues, and moreover, v = c_ i+ r for i = 1,2,. . . ,p. 
This implies that 

2 il w2 = zgl bU2. 

From Lemma 2.2, we now conclude that 

K’ p c 2 < 2 (Ai”)“< T. 
i=l 

(3.9) 
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First, let us prove (3.6): 

l/2 
k1/2 , by Cauchy-Schwarz 

< (K,“/2k)“2, by (3.9). 

Next, 

(s)l”G (-+ &h;)“)‘/: by (3.9) 

sincev>O, i=l,...,p 

This proves (3.7). To prove (3.8), substitute the p-vector (v) for the vector 
(AJ in Lemma 2.1. This gives 

< ( pK;;K,‘)1’2(f+ ,:+,)“‘, by(3.9). H 

4. EXAMPLES 

EXAMPLE 4.1. Marcus and Mint [6, p. 1481 considered the matrix 

i 

7+3i -4-6i -4 
A= -_l-f3i 7 -2-6i 

2 4-6i 13-3i I 
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and found, using results due to Hirsch (cf. [6, p. 1401) that 

IX(A)] < 40.03 

IReh( < 39 , 

]ImA(A)] < 20.12 1 
while Ger&orin’s discs give 

]z-7-3i]< 11.21 
Ix- 71 < I2.40 

Iz- 13+3i] < 9.21 1 

In our earlier paper [12, Sec. 41, we obtained 

9 < Xp < 25.46 

2.64 < h,A < 19.09 , 

0 < X3” < 12.73 I 

9 < h,B < 14.20 

6.40 <X2” < 11.60 , 

3.81<h,B< 9 

and 

0 < h,C < 11.62 

-5.81 <X,c Q 5.81 . 

-ll.SZ<X,c< 0 

Let us now apply Theorem 3.1. First, we find that 

K,: = 256.90, 

K; = 168.95, 

K;= 87.95, KG=198 

ml =9 A ' mu=1255 A * 

m’=m”- 
B B-9 

m”=m,“=O 
c 

sz =2 15 s”=8 74 A', A' 

s'=o B 3 sU=3 40 B * ’ 

s’=541 c .) SC” =8.12 
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Then we have 

(a) mod& 

10.52 < Xf’ < 24.91, 

2.82 < X,A < 18.73, 

0 < x,A < 11.03, 

9.76 < (hf +X:)/2, 

9 < (A; + h,A + A;)/3 < 12.55, 

(X,” +@)/2 < 11.79, 

A; -AZ” < 18.55, 

A;Q - h3” < 21.42, 

X,A -X,A < 18.55, 

4.57< q-X$ 

(b) real parts: 

9 < h,B < 13.81, 

6.60 < h,B < 11.40, 

4.20 < h3” < 9, 

Xl” - X,B < 7.21, 

Al”+‘< 8.33, 

X[-h! < 7.21; 

(c) imuginuy parts: 

3.81< A,C < 11.49, 

-5.74< A,c< 5.74, 

- 11.49 < h3” < -3.83, 

1.91< (A,C + h,C)/2, 
(X, + A,)/2 < - 1.91, 

Al”-AZ” < 17.23, 

h,C - x,c < 19.90, 

x,c - h3” < 17.23, 

11.49 < h,C-A-$ 

The eigenvalues of A are 9, 9+9i, 9-9i. [Note that since S; =0, we did not 

obtain useful bounds from (3.2a), (3.2b), and (3.5) when T= B.] 

EXAMPLE 4.2. Now let 

A= / 2 6 1 0 3 4 0 0 1 1. 
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This matrix was given in Scheffold [9], to illustrate bounds for the subdomi- 
nant eigenvahres of a matrix with nonnegative elements. He found that 

Using the bounds in [12], it was found that 

39 A, G9.89 

0.89 Q ]A,] & 7.31 . 

0 < )A,] < 4.73 

Let us apply Theorem 3.1 again. First, we obtain 

K,: = 19.76, K; = 62.70 

K; = 36.38, K; = 58.83 

K; = - 16.62, K,“= 5.61 

rn: = 3.0, mu=4 57 A ' 

mi=ml=3.0 

m’=mg=O.O c 

s; = 0.0, 

s; = 1.77, 

s; = 0.0, 

Then we have 

(a) mod& 

4.80 < A? = X,B < 7.61, 

0.5608 < A,A < 7.01, 

0.0 < A,” < 4.57, 

h,A - A,A < 7.32, 

AC -A,” < 8.45, 

A,A - A3” < 7.32; 
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4.60 < X,B < 7.61, 

.70 < h,B < 5.30, 

- 1.6 < h3” < 1.75, 

3.57 < (h,B+h!)/2, 

(h,B+h!)/2< 2.37, 

Xl” - A,B < 6.91, 

h,B - h3” < 7.90, 

h,B - X,B < 6.91, 

3.75 < x,B -x!; 

(c) imaginary parts: 

0 < A,C < 0.47, 

- 0.97 < x,c < 0.97, 

- 1.93 < h3” G 0.0 , 

A,C - x,c < 2.90, 

A,C - X,c < 3.36, 

x,c - h3” < 2.90. 

The eigenvalues of A are 6, 4, - 1. [Note that since si = s; =O, we did not 
obtain useful bounds from (3.2a), (3.2b), and (3.5) when T=B or C. In 
addition, since A is real and nonnegative, we have applied Theorem 3.2 and 
used the fact that the largest eigenvalue of A in modulus is real and positive.] 

EXAMPLE 4.3. Our last example is the nonnegative matrix 

1 

A=2 [ 

1 2 

2 13. 1 3 5 

This matrix was used in [6] to compare various bounds for the dominant 
eigenvalue. The best bounds obtained there were 

5.162 Q X, < 9.359. 
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The bounds in [12] yield 

2.3.3 < (A,( < 9.67 

0 < IX,J < 7.04 

0 < [AsI =G 4.40 

We obtain 

K,: = 48.62, K; = 57.81 

K; = 52.81, K; =57.45 , 

K;= -4.19, g= 0.44 

mA z =2.33, m,“=4.39 

m~=m~=2.33 

m’ =m”=O c c 

s’=328 A -3 

s; = 3.49, 

s’=o c 9 

Then we have 

(a) mod&: 

4.25 =G h,A = Xf’ < 7.57, 

0 G X,A < 7.02, 
0 < h3” < 2.07, 

3.00 G (A? + &4)/Z, 
3.00 Q (h;Q + A,A +A;)/3 < 4.39, 

(A; + A,A)/2 < 3.23, 
h,A - A,A Q 7.89, 
A,A -At < 7.89, 

6.96< +h,A<9.11; 

15 

II , 
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(b) real parts: 
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4.25 < A,B < 7.57, 
- 0.28 < X,B < 4.95, 

ii.+ -0.13, 
3.63 < (hf + X,B)/&, 

(h,B+X!)/2 < 1.10, 
A;- A,B < 7.85, 
A,B - h3” < 7.85, 

7.40 < h,B- h3” < 9.07; 

(c) imuginuy parts: 

0 < A,C < 0.47, 
- 0.27 < A,C < 0.27, 
-0.54<A,CGO, 

h,C-X,C<0.81, 
X,C-A,C<0.81, 
iqGqG0.93. 

The eigenvalues of A are 7.531, 0, -0.531. [Note again that since sk=O, we 
did not obtain useful bounds from (3.2a), (3.2b), and (3.5) when T= B, and 
furthermore we have applied Theorem 3.2 again.] 

We wish to thank Dr. Jormu Kaurlo Merikoski of the University of 

Tampere in Finland for alerting us to the work [3, 41 of Kress, de Vries, and 

Wegmann, and for suggesting the use of IIAA* - A*AII to strengthen our 

bounds in [12]. 
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