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This study examined verbal declarative memory functioning in SLI and its relationship to working
memory. Encoding, recall, and recognition of verbal information was examined in children with SLI
who had below average working memory (SLILow WM), children with SLI who had average working
memory (SLIAvg. WM) and, a group of non-language impaired children with average working memory
(TDAvg. WM). The SLILow WM group was significantly worse than both the SLIAvg. WM and TDAvg. WM groups
at encoding verbal information and at retrieving verbal information following a delay. In contrast, the
SLIAvg. WM group showed no verbal declarative memory deficits. The study demonstrates that verbal
declarative memory deficits in SLI only occur when verbal working memory is impaired. Thus SLI declar-
ative memory is largely intact and deficits are likely to be related to working memory impairments.
Crown Copyright � 2015 Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Children with specific language impairment (SLI) have deficits
in the production and comprehension of language that occur in
the absence of sensory problems and intellectual impairments
(American Psychiatric Association, 2013; Bishop, 1997; Leonard,
2000; World Health Organization, 1993). Different memory sys-
tems may play a role in the aetiology of SLI. Evidence has been pre-
sented showing poor working memory and procedural memory
functioning is related to the language deficits in SLI (Estes, Evans,
& Else-Quest, 2007; Gathercole & Baddeley, 1990; Lum, Conti-
Ramsden, Morgan, & Ullman, 2013; Montgomery, 2003; Ullman
& Pierpont, 2005). However, not all memory systems have been
proposed to be impaired in this group. One suggestion is that
declarative memory, unlike working and procedural memory,
remains relatively normal in SLI, and moreover plays an important
compensatory role (Lum & Conti-Ramsden, 2013; Ullman &
Pierpont, 2005; Ullman & Pullman, 2015). In this investigation
we examine declarative memory in SLI, and its relationship to
working memory.
1.1. The declarative memory system

The declarative memory system encodes (or learns), stores, con-
solidates as well as retrieves knowledge for personal experiences
(episodic memory), general knowledge about the world (semantic
memory), and knowledge of words (Cabeza & Moscovitch, 2013;
Eichenbaum, Sauvage, Fortin, Komorowski, & Lipton, 2012;
Henke, 2010; Squire & Wixted, 2011; Ullman, 2004). Encoding
knowledge or information into the system can be fast (Gluck,
Meeter, & Myers, 2003). In some cases a single exposure to infor-
mation or an event is sufficient for a memory to be created, stored
and then retrieved after an extended period of time (Rutishauser,
Mamelak, & Schuman, 2006). However, stored information is less
likely to be forgotten if it can be repeatedly re-encoded from the
environment and/or re-activated within the declarative memory
system via consolidation processes (Alvarez & Squire, 1994;
Inostroza & Born, 2013).

Much is known about the neural substrates of the declarative
memory system (Squire, Stark, & Clark, 2004). During encoding
the hippocampus binds different pieces of information to create a
single memory trace (Eichenbaum, 2004; Mayes, Montaldi, &
Migo, 2007; Squire, 1992). Evidence from clinical populations and
neuroimaging of neurologically intact adults has shown structures
within the medial temporal lobe are also necessary for recall and
recognition of information (Gleissner, Helmstaedter, Schramm, &
Elger, 2002; Haist, Shimamura, & Squire, 1992; Jones-Gotman
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et al., 1997; Knowlton & Squire, 1995; Lepage, Habib, & Tulving,
1998; Moser & Moser, 1998; Spaniol et al., 2009; Squire, 1992).

Regions within the prefrontal cortex also play a role in encoding
and retrieving information from declarative memory (Blumenfeld
& Ranganath, 2007; Dolan & Fletcher, 1997; Fletcher, Shallice, &
Dolan, 1998; Fletcher, Shallice, Frith, Frackowiak, & Dolan, 1998;
Nyberg, Cabeza, & Tulving, 1996; Sandrini, Censor, Mishoe, &
Cohen, 2013; Simons & Spiers, 2003). The dorsolateral prefrontal
cortex (DLPFC) has been found to be active when multiple items
are to be encoded into declarative memory. Under these conditions
the DLPFC re-organises items together on the basis of similar
semantic or perceptual features (Blumenfeld, Parks, Yonelinas, &
Ranganath, 2011; Blumenfeld & Ranganath, 2006; Long, Öztekin,
& Badre, 2010). Presumably, this permits more information to be
encoded because fewer neural resources are required to represent
the incoming information. The ventrolateral prefrontal cortex
(VLPFC) aids encoding by directing attention to salient features of
information and disengaging attention from irrelevant information
(Badre & Wagner, 2007; Raye, Johnson, Mitchell, Reeder, & Greene,
2002). With respect to retrieval, the DLPFC plays a role in monitor-
ing information retrieved from declarative memory (Badre &
Wagner, 2007; Henson, Shallice, & Dolan, 1999; McLaughlin,
Moore, Fulwiler, Bhadelia, & Gansler, 2009; Rugg, Fletcher, Chua,
& Dolan, 1999). Evidence has been presented suggesting that
VLPFC is involved in selecting cues that are used to retrieve infor-
mation from declarative memory (Badre, Poldrack, Paré-Blagoev,
Insler, & Wagner, 2005; Dobbins, Foley, Schacter, & Wagner, 2002).

The prefrontal regions that support the encoding and retrieval of
information from declarative memory also support processes asso-
ciated with working memory (WM; Blumenfeld & Ranganath, 2006,
2007; Fletcher & Henson, 2001; Haxby, Petit, Ungerleider, &
Courtney, 2000; Ranganath, Johnson, & D’Esposito, 2003). Working
memory is involved in the short-term storage and manipulation or
processing of information (Baddeley, 2003; Cowan, 1999). Prefron-
tal regions have been shown to subserve the working memory func-
tions that involve the manipulation or processing of information
(D’Esposito et al., 1995). For instance, the DLPFC is active when
information in working memory is manipulated (D’Esposito,
Postle, Ballard, & Lease, 1999). The VLPFC directs attention to infor-
mation processed in working memory and/or away from distracting
information (Wolf, Vasic, & Walter, 2006).

The processing and manipulation operations undertaken by
working memory appear to play a role in declarative memory
(Becker & Lim, 2003; Simons & Spiers, 2003; Stebbins, Gabrieli,
Masciari, Monti, & Goetz, 1999; Wagner, 1999). One source of evi-
dence to support this claim has been forwarded from fMRI studies
with healthy adults. In one study Blumenfeld and Ranganath
(2006) asked participants to re-order a list of words on the basis
of their physical characteristics (e.g., weight). Participants com-
pleted this task whilst in an MRI scanner. After scanning was com-
pleted participants were given a surprise recognition task. Their
goal was to recognise words they had re-ordered in the scanner
from distractor items. A key result to emerge was that the DLPFC
activation associated with re-ordering the words, predicted suc-
cess on the recognition task. In interpreting these results it was
suggested that working memory supports encoding of information
into declarative memory by re-organising or chunking information
prior to being encoded into the hippocampus. In another study
Cabeza, Dolcos, Graham, and Nyberg (2002) found DLPFC was acti-
vated when participants engaged in a recognition task and whilst
temporarily storing a word. These data might suggest that working
memory serves as a temporary hold to monitor information
retrieved from declarative memory.

There is behavioural data consistent with the proposal that
common processes may support working memory and declarative
memory. Research into the latent structure of the Wechsler
Memory Scale-III (Wechsler, 1997), which is a standardised mem-
ory test for adolescents and adults, indicates the working memory
construct correlates with the declarative memory construct. Millis,
Malina, Bowers, and Ricker (1999) found the correlation between
working memory and declarative memory for verbal information
(which includes the encoding and retrieval of information) to be
.65. The correlation between working memory and declarative
memory for visual information was found to be .49. Using
Cohen’s (1988) convention the magnitude of the correlation
between working memory and declarative memory can be consid-
ered to be ‘large’.

During childhood there also appears to be an association
between working memory and the encoding and retrieval of infor-
mation from declarative memory. The association between these
two memory system has been examined to investigate the validity
of the Children’s Memory Scale (Cohen, 1997a). The CMS is a stand-
ardised test for assessing memory functioning in children and ado-
lescents. The subtests that comprise this instrument are similar to
the WMS-III (Wechsler, 1997). Using data from the standardisation
sample, the correlation between a composite scale that measures
verbal working memory and a scale that measures encoding and
retrieval of verbal information from declarative memory, is
reported to be .41 (Cohen, 1997b). Thus at the behavioural level
the association between working memory and declarative memory
appears to be present from childhood to adulthood.

1.2. Declarative memory in specific language impairment

The ability to encode and retrieve information via declarative
memory in SLI has been examined for verbal and non-verbal infor-
mation. Evidence suggests that declarative memory for non-verbal
information such as for unknown faces or abstract visual stimulus
remains largely normal in SLI, as tested with a variety of paradigms
probing encoding, recall, and recognition (e.g., Baird, Dworzynski,
Slonims, & Simonoff, 2010; Bavin, Wilson, Maruff, & Sleeman,
2005; Lum, Gelgec, & Conti-Ramsden, 2010; for a review see Lum
& Conti-Ramsden, 2013; Riccio, Cash, & Cohen, 2007). The status
of verbal declarative memory in SLI is less clear, with some studies
report impairments as compared to typically developing individu-
als (Dewey & Wall, 1997; McGregor et al., 2013; Nichols et al.,
2004), and others finding no evidence of such deficits (Baird
et al., 2010; Records, Tomblin, & Buckwalter, 1995; Shear, Tallal,
& Delis, 1992).

Verbal declarative memory in SLI and other disorders has been
commonly assessed using word list-learning tasks (Baron, 2004;
Lezak, 2004). These tasks typically consist of encoding (learning)
and retrieval (recall, recognition) phases. During the encoding
phase participants are auditorily presented with a list of words.
The list is presented three, four or five times, depending on the
task. After each trial (i.e., after each presentation of the list), the
participant is asked to recall all the words. Performance on this
part of the task is taken to index encoding abilities.

The performance of children with SLI on list learning tasks has
been widely investigated (for a review see Lum & Conti-
Ramsden, 2013). A well-replicated finding is that participants with
SLI perform worse than age-matched peers during the encoding
phase (Baird et al., 2010; Dewey & Wall, 1997; Duinmeijer, de
Jong, & Scheper, 2012; Lum & Bleses, 2012; Lum, Conti-Ramsden,
Page, & Ullman, 2012; Nichols et al., 2004; Records et al., 1995;
Riccio et al., 2007; Shear et al., 1992). That is, even after repeated
exposures to a word list, individuals with SLI recall fewer words
from the list when compared to typically developing (TD) peers.

It is not clear whether SLI is associated with a retrieval deficit
from declarative memory. With respect to immediate recall,
although some studies have found deficits (Lum & Bleses, 2012;
Lum, Conti-Ramsden, Page, et al., 2012; Nichols et al., 2004), others
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have not (Baird et al., 2010; Records et al., 1995; Shear et al., 1992).
Similarly, on measures of delayed recall reports of impairment in
SLI have been observed (Lum, Conti-Ramsden, Page, et al., 2012;
Nichols et al., 2004; Shear et al., 1992), but this result has not
always been replicated (Baird et al., 2010; Riccio et al., 2007). How-
ever, studies that have not observed poor recall in SLI have con-
trolled for performance on the encoding phase of the learning
task (Baird et al., 2010; Records et al., 1995). This finding raises
the possibility that the difficulty individuals with SLI have with
retrieval, could be secondary to an encoding deficit (McGregor
et al., 2013; Nichols et al., 2004). That is, since fewer items are
learnt, there is less to be recalled.

The evidence suggests poorer verbal recognition in SLI. On this
part of the list learning task participants with SLI have consistently
been found to perform significantly poorer than age matched peers
(Lum, Conti-Ramsden, Page, et al., 2012; Nichols et al., 2004; Riccio
et al., 2007; Shear et al., 1992). However it needs to be noted that
only delayed, not immediate, recognition, has been tested in SLI.
Also studies have not usually adjusted recognition scores to take
into account the number of items learnt during the encoding phase
(Lum, Conti-Ramsden, Page, et al., 2012; Nichols et al., 2004; Riccio
et al., 2007; Shear et al., 1992). In accounting for these results it
could be that recognition problems in this group are also secondary
to encoding deficits (McGregor et al., 2013).

Another possibility is that the working memory problems typi-
cally found in children with SLI may contribute to the difficulties
this group have with encoding and retrieving information from
declarative memory. The evidence suggests encoding and retrieval
of information from declarative memory are likely to be supported
by working memory. Also there are common brain networks sup-
porting processes undertaken by both memory systems
(Blumenfeld & Ranganath, 2007; Dolan & Fletcher, 1997; Sandrini
et al., 2013; Simons & Spiers, 2003). As noted earlier, during encod-
ing, working memory appears to play a role in organising informa-
tion (Blumenfeld & Ranganath, 2006). Also working memory may
also monitor information that has been retrieved from declarative
memory (Cabeza et al., 2002).

The co-occurrence of working memory and declarative memory
problems in SLI may be due to prefrontal dysfunction. Consistent
with this view, in a fMRI study Ellis Weismer, Plante, Jones, and
Tomblin (2005) found lower DLPFC activation in SLI whilst engaged
in a verbal working memory task. In SLI, approximately three quar-
ters (about 75–80%) of children appear to have poor working mem-
ory (Alloway, Rajendran, & Archibald, 2009; Ellis Weismer, Evans, &
Hesketh, 1999). However, there is a sizeable proportion (20–25%) of
children with SLI who appear to have normal or at least average
working memory abilities. This situation affords a ‘natural experi-
ment’ whereby one can examine the potential relationship between
working and declarative memory in SLI. In this study we tested a
claim from the Procedural Deficit Hypothesis of SLI (Ullman &
Pierpont, 2005). According to this model the language problems in
SLI arise from dysfunction of the basal ganglia that leads to a proce-
dural memory impairment in this group. However, the model main-
tains that the medial temporal lobes, which support the declarative
memory system, are intact in this population. If this claim is correct,
it would be expected that children with SLI who do not have verbal
working memory impairments should perform at comparable levels
as control on a declarative memory task.

1.3. The current study

In this study we tested whether verbal declarative memory def-
icits in SLI are associated with verbal working memory deficits. The
investigation uses a three-group comparison design. A group of
children with SLI with below average (impaired) working memory
(hereafter referred to as SLILow WM). A group of children with SLI
with average working memory (SLIAvg. WM) and a third group com-
prising typically developing children without language impair-
ments, and with average working memory (TDAvg. WM). All
children in the study were presented with a word list-learning task
that measured encoding, recall, and recognition for verbal informa-
tion. If verbal declarative memory difficulties in SLI are related to
working memory problems in the disorder, then difficulties with
encoding and retrieving verbal information should only be
observed in the SLI group with poor working memory and not in
the other SLI or TD comparison groups.

2. Method

2.1. Participants

Participants in this study were drawn from a larger sample
comprising typically developing children (n = 57) and those with
SLI (n = 58). All children with SLI were receiving in-school support
for a language problem. None of the children had previously been
diagnosed with hearing, visual or medical conditions as deter-
mined by parental questionnaire (for details see Lum, Conti-
Ramsden, & Ullman, 2012). All participants were recruited from
the North East of England. The children with SLI and TD children
were recruited from the same schools. The data from the word
list-learning task presented in this study has not previously been
reported.

Three groups of children were selected on the basis of their ver-
bal working memory and language skills. Verbal working memory
was assessed using the Central Executive Component Score from
the Working Memory Test Battery for Children (WMTB-C;
Pickering & Gathercole, 2001a). The Central Executive Component
Score and Phonological Loop Component Score are standardised to
a mean of 100 and standard deviation of 15. Children’s language
skills were measured using the Clinical Evaluation of Language
Fundamentals-4th Edition, UK Standardisation (CELF-4UK; Semel,
Wiig, & Secord, 2003a). The CELF-4UK yields three composite
scores. Children’s ability to understand and produce language is
measured by the Receptive Language Index (RLI) and the Expres-
sive Language Index (ELI), respectively. Children’s overall language
ability is measured by the Core Language Score (CLS). The CLS is a
composite score that is obtained by summing the RLI and ELI. The
RLI, ELI and CLS are standardised to a mean of 100 and standard
deviation of 15. A detailed description of the WMTB-C and CELF-
4UK is presented in Section 2.2.

Two groups comprised children with SLI and a third, typically
developing children. One of the SLI groups (n = 19; 26.3% female)
consisted of children with below average or impaired verbal work-
ing memory (SLILow WM) abilities in addition to impaired language.
The children in the other SLI group (n = 16; 37.5% female) were
identified to have impaired language but were found to have at
least average verbal working memory (SLIAvg. WM) abilities. The
children in the typically developing group (TDAvg. WM) had lan-
guage and verbal working memory abilities in the average range
(n = 17, 29.4% female). All children in the study had non-verbal
intelligence abilities within the normal range. Non-verbal intelli-
gence was measured using the Wechsler Abbreviated Scale of
Intelligence (WASI; Wechsler, 1999a). A description of this test is
also presented in the Section 2.2.

The children in the SLILow WM and SLIAvg. WM groups were
matched on the basis of general language abilities, but differed
with respect to verbal working memory. Children in the SLIAvg. WM

and TDAvg. WM were matched on the basis of verbal working
memory abilities, but differed in relation to language skills. A
detailed description of method used to assign and match partici-
pants is presented in Sections 2.2.4 and 2.2. Summary statistics
describing the age and scores from the CELF-4UK (language), WASI
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(PIQ) and WMTB-C for each group are presented in Table 1. Also
presented in Table 1 are children’s Phonological Loop Component
Score from the WMTB-C. This measures how well children tempo-
rarily store verbal information, without manipulation or process-
ing (details of the measure are presented in Section 2.2).

Differences between groups for the variables presented in
Table 1 were evaluated using ANOVA. No significant differences
were found with respect to age or PIQ. In relation to the language
measures, both SLI groups obtained significantly lower CLS, RLI and
ELI scores compared to the TD group. There were no significant dif-
ferences between the SLILow WM and SLIAvg. WM groups on the lan-
guage measures. Finally, the Central Executive Component score
for the SLILow WM was significantly lower than the SLIAvg. WM and
TDAvg. WM groups. Interestingly, both the SLI groups were found
to have poorer phonological short term memory that the TD group.
Thus overall, the two SLI groups had comparable phonological
short-term memory. However, only the SLILow WM group had
poorer verbal working memory. An additional analysis also
showed there were no significant differences in the number of
females in each group (v2 (2) = 0.5, p = .779).
2.2. Materials

2.2.1. Language assessment
Language skills were assessed using the Clinical Evaluation of

Language Fundamentals-4th Edition, UK Standardisation (CELF-
4UK; Semel et al., 2003a). The CELF-4UK is a standardised language
test suitable for children and adolescents aged between 5 and
16 years. All children with SLI in the sample obtained a CLS of 85
or less (i.e., their language skills were more than 1 SD below the
normative mean). This criterion has shown to have a high level
of diagnostic accuracy in a UK sample (Sensitivity = 1.00, Specific-
ity = 0.82; Semel, Wiig, & Secord, 2003b). Children in the SLILow WM

and SLIAvg. WM groups were selected to have the same CLS scores
(±5 points). All typically developing children obtained a CLS that
was between 94 and 111 (i.e., scored within the average range).
The average reliability for the CLS, ELI and RLI is reported to be
.96, .90 and .93 respectively (Semel et al., 2003b).
2.2.2. Non-verbal intelligence
Non-verbal intelligence was measured using the Performance

IQ (PIQ) from the Wechsler Abbreviated Scale of Intelligence
(WASI; Wechsler, 1999a). All children participating in the study
had PIQ between 90 and 115 (i.e., in the average range). The
average reliability for the PIQ is .94 (Wechsler, 1999b).
Table 1
Summary statistics and comparison of means for age and scores from standardised tests.

Measure Group

TDAvg. WM SLIAvg. WM

M SD Range M SD Range

Age (years; months) 10;1 0;10 9;0–11;4 9;10 0;10 8;7–11;5

Language measures
CLSa 100.7 4.8 94–111 77.1 8.8 56–85
ELIa 100.1 5.9 90–112 74.7 11.1 49–89
RLIa 100.9 8.6 88–116 81.4 8.1 67–96

Intelligence measure
PIQa 99.2 6.7 90–114 102.4 6.6 92–115

Verbal work. memory measure
Cental exec. scorea 101.8 8.9 90–118 100.3 9.0 90–118
Phono. Loop Scorea 110.8 15.3 86–141 92.5 15.0 73–133

Abbreviations: CLS = Core Language Score; ELI = Expressive Language Score; RLI = Recept
a Scores from measure are standardised to a mean of 100 and standard deviation of 1
b Differences between means tested using one-way ANOVA.
2.2.3. Working memory assessment
Children’s verbal working memory was assessed using the

Working Memory Test Battery for Children (WMTB-C; Pickering
& Gathercole, 2001a). The WMTB-C is a standardised test for
assessing working memory and short-term memory. The test is
standardised for children aged between 5 and 15 years. Verbal
working memory is measured by the ‘Central Executive Compo-
nent Score’. This composite score is obtained by summing perfor-
mance from three verbal working memory subtests: Backward
Digit Recall, Counting Recall and Listening Recall. The reliabilities
for the Backward Digit Recall, Counting Recall and Listening Recall
has been reported to be .83, .71 and .73 respectively (Gathercole,
Alloway, Willis, & Adams, 2006). All three subtests require the
examinee to temporarily store and then process or manipulate ver-
bal information. Thus the Central Executive Component Score can
be considered to measure how well children can complete the
combined operations necessary to support the short-term storage
and processing/manipulation of verbal information.

The Backward Digit Recall subtest requires children to repeat an
increasingly longer string of digits in reverse order. On the Count-
ing Recall subtest children first count an array of randomly placed
dots. After the dots have been counted children are asked to recall
how many dots were shown. The subtest increases in difficulty as
children are asked to count and remember an increasing number of
dot arrays, prior to recall. The Listening Recall subtest requires chil-
dren to listen to an increasing number of sentences (e.g., ‘dogs have
four legs’). After each sentence has been presented children are
asked whether it is ‘true’ or ‘false’. After all sentences have been
presented children are asked to recall all sentence final words.
The Central Executive Component Score is standardised to a mean
of 100 and standard deviation of 15.

The children’s ability to temporarily store verbal information
was assessed using the Phonological Loop Component Score. The
Phonological Loop Component Score is obtained by summing per-
formance from four subtests: Digit Recall, Word List Matching,
Word List Recall and Nonword List Recall. Only the test–retest reli-
abilities have been reported for these subtests. For Digit Recall the
test–retest reliability has been reported to be .81, for Word List
Matching .45, for Word List Recall .80 and Nonword List Recall
.68 (Pickering & Gathercole, 2001b). Common to all subtests is that
children need to temporarily store an increasing amount of verbal
information.

On the Digit Recall subtest children are asked to repeat an
increasingly longer string of numbers. On the Word List Recall chil-
dren repeat back a word list that increases in number. The Non-
word List Recall is similar except participants repeat lists of
Comparison
of meansb

Post hoc tests

SLILow WM

M SD Range

9;10 0;10 8;10–11;5 p = .395 –

73.4 9.2 50–84 p < .001 SLILow WM = SLIAvg. WM < TDAvg. WM

74.0 10.4 55–87 p < .001 SLILow WM = SLIAvg. WM < TDAvg. WM

76.4 6.7 61–85 p < .001 SLILow WM = SLIAvg. WM < TDAvg. WM

99.8 6.4 90–110 p = .340 –

69.0 8.8 55–81 p < .001 SLILow WM < SLIAvg. WM = TDAvg. WM

90.7 15.8 68–132 p < .001 SLILow WM = SLIAvg. WM < TDAvg. WM

ive Language Score; PIQ = Performance IQ; Central Executive Score.
5.
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nonwords. On the Word List Matching subtest children are pre-
sented with a sequence of words twice. Children’s task is to deter-
mine whether the order words were presented was the same on
each trial.

2.2.4. Matching criteria
A child was considered to have a verbal working memory

impairment if s/he obtained a Central Executive Component Score
that was 85 or less (Gathercole & Alloway, 2006). That is, �1 SD or
more from the normative mean. Children with SLI were selected
for the SLILow. WM group if they obtained a Central Executive Com-
ponent Score that was 85 or less. Children in the SLIAvg. WM and
TDAvg. WM groups obtained a Central Executive Component Score
that was 90 or higher. In addition, children in the SLIAvg. WM and
TDAvg. WM groups were individually matched using the Central
Executive Component Score (±5 points). The Central Executive
Component Score was used to create the groups because processes
tapped by this composite have been linked to the operations sub-
served by the DLPFC and VLPFC (D’Esposito et al., 1999; Ranganath,
Johnson, & D’Esposito, 2003). It is these regions that may contrib-
ute to encoding and also retrieval processes from declarative mem-
ory (Blumenfeld & Ranganath, 2007; Dolan & Fletcher, 1997;
Sandrini et al., 2013; Simons & Spiers, 2003).

2.2.5. List learning task
The Word List subtest from the Children’s Memory Scale (CMS;

Cohen, 1997a) was used to measure the encoding and retrieval of
verbal information from declarative memory (CMS; Cohen,
1997a). Performance on list learning tasks has shown to be
impaired following damage to the left medial temporal lobe
(Gleissner et al., 2002; Jambaqué, Dellatolas, Dulac, Ponsot, &
Signoret, 1993; Jones-Gotman et al., 1997).

During the encoding phase of the task children are auditorily
presented with a 14-item word list four times. The words in the list
are not designed to be semantically related (the words in the list
are: car, forest, dog, night, paper, hand, metal, rock, line, window,
farmer, watch, sound, bank). After the first presentation of the list
children are asked to recall as many words as possible. The word
list is then presented three more times. On the second to fourth
presentations the test administrator only presents words that the
child omitted. The child is asked to recall as many words as possi-
ble, including those recalled in a previous trial. The reliability for
this part of the task has been reported to be .86 (Cohen, 1997b).

The retrieval of verbal information was assessed in immediate
and delayed recall conditions, and in a delayed recognition condi-
tion. The retrieval conditions followed the four encoding trials and
a subsequent 14-item distractor list, which children also had to
recall. The immediate recall phase was presented immediately after
the distractor list. In this condition children were asked to recall
words from the initial word list. The delayed recall and recognition
conditions were administered after a delay of about 15 min, during
this time other subtests from CMS were administered (for a sum-
mary of these findings see Lum, Conti-Ramsden, Page, et al., 2012).
In the delayed recall phase children were asked to recall as many
words from the initial word list as possible. For the delayed recogni-
tion component, children were auditorily presented with 42 words
and asked to indicate which ones were presented earlier. The items
from this part of the task comprise 21 targets and 21 foils of compa-
rable syllabic length. The 21 targets comprised all items from the
word list with seven of the 14 items presented twice. Similarly,
seven of the foils were presented twice. All items were analysed.
The 14 foils were: nose, door, van, glue, circle, desert, iron, stone,
pig, dark, tank, music, painter, clock. The reliability for the delayed
recall and recognition is .72 and .77 respectively (Cohen, 1997b).

A measure of verbal encoding on the task was obtained by sum-
ming the total number of correct words recalled on each trial. The
maximum score that could be obtained on each trial was 14. Perfor-
mance on the immediate and delayed recall phase was measured
using two approaches. In the first approach the total number of
items recalled was computed as a proportion of the total number
of words in the list (i.e., n = 14). These scores are hereafter referred
to as ‘Unadjusted Recall Scores’. However, as noted in the Introduc-
tion children with SLI may encode fewer words and a recall score
based on the entire word list may underestimate recall ability. Sub-
sequently a second approach to measure immediate and delayed
recall was computed using a method that took into account which
words were successfully encoded. Specifically a word from the list
was considered to have been encoded if it was recalled at least twice
during the encoding phase (nb. increasing the threshold to three
items recalled resulted in floor effects). These scores are hereafter
referred to as ‘Adjusted Recall Scores’. The requirement that the
word be recalled more than once was used because correct recall
on a single trial may reflect short-term memory. The number of
words recalled in immediate and delayed conditions was calculated
based on successfully encoded words only. This adjustment allowed
differences between groups on retrieval measures to be investi-
gated whilst controlling for encoding differences.

A measure of delayed recognition was obtained using the d-
prime statistic from signal detection theory. In studies of recogni-
tion memory this statistic is preferred because it corrects for
potential response bias (Green & Swets, 1966), such as responding
‘Yes’ to every item. This statistic is also commonly used in stand-
ardised tests of recognition memory in list learning tasks (Delis,
1994; Schmidt, 1996; Sheslow & Adams, 1990). The d-prime statis-
tic is computed from the number of ‘Hits’ and ‘False Alarms’ (Green
& Swets, 1966). In the context of the List Learning subtest, ‘Hits’
describe trials during the recognition phase when a word was cor-
rectly identified as belonging to a word presented during the
encoding phase. ‘False Alarms’ are responses where a foil was
incorrectly identified as belonging to the word list. d-Prime values
greater than zero indicate increasing ability to discriminate
between targets and foils.

For each participant an ‘Unadjusted’ and ‘Adjusted’ d-prime
value was computed using an approach similar to the methods used
to quantify recall. The ‘Unadjusted’ d-prime value was computed
using all items from the encoding phase irrespective of whether
the word was considered to have been encoded. The ‘Adjusted’ d-
prime value took into account performance on the encoding phase.
Specifically, a ‘Hit’ was computed only for words that were identi-
fied as having been learned during the encoding phase that is, that
were correctly recalled at least twice during that phase.
2.3. Procedure

Children were individually presented with the language, working
memory and list-learning tasks in a quiet room at their respective
school. The same research assistant presented all tests to the chil-
dren and was done according to test guidelines. Presentation of
the tests was randomised. These tasks were presented as part of a
larger assessment battery examining language and memory. Ethical
approval for the study was obtained from The University of Man-
chester, and informed written consent was gained from the chil-
dren’s parents or legal guardians.
3. Results

3.1. Encoding

The first set of analyses investigated group differences on the
encoding phase. Data from this part of the task are summarised
in Table 2 and for illustrative purposes presented in Fig. 1. These



Table 2
Summary statistics showing SLI and control groups’ performance on encoding and retrieval measures.

Measure TDAvg. WM SLIAvg. WM SLILow WM

M SD Range M SD Range M SD Range

Encodinga

Trial 1 recall 4.5 2.2 3–12 3.7 1.6 2–8 3.7 2.2 1–10
Trial 2 recall 6.4 1.7 4–11 6.1 1.6 4–11 5.3 1.6 3–8
Trial 3 recall 7.8 1.6 6–11 8.2 1.9 5–12 6.1 2.3 2–10
Trial 4 recall 9.1 2.0 6–13 8.7 1.9 6–13 7.1 2.1 4–11

Retrieval
Unadjusted recall scores

Immediate 0.56 0.20 0.29–0.93 0.51 0.17 0.14–0.86 0.43 0.15 0.14–0.71
Delayed 0.56 0.17 0.36–0.93 0.52 0.20 0.36–0.93 0.32 0.17 0.07–0.64

Adjusted recall scoresb

Immediate 0.70 0.24 0.11–1.00 0.67 0.17 0.29–1.00 0.68 0.25 0.00–1.00
Delayed 0.62 0.28 0.00–1.00 0.63 0.22 0.00–1.00 0.39 0.27 0.00–0.90

Unadjusted recognition scores
d-Prime 2.39 0.72 1.04–3.42 2.29 0.92 1.18–4.22 1.77 0.66 0.93–3.31
Hit rate 0.75 0.19 0.24–0.95 0.74 0.18 0.43–1.00 0.64 0.17 0.24–0.95
False alarm rate 0.06 0.03 0.04–0.14 0.08 0.06 0.04–0.24 0.10 0.07 0.04–0.24

Adjusted recognition scores
d-Prime 3.84 0.86 1.12–4.65 3.85 1.16 1.12–4.65 2.79 1.14 1.11–4.65
Hit rate 0.88 0.06 0.82–0.99 0.89 0.12 0.56–0.99 0.82 0.21 0.33–0.99
False alarm rate 0.04 0.05 0.01–0.24 0.04 0.07 0.01–0.24 0.10 0.10 0.01–0.31

a Maximum score on each trial is 14.
b Proportion of encoded words correctly recalled.

Fig. 1. Mean number of words recalled during the encoding phase presented by
group. The maximum number of words that could be recalled on a single trial is 14.
Error bars show standard error.
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data were submitted to a 3 (Group: SLILow WM, SLIAvg. WM,
TDAvg. WM) � 4 (Trial: Trial 1, Trial 2, Trial 3, Trial 4) Mixed Design
Factorial ANOVA. This analysis revealed a significant main effect
for Group (F(2,49) = 4.406, p = .017, partial g2 = .152) and Trial
(F(3,147) = 102.174, p < .001, partial g2 = .676). A significant
Group � Trial interaction (F(6,147) = 2.288, p = .038, partial
g2 = .085) was also observed.

Following up on the interaction, we performed one-way
ANOVAs to investigate group differences at each encoding trial.
For all such post hoc tests, p-values were adjusted for multiple
comparisons using the Holm’s procedure (Holm, 1979). These anal-
yses revealed no group differences on Trial 1 (p = .402) or Trial 2
(p = .200), while significant group differences emerged on Trial 3
(p = .030) and Trial 4 (p = .020). Post hoc t-tests indicated that on
Trials 3 and 4, the SLILow WM scores were significantly lower than
both the SLIAvg. WM and TDAvg. WM groups (Trial 3: SLILow WM vs.
SLIAvg. WM, p = .022; SLILow WM vs. TDAvg. WM, p = .009; Trial 4:
SLILow WM vs. SLIAvg. WM, p = .048; SLILow WM vs. TDAvg. WM, p = .012).
In contrast, no significant differences were observed between the
SLIAvg. WM and TDAvg. WM on Trial 3 (p = .593) or Trial 4 (p = .541).

It is evident from Fig. 1 that all groups demonstrated an
increase in the number of words recalled across the encoding
phase. Planned contrasts using repeated measures ANOVA under-
taken separately for each group were performed to test whether
there was a linear increase in words recalled from Trial 1 to Trial
4. A significant linear increase was observed for all three groups
(all p’s < .001). Overall, these results show that all groups encoded
verbal information following repeated exposure to the words;
however by Trial 3, and continuing to Trial 4, the SLIAvg. WM and
TDAvg. WM had encoded more words than the SLILow WM group.
3.2. Immediate and delayed recall

The next set of analyses investigated differences between the
groups on the measures of immediate and delayed recall. First, dif-
ferences between groups were examined using Unadjusted Imme-
diate and Unadjusted Delayed Recall Scores. This approach to
measuring recall performance did not take into account children’s
performance on the encoding phase. Both Unadjusted and Adjusted
recall scores are summarised in Table 2. Also, for illustrative pur-
poses these data are summarised in Fig. 2, Panel A.

Unadjusted Recall scores were analysed using a 3 (Group:
SLILow WM, SLIAvg. WM, TDAvg. WM) � 2 (Recall Condition: Immediate,
Delayed) Mixed-Design Factorial ANOVA. This analysis revealed a
significant main effect for Recall Condition (F(1,49) = 5.940,
p = .018, partial g2 = .108) and Group (F(1,49) = 8.149, p = .001,
partial g2 = .250). The interaction between Group and Recall was
also significant (F(1,49) = 4.236, p = .020, partial g2 = .147).

To examine the source of the interaction one-way ANOVA’s were
first conducted to test for differences between the groups on the
Unadjusted Immediate Recall and then Unadjusted Delayed Recall
scores. There was a significant difference between the groups on
the Unadjusted Immediate Recall scores (F(2,49) = 3.934, partial
g2 = .138). Post hoc tests revealed the TD group recalled significantly
more words than the SLILow WM group (p < .001). The SLIAvg. WM

group also recalled more words than the SLILow WM. However, the
difference fell short of statistical significance (p = .064). The



Fig. 2. Proportions of recalled during the immediate and delayed recall condition reported by group. Panel A showed unadjusted recall scores. Panel B shows adjusted recall
scores. Error bars show standard error.

Fig. 3. Mean d-prime values for delayed recognition reported by group. Panel A shows unadjusted d-prime values. Panel B shows adjusted d-prime values. Error bars show
standard error.
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difference between the TD group and SLIAvg. WM group was not sig-
nificant (p = .453) The results from the ANOVA examining differ-
ences between the groups on Unadjusted Delayed Recall scores
also revealed a significant difference between groups
(F(2,49) = 10.668, p < .001, partial g2 = .303).

The next set of post hoc tests compared differences in Unad-
justed Immediate and Delayed Recall scores within each group.
No significant difference in recall between immediate and delayed
conditions was observed for the TD (p = .402) or SLIAvg. WM group
(p = .751). However, the SLILow WM recalled significantly fewer
words in the delayed recall conditions compared to the immediate
recall condition (p = .006).

The next analyses examined the groups’ performance using
Adjusted Immediate Recall and Adjusted Delayed Recall scores.
As noted earlier, Adjusted Scores took into account children’s per-
formance on the encoding phase (see Section 2). Specifically, an
item was considered to have been encoded if it was recalled at
least two times during the encoding phase. Using this criterion
the average number of words encoded by the TDAvg. WM group
was 9.1 (SD = 2.17, Range: 6–13), for the SLIAvg. WM group 8.1
(SD = 1.55, Range: 6–11) and for the SLILow WM group 7.39
(SD = 2.43, Range: 4–13). One-way ANOVA was undertaken to
examine group differences in the number of words encoded. The
effect of group fell short of statistical significance
(F(2,49) = 2.665, p = .080, partial g2 = .104). However, given that
the effect size for this analysis was large the non-significant result
likely reflects insufficient statistical power.

Adjusted Recall scores are presented in Table 2 and also in Fig. 2,
Panel B. These data were analysed using a 3 (Group: SLILow WM,
SLIAvg. WM, TDAvg. WM) � 2 (Recall Condition: Immediate, Delayed)
Mixed-Design Factorial ANOVA. This analysis revealed a significant
main effect for Recall Condition (F(1,49) = 12.422, p = .001, partial
g2 = .202), but not for Group (F(2,49) = 2.135, p = .129, partial
g2 = .080), while the interaction between Group and Recall Condi-
tion was significant (F(2,49) = 3.952, p = .026, partial g2 = .139).
Following up on the interaction, one-way ANOVAs revealed no sig-
nificant differences between groups on the immediate recall condi-
tion (p = .937). However, a significant group difference on delayed
recall was observed (p = .026). Post hoc t-tests showed that the
SLILow WM group recalled significantly fewer words in the delayed
recall condition compared to both the SLIAvg. WM (p = .033) and
TDAvg. WM groups (p = .031). In contrast, the difference between
the SLIAvg. WM and TDAvg. WM groups (p = .925) was not significant.

3.2.1. Delayed recognition
The final analysis tested group differences in delayed recogni-

tion. In these analyses separate one-way ANOVAs were used to
investigate differences between groups for Unadjusted and
Adjusted d-prime values. Unadjusted d-prime values did not take
into account children’s performance on the encoding phase.
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Summary statistics for these values reported by group is presented
in Table 2 and also in Fig. 3, Panel A. Adjusted d-prime values were
computed only using items that were identified to have been
encoded. These data are summarised in Fig. 3, Panel B.

A significant difference between groups was observed when the
Unadjusted d-prime value was entered as the dependent variable
(F(1,49) = 8.795, p < .001, partial g2 = .300). Post hoc tests revealed
that the Unadjusted d-prime values for the SLILow WM group were
significantly lower compared to the SLIAvg. WM (p = .003) and
TDAvg. WM groups (p < .001). The difference between the TDAvg. WM

and SLIAvg. WM groups was not significant (p = .437).
A similar pattern of results was observed when using Adjusted

d-prime values as the dependent variables. Results revealed a sig-
nificant main effect for Group, F(2,49) = 5.907, p = .005, partial
g2 = .194. Post hoc t-tests revealed that the SLILow WM group
obtained significantly lower d-prime values during the recognition
phase than both the SLIAvg. WM (p = .015) and TDAvg. WM groups
(p = .015). No significant differences were observed between the
SLIAvg. WM and TDAvg. WM group (p = .988).

4. Discussion

This study investigated the role of verbal working memory in
the encoding and retrieval of verbal information in SLI. The ques-
tion addressed in the study was whether encoding and retrieval
deficits reported in SLI for verbal declarative memory are related
to verbal working memory problems (Baird et al., 2010; Dewey &
Wall, 1997; Duinmeijer et al., 2012; Lum, Conti-Ramsden, Page,
et al., 2012; Nichols et al., 2004; Records et al., 1995; Riccio
et al., 2007; Shear et al., 1992). Results from this study provide
some support for this proposal. Specifically, the SLIAvg. WM group
were able to encode and retrieve verbal information at a level com-
parable to the TDAvg. WM group. Thus the declarative memory sys-
tem is not impaired in children with SLI who do not have verbal
working memory problems. However, in SLI poor verbal working
memory does appear to negatively impact on the encoding of ver-
bal information and retrieval of verbal information following a
delay. Overall the results suggest poor declarative memory for ver-
bal information in SLI is more closely related to working memory
than language problems.

Research investigating declarative memory for verbal informa-
tion in SLI has consistently observed encoding deficits in SLI
(Baird et al., 2010; Dewey & Wall, 1997; Duinmeijer et al., 2012;
Lum, Conti-Ramsden, Page, et al., 2012; McGregor et al., 2013;
Nichols et al., 2004; Records et al., 1995; Riccio et al., 2007;
Shear et al., 1992). This has led to the suggestion that SLI is associ-
ated with a verbal encoding impairment (McGregor et al., 2013;
Nichols et al., 2004). The results of this study shed new light about
the nature of this encoding difficulty. In the first instance, the prob-
lems appear to be related to verbal working memory and not pho-
nological short-term memory. As reported earlier (see Table 1) no
significant differences were found between the two SLI groups on
the measure of phonological short-term memory. Second, prob-
lems with verbal encoding are not universal in SLI: statistically
indistinguishable performance at encoding was observed between
the SLIAvg. WM and TDAvg. WM groups. Verbal encoding problems
were only present in those children with SLI with verbal working
memory impairments.

It is thought that working memory might aid encoding informa-
tion into declarative memory by clustering similar items on the
basis of semantic or perceptual features (Blumenfeld &
Ranganath, 2006). Poor verbal working memory may limit the
extent these processes can be deployed or the number of items
that can be re-organised. This may explain the performance of
the SLILow WM group on the encoding phase. Analyses showed that
the number of words recalled by this group increased linearly from
Trial 1 to Trial 4. However, the overall number of words learnt was
lower compared to the groups (both SLI and TD) with average
working memory. Interestingly, this problem does not appear to
be related to language difficulties since the SLI group without ver-
bal working memory problems performed at levels comparable to
the TD group.

In relation to retrieval, the results indicate poor verbal working
memory in SLI might be negatively influencing delayed but not
immediate recall. On the immediate recall phase of the list-learn-
ing task the difference between the SLILow WM and the SLI and TD
groups with average working memory was not significant after
performance on the encoding phase was controlled.

In SLI, poor verbal working memory may negatively impact on
the delayed recall and recognition of verbal information from
declarative memory. Analyses showed that the SLILow WM group
was less accurate than the two average working memory groups
(both SLI and TD) on the delayed retrieval conditions. These results
were found even after scores were adjusted to take into account
performance on the encoding phase. In the first instance problems
with delayed recall do not seem to reflect a fundamental problem
with recall more generally. As noted earlier, after controlling for
differences in encoding the SLILow WM group were comparable to
the SLI and TD groups with average working memory. One possibil-
ity is that delayed retrieval of information increases demands on
working memory. In the context of a list-learning task this might
occur because the amount of time between encoding and retrieval
has increased and there is more irrelevant information to ignore.

The SLILow WM group also performed poorer than the groups
with average working memory (both SLI and TD) on the delayed
recognition trials. Note that previous research has consistently
shown that recognition is poorer in SLI (Lum, Conti-Ramsden,
Page, et al., 2012; Nichols et al., 2004; Riccio et al., 2007; Shear
et al., 1992). However, these studies have only examined recogni-
tion memory following a delay. So it is unclear whether the pro-
cesses that support recognition are intact in the SLILow WM group.
Indeed, it could be that recognition memory is intact in this group,
but executing these processes following a delay places more
demands on verbal working memory as was suggested for delayed
recall. Methodological factors may also contribute to the group dif-
ferences on the recognition task. The SLI and TD groups with aver-
age working memory encoded more items on the list compared to
the SLILow WM group (although the difference was not significant).
As a consequence the ratio of targets to foils was smaller
SLILow WM group compared to the other groups. Thus the recogni-
tion task for the children in the SLILow WM group consisted of more
distracter items that needed to be ignored. This may have impacted
on the SLILow WM group’s performance. These children evidenced
more false alarms (see Table 2) on the recognition phase compared
to the groups comprising children with average working memory.
That is they accepted more foils as targets. Future research into
recognition memory in SLI may benefit from using a paradigm that
ensures the ratio of foils to targets is equal between individuals.

Overall, the results of this study do not suggest medial temporal
lobe dysfunction in SLI. This is consistent with neurological data
showing medial temporal lobes are intact in SLI (Ullman,
Pullman, Lovelett, Pierpont, & Turkeltaub, submitted for
publication). We suggest that if SLI was associated with medial
temporal lobe dysfunction we would expect to see declarative
memory deficits in SLI children with both low and average working
memory skills. Such deficits were only observed in the SLI group
with poor verbal working memory. However, neuroimaging func-
tional and structural data will be required to test these claims
further.

Finally, the results of the study have potential clinical implica-
tions. In SLI it seems that the encoding and retrieval of verbal infor-
mation is spared to varying degrees. For children with SLI who do
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not have verbal working memory impairments, the encoding and
retrieval of verbal information from declarative memory appears
to be comparable to typically developing children. For children
with SLI who have poor verbal working memory, the encoding of
verbal information into declarative memory certainly occurs. How-
ever, the amount of information encoded appears to be less in com-
parison to TD children. Children with SLI who have poor verbal
working memory can also retrieve information from declarative
memory at levels comparable to TD children. However, based on
the data presented in this study it seems this can only be achieved
when working memory demands are reduced. Subsequently, in
principal, the encoding and retrieval of verbal information via the
declarative memory system might be a route to scaffold learning.
Future research will be required to determine whether grammati-
cal rules can be learnt and used via the declarative memory sys-
tem. If this is possible better language outcomes for children
with SLI might be achievable.

In sum, evidence suggests that declarative memory deficits are
not a core impairment in SLI. Previous studies have consistently
reported normal non-verbal declarative memory in the disorder.
In terms of verbal declarative memory, this study has showed that
when impairments are observed, this is likely to be due to deficits
in working memory. Future studies should examine in more detail
the nature of the relationship between verbal working memory
and verbal declarative memory impairments in SLI.
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