MAPPING THEOREMS ON N-SPACES

Shou LIN

Department of Mathematics, Suzhou University, Suzhou, People's Republic of China

Received 30 March 1987
Revised 18 September 1987

We prove two mapping theorems on N-spaces: (1) N-spaces are preserved under closed, Lindelöf mappings; (2) a perfect inverse image of an N-space is an N-space if and only if it has a G_{δ}-diagonal.

AMS (MOS) Subj. Class.: Primary 5410

<table>
<thead>
<tr>
<th>k-network</th>
<th>G_{δ}-diagonal</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-space</td>
<td>closed Lindelöf mapping</td>
</tr>
<tr>
<td>Fréchet space</td>
<td>compact-covering mapping</td>
</tr>
<tr>
<td>Lašnev space</td>
<td>perfect mapping</td>
</tr>
</tbody>
</table>

1. Introduction

The concept of N spaces was first introduced by Meara in [7] as a generalization of metric spaces and \mathcal{N}_0-spaces (Michael [6]). The main results of this paper are two mapping theorems on N-spaces:

(1) N-spaces are preserved under closed Lindelöf mappings. This affirmatively answers a question posed by Tanaka in [8].

(2) A perfect inverse image of an N-space is an N-space if and only if it has a G_{δ}-diagonal.

Throughout this paper, all spaces are assumed to be at least T_1 and regular. All mappings are continuous and surjective. A mapping f from X onto Y is to be denoted by $f: X \to Y$. N denotes the set of positive integers.

Let X be a topological space. A family \mathcal{F} of closed subsets of X is a k-network for X if for every compact set $K \subset X$ and neighborhood U of K, there is a finite $\mathcal{F}' \subset \mathcal{F}$ so that $K \subset \bigcup \mathcal{F}' \subset U$. \mathcal{F} is a cs-network for X if for every convergent sequence Z in X and neighborhood U of Z, there is a $F \in \mathcal{F}$ so that Z is eventually in F and $F \subset U$. A regular space with σ-locally-finite k-network is called an N-space [7].
2. Closed images

Mapping \(f: X \to Y \) is called Lindelöf if for each \(y \in Y \) fiber \(f^{-1}(y) \) is a Lindelöf subspace of \(X \); \(f \) is called compact-covering \([6]\) if every compact subset of \(Y \) is the image of a compact subset of \(X \).

Lemma 2.1. If \(f: X \to Y \) is closed Lindelöf, then \(f \) is a compact-covering.

Proof. Let \(K \) be a compact subset of \(Y \); then \(f^{-1}(K) \) is a Lindelöf subset of \(X \). But if \(g = f|_{f^{-1}(K)} \), then \(g \) is a closed mapping from the paracompact space \(f^{-1}(K) \) onto \(K \). By Proposition 7.2 in \([6]\), \(g \) is compact-covering. Since \(K \) is compact, there exists a compact subset \(L \) of \(f^{-1}(K) \) such that \(g(L) = K \). Also, \(L \) is a compact subset of \(X \), and \(f(L) = K \). □

Theorem 2.2. \(\mathfrak{N} \)-spaces are preserved under closed Lindelöf mappings.

Proof. Suppose \(X \) is an \(\mathfrak{N} \)-space, and \(f: X \to Y \) is closed Lindelöf. \(X \) has a \(\sigma \)-locally-finite closed \(k \)-network \(\mathcal{P} \). Put \(\mathcal{F} = \{ f(P) \mid P \in \mathcal{P} \} \). Since \(f \) is closed Lindelöf, \(\mathcal{F} \) is a \(\sigma \)-closure-preserving and locally-countable collection of closed subsets of \(Y \). It is clear that the compact-covering image of a \(k \)-network is a \(k \)-network.

Hence, by Lemma 2.1, \(\mathcal{F} \) is a \(\sigma \)-closure-preserving and \(\sigma \)-locally-countable closed \(k \)-network. Foged \([1, Theorem 4, (a) \to (d)]\) proved that a space with \(\sigma \)-locally-finite closed \(k \)-network has a \(\sigma \)-discrete cs-network. It is not difficult to check that, in his proof, the condition "\(\sigma \)-locally-finite closed \(k \)-network" can be replaced by "\(\sigma \)-locally-countable and \(\sigma \)-closure-preserving closed \(k \)-network". Therefore a space with \(\sigma \)-locally-countable and \(\sigma \)-closure-preserving closed \(k \)-network is an \(\mathfrak{N} \)-space. Therefore \(Y \) is an \(\mathfrak{N} \)-space. □

Remark 1. The following question is posed by Tanaka in \([8]\): Are the spaces which are closed Lindelöf images of metric spaces \(\mathfrak{N} \)-spaces? Theorem 2.2 answers the question affirmatively.

Remark 2. For each \(\alpha < \omega_1 \), let \(I_\alpha = [0, 1] \) with usual topology, and let \(X \) be quotient space of \(\bigoplus_{\alpha < \omega_1} I_\alpha \) obtained by identifying \(\{0\} \). Then \(X \) is a Lašnev space and is not an \(\mathfrak{N} \)-space (by \([5, Proposition 6.4]\)). Hence \(\mathfrak{N} \)-spaces are not preserved under closed mappings.

Theorem 2.3. The following properties of a space are equivalent:

(a) \(X \) is a Fréchet and \(\mathfrak{N} \)-space.

(b) \(X \) is a closed Lindelöf image of a metric space.

Proof. (b) \(\to \) (a). It is known that closed mappings preserve the Fréchet property. By Theorem 2.2, \(X \) is an \(\mathfrak{N} \)-space.
(a) \(\rightarrow\) (b). Suppose \(X\) is a Fréchet and \(\mathbb{N}\)-space. Foged [2, Theorem 1] has shown that \(X\) is a Fréchet space with \(\sigma\)-hereditarily closure-preserving \(k\)-network if and only if \(X\) is a Lašnev space (a space which is a closed image of a metric space). Let \(M\) be a metric space, \(f: M \to X\) a closed mapping. Since \(M\) is a paracompact \(\mathbb{N}\)-space, and \(X\) a \(k\)-space with point-countable closed \(k\)-network, according to [5, Proposition 6.4] for each \(y \in Y\), \(\partial f^{-1}(y)\) (boundary of \(f^{-1}(y)\)) is Lindelöf. Thus there exists a closed subset \(M'\) of \(M\) such that \(g = f|_{M'}: M' \to X\) is closed Lindelöf with \(g(M') = X\). Hence \(X\) is a closed Lindelöf image of a metric space. \(\square\)

3. Perfect inverse images

For a topological space \(X\), let \(\mathcal{K}(X) = \{K \subset X \mid K\) is a nonempty compact subset of \(X\}\). If \(\mathcal{U}\) and \(\mathcal{V}\) are collections of subsets of \(X\), let \(\mathcal{U} \wedge \mathcal{V} = \{U \cap V \mid U \in \mathcal{U}\) and \(V \in \mathcal{V}\). For any \(A \subset X\), let \((\mathcal{U})_A = \{U \subset X \mid U \cap A \neq \emptyset\}\) and \(\text{st}(A, \mathcal{U}) = \bigcup (\mathcal{U})_A\).

We consider the following properties of space \(X\).

(A) For any open cover of \(X\) there exists a \(\sigma\)-discrete refinement \(\mathcal{F}\) such that every compact subset of \(X\) is covered by a finite subcollection of \(\mathcal{F}\).

(B) For any open cover of \(X\) there exists a sequence \((\mathcal{G}_n)\) of open refinements which satisfies the condition that for each \(K \in \mathcal{K}(X)\), there exist \(K_i \in \mathcal{K}(X)_{1 \leq i \leq m}\) such that \(K = \bigcup_{i=1}^{m} K_i\) and \(|(\mathcal{G}_n)|_{K_i}| = 1_{i \leq m}\).

(C) There exists a sequence \((\mathcal{G}_n)\) of open covers such that for each \(K \in \mathcal{K}(X)\), \(K = \bigcap_{n \in \mathbb{N}} \text{st}(K, \mathcal{G}_n)\).

Lemma 3.1. If \(Y\) is an \(\mathbb{N}\)-space and \(f: X \to Y\) is a perfect mapping, then \(X\) has property (A).

Proof. Since \(Y\) is an \(\mathbb{N}\)-space, \(Y\) has a \(\sigma\)-discrete \(k\)-network (by Foged [1, Theorem 4]). Suppose \(\mathcal{P} = \bigcup_n \mathcal{P}_n\) is a \(k\)-network for \(Y\), each \(\mathcal{P}_n\) is a discrete collection of subsets of \(Y\).

Suppose \(\mathcal{U}\) is any open cover of \(X\). For each \(y \in Y\) we can find a finite subcollection \(\mathcal{U}(y) \subset \mathcal{U}\) such that \(f^{-1}(y) \subset \bigcup \mathcal{U}(y)\). Let \(G(y) = Y - f(X - \bigcup \mathcal{U}(y))\), then \(\mathcal{G} = \{G(y) \mid y \in Y\}\) is an open cover of \(Y\). By the definition of \(k\)-network and the regularity of \(Y\), without loss of generality, we may assume \(\mathcal{P}\) is a refinement of \(\mathcal{G}\). Consequently for each \(P \in \mathcal{P}\) there exist \(U(i, P) \in \mathcal{U}\) such that \(f^{-1}(P) \subset \bigcup_{i \leq m} U(i, P)\). Let \(\mathcal{F}(n, i) = \{f^{-1}(P) \cap U(i, P) \mid P \in \mathcal{P}_n\}\). Then \(\mathcal{F} = \bigcup_{n,i} \mathcal{F}(n, i)\) satisfies (A). \(\square\)

Lemma 3.2. (A) \(\rightarrow\) (B).

Proof. Let \(\mathcal{U}\) be an open cover of a space \(X\) and take a \(\sigma\)-discrete refinement \(\mathcal{F} = \bigcup_n \mathcal{F}_n\) of \(\mathcal{U}\) with the property (A). Let \(\mathcal{F}_n = \{F(n, \alpha) \mid \alpha \in A_n\}\). By regularity, we may assume each element of \(\mathcal{F}\) is a closed subset of \(X\). For each \(n \in \mathbb{N}\), \(\alpha \in A_n\),
pick $U(n, \alpha) \in \mathcal{U}$ such that $F(n, \alpha) \subseteq U(n, \alpha)$, and put $W(n, \alpha) = U(n, \alpha) \setminus \bigcup \{ F(n, \beta) \mid \beta \in A_n \setminus \{ \alpha \} \}$. We define

$$W_n = \{ W(n, \alpha) \mid \alpha \in A_n \} \cup \{ U - \bigcup F_n \mid U \in \mathcal{U} \}.$$

It follows that (W_n) satisfies (B).

It is clear that (W_n) is the sequence of open refinement of \mathcal{U}. To see that (W_n) satisfies (B), let $K \in \mathcal{K}(X)$, by the property (A), there exists a finite subcollection $\mathcal{F} = \{ F_i \mid i \leq m \}$ of $(\mathcal{F})_K$ which covers K. For each $i \in \{1, 2, \ldots, m\}$, there exists an $n_i \in \mathbb{N}$ such that $F_i \in \mathcal{F}_n$. Then $K \cap F_i \in \mathcal{K}(X)_{(i \leq m)}$, $K = \bigcup_{i \leq m} K \cap F_i$ and $|\{ W_n \} \cap F_i| = 1$. □

Lemma 3.3. $(B) + G_\delta$-diagonal \rightarrow (C).

Proof. Suppose a space X with property (B) has a G_δ-diagonal. Clearly X is a submetacompact (i.e., θ-refinable) space with a G_δ-diagonal, so X has a G_δ-diagonal [4, Theorem 2.11]. Let (\mathcal{G}_n) be a G_δ-diagonal sequence, i.e., $\{ x \} = \bigcap_{x \in X} \text{st}(x, \mathcal{G}_n)$ for each $x \in X$. We may assume that \mathcal{G}_{n+1} refines \mathcal{G}_n. Now we prove for each $K \in \mathcal{K}(X)$, $K = \bigcap_{x \in X} \text{st}(x, \mathcal{G}_n)$. Suppose $x \in X - K$; then $\{ x \setminus \text{st}(x, \mathcal{G}_n) \mid n \in \mathbb{N} \}$ is an open cover of the compact subset K, so there exists an $n \in \mathbb{N}$ such that $K \subseteq X \setminus \text{st}(x, \mathcal{G}_n)$. Therefore $K \cap \text{st}(x, \mathcal{G}_n) = \emptyset$, i.e., $x \notin \text{st}(K, \mathcal{G}_n)$. Hence $K = \bigcap_{x \in X} \text{st}(x, \mathcal{G}_n)$.

Now, we use the regularity of X and property (B) to inductively define, for each $m \in \mathbb{N}$, a sequence $(\mathcal{V}_{m,n})_n$ of open covers for X such that

(a) for each $n \in \mathbb{N}$, $\{ \mathcal{V} \mid \mathcal{V} \in \mathcal{V}_{m,n} \}$ is a refinement of $(\bigwedge_{i,j \leq m} \mathcal{V}_{i,j}) \setminus (\bigwedge_{k \leq m} \mathcal{G}_k)$;

(b) $(\mathcal{V}_{m,n})_n$ is a sequence satisfying the condition of property (B).

We prove for each $K \in \mathcal{K}(X)$, $\bigcap_{x \in X} \text{st}(K, \mathcal{V}_{m,n}) = K$. For each $n \in \mathbb{N}$, take $s > n$. Since the sequence $(\mathcal{V}_{s,k})_k$ satisfies (b), there exists $K_i \in \mathcal{K}(X)_{(i \leq h)}$ such that $K = \bigcup_{i \leq h} K_i$ with $|\{ \mathcal{V}_{s,k} \} \setminus K_i| = 1$. Then $\text{st}(K_i, \mathcal{V}_{s,k}) = \bigcup \{ \mathcal{V} \mid \mathcal{V} \in (\mathcal{V}_{s,k})_K \} \subseteq \text{st}(K_i, \mathcal{V}_{m,n}) \subseteq \text{st}(K_i, \mathcal{G}_n)$.

Pick $r > \max \{ s, k_1, k_2, \ldots, k_n \}$; consequently,

$$\bigcap_{m,k} \text{st}(K, \mathcal{V}_{m,k}) \subseteq \text{st}(K, \mathcal{V}_{r,1})$$

$$= \bigcup_{i \leq h} \text{st}(K_i, \mathcal{V}_{r,1}) \subseteq \bigcup_{i \leq h} \text{st}(K_i, \mathcal{V}_{s,k}) \subseteq \text{st}(K, \mathcal{G}_n).$$

Hence

$$\bigcap_{m,k} \text{st}(K, \mathcal{V}_{m,k}) \subseteq \bigcap_{n} \text{st}(K, \mathcal{G}_n) = K.$$

So $K = \bigcap_{m,k} \text{st}(K, \mathcal{V}_{m,k})$.

Theorem 3.4. Suppose there exists a perfect mapping f from a topological space X onto an \mathfrak{K}-space Y. Then X is an \mathfrak{K}-space if and only if it satisfies any of the following:
(a) X has a G_δ-diagonal.
(b) X has a point-countable k-network.

Proof. Necessity is obvious.

Sufficiency: Since a σ-space has a G_δ-diagonal, by Corollary 3.8 in [5], it is sufficient to show that if X has a G_δ-diagonal, then X is an \aleph-space.

Suppose X has a G_δ-diagonal. By Lemmas 3.1, 3.2, and 3.3, there exists a sequence (\mathcal{G}_n) of open covers for X such that for each $K \in \mathcal{K}(X)$, $K = \bigcap_n \text{st}(K, \mathcal{G}_n)$. We can assume \mathcal{G}_{n+1} refines \mathcal{G}_n. For each $n \in \mathbb{N}$, by Lemma 3.1, \mathcal{G}_n has a σ-locally-finite closed refinement $\mathcal{F}(n)$ such that every compact subset of X is covered by a finite subcollection of $\mathcal{F}(n)$. Denote by $\mathcal{F}(n) = \bigcup_m \mathcal{F}(n, m)$ where each $\mathcal{F}(n, m)$ is a locally-finite collection of subsets of X. We can assume $\mathcal{F}(n, m) \subset \mathcal{F}(n, m+1)$ for each $m \in \mathbb{N}$.

Since Y is an \aleph-space, let $\bigcup k \mathcal{I}(k)$ be a k-network for Y where each $\mathcal{I}(k)$ is locally-finite and $\mathcal{I}(k) \subset \mathcal{I}(k+1)$ for each $k \in \mathbb{N}$. Let $\mathcal{D}(k) = \{f^{-1}(Q) | Q \in \mathcal{I}(k)\}$; then $\mathcal{D}(k)$ is a locally-finite collection of closed subsets of X. Put

$$\mathcal{P}(n, m, k) = \mathcal{F}(n, m) \cap \mathcal{D}(k).$$

Clearly $\mathcal{P}(n, m, k)$ is locally-finite for each $n, m, k \in \mathbb{N}$.

We complete the proof by showing that $\mathcal{P} = \bigcup_{n,m,k} \mathcal{P}(n, m, k)$ is a k-network for X. For an open subset W and a compact subset $K \subset W \subset X$, since $K = \bigcap_n \text{st}(K, \mathcal{G}_n)$, $\{W\} \cup \{X - \text{st}(K, \mathcal{G}_n) | n \in \mathbb{N}\}$ is an open cover of compact subset $f^{-1}f(K)$ of X. Thus there exists a $n \in \mathbb{N}$ such that $f^{-1}f(K) = W \cup (X - \text{st}(K, \mathcal{G}_n))$, so $\text{st}(K, \mathcal{G}_n) \subset f^{-1}f(K) \subset W$. For each $x \in f^{-1}f(K) - W$, since $x \notin \text{st}(K, \mathcal{G}_n)$, there exists an open set $V(x)$ containing x with $V(x) \cap \text{st}(K, \mathcal{G}_n) = \emptyset$. Let $G = W \cup (\bigcup \{V(x) | x \in f^{-1}f(K) - W\})$, then $f(K) \subset Y - f(X - G)$. So there exists a finite $\mathcal{D}'(k) \subset \mathcal{D}(k)$ such that $f(K) \subset \bigcup \mathcal{D}'(k) \subset Y - f(X - G)$ for some $k \in \mathbb{N}$. Take $\mathcal{D}'(k) = \{f^{-1}(Q) | Q \in \mathcal{D}'(k)\}$, then $f^{-1}f(K) \subset \bigcup \mathcal{D}'(k) \subset G$. On the other hand, by the property of $\mathcal{F}(n)$, there exists a finite $\mathcal{F}'(n, m) \subset f^{-1}(f(K) \subset \bigcup \mathcal{F}(n, m) \subset \text{st}(K, \mathcal{G}_n)$ for some $m \in \mathbb{N}$. Put $\mathcal{P}'(n, m, k) = \mathcal{F}'(n, m) \cap \mathcal{D}'(k)$. It is easy to check that $K \subset \bigcup \mathcal{P}'(n, m, k) \subset W$. □

Corollary 3.5. Suppose Y is an \aleph-space and $f : X \to Y$ is an open, closed, and finite to one mapping. Then X is an \aleph-space.

Proof. Since \aleph-space is a σ-space, X is a σ-space [3]. Then X has a G_δ-diagonal. By Theorem 3.4, X is an \aleph-space. □

Acknowledgement

The author would like to express his gratitude to Professor Kuo-Shih Kao for his direction.
References