
Computer Networks 55 (2011) 759–778

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet
A lightweight group-key management protocol for secure
ad-hoc-network routing

Natalia Castro Fernandes ⇑, Otto Carlos Muniz Bandeira Duarte
Grupo de Teleinformática e Automação (GTA), Universidade Federal do Rio de Janeiro (UFRJ), C.P. 68504-21945-970, Rio de Janeiro, RJ, Brazil
a r t i c l e i n f o

Article history:
Received 15 October 2009
Received in revised form 12 August 2010
Accepted 3 October 2010
Available online 27 October 2010
Responsible Editor: N. Agoulmine

Keywords:
Ad hoc networks
Security
Group key
Routing
1389-1286 � 2010 Elsevier B.V.
doi:10.1016/j.comnet.2010.10.003

⇑ Corresponding author. Tel.: +55 21 2562 8635.
E-mail address: nataliacf@gmail.com (N.C. Ferna

Open access under the
a b s t r a c t

Secure routing protocols for ad hoc networks use group keys for authenticating control
messages without high energy consumption. A distributed and robust group-key manage-
ment is, thus, essential. This paper proposes and specifies a protocol for distributing and
managing group keys in ad hoc environments based on the Secure Optimized Link State
Routing protocol (SOLSR). The proposed protocol manages group keys taking into consid-
eration frequent network partitions/mergers and also reduces the impact of non-autho-
rized users that try to illegitimately obtain the group key to use network resources. The
analysis shows that our proposal provides high availability and presents low energy con-
sumption for the two most important group events in ad hoc network: joining-node events
and network-partition-merging events. Our protocol reduces both the number of control
messages and the energy spent with cryptographic operations by up to three orders of
magnitude when compared to contributory group-key agreement algorithms. The pro-
posed protocol provides an efficient key management in a timely manner.

� 2010 Elsevier B.V. Open access under the Elsevier OA license.
1. Introduction a different group key are discarded. This kind of routing
Ad hoc networks are composed of self-organized wire-
less devices that cooperate to control the network and for-
ward each other messages. The provision of secure routing
to these networks faces specific vulnerabilities due to the
absence of fixed infrastructure and the non-reliable users
that want to use the network, but do not want to spend
energy forwarding messages of other nodes. In addition,
ad hoc networks are based on collaborative routing, which
means that a node working in a malicious way may disrupt
the whole network.

Protocols were proposed to provide routing and data
forwarding security by restricting the group of nodes that
can access the network. Secure Optimized Link State Rout-
ing protocol (SOLSR) [14], for instance, provides routing
security through the use of a group key to identify the
group membership. Routing control messages signed with
ndes).

Elsevier OA license.
protocol demands a key management system that guaran-
tees the property of forward secrecy, which means that the
current group key cannot be used by any node to generate
any future key. Thus, a node excluded from the network
cannot obtain a future new group key based on its current
group key. In contrast to forward secrecy, backward
secrecy property is not needed in routing, because the
group key only protects the control messages and a new
node does not obtain any advantages from generating old
group keys based on the current key. Most of the secure
routing protocols rely on key management systems, but
these systems are not specified by these protocols, being
an open problem in ad hoc technology.

Key management is a challenge in ad hoc networks
because it is not possible to guarantee the availability of
a resource, such as a central authentication server, to all
nodes at any time. Indeed, ad hoc networks are often par-
titioned and merged due to node mobility and link outages
[9]. Besides, nodes frequently join and leave the network,
which makes ad hoc network membership highly dynamic.
Furthermore, ad hoc networks are usually composed of

https://core.ac.uk/display/82416808?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.comnet.2010.10.003
mailto:nataliacf@gmail.com
http://dx.doi.org/10.1016/j.comnet.2010.10.003
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet
http://www.elsevier.com/open-access/userlicense/1.0/
http://www.elsevier.com/open-access/userlicense/1.0/

760 N.C. Fernandes, O.C.M.B. Duarte / Computer Networks 55 (2011) 759–778
energy-constrained devices and security must take into ac-
count energy consumption, avoiding frequent execution of
complex cryptographic operations. Hence, group keys are
usually preferred for ad hoc networks because symmetric
cryptography is less energy consuming than asymmetric
cryptography [6].

In this paper we propose and specify a protocol to man-
age the group key in ad hoc environments that use the Se-
cure Optimized Link State Routing protocol. The proposed
protocol, called efficient group-key management for secure
routing (EGSR) [11], uses a few messages in the group-key
distribution process to reduce energy consumption, espe-
cially in node-joining and partition-merging events. EGSR
comprises three main procedures: group-key distribution,
which updates the group key; the group-key gathering,
which is used by nodes to join the network, merge network
partitions, and initialize the network; and the round-leader
management, which monitors and replaces the nodes
responsible for a group-key distribution. In EGSR, the
group key is periodically replaced to exclude non-autho-
rized nodes which have the current group key but not a
private key of an authorized node and to avoid the use of
the same group key in more than some amount of data,
especially when weak encryptions techniques are in use.
Our proposal is compatible with ad hoc characteristics,
such as the absence of infrastructure, the highly dynamic
group membership, and the frequent network partitions.
EGSR initialization phase avoids the use of special secrets
that allows a node to initialize or join the network, but that
can disrupt the entire network if exposed. Instead, in our
protocol, all nodes only need a pair of public/private keys
and a certificate given by the distributed certificate author-
ity to start using the network.

The performed evaluation shows that EGSR reduces en-
ergy requirements for secure ad hoc networks based on
group keys. Indeed, the analysis shows that the proposed
protocol increases the energy efficiency with cryptographic
operations in up to three orders of magnitude when com-
pared to other proposals. Our protocol also presents a sig-
nificant decrease in the control overhead that leads to high
energy efficiency in the joining-node events and in the par-
tition-merging events.

Aside from that, we analyzed EGSR with Petri nets to
evaluate protocol characteristics. In addition, we analyzed
the protocol robustness to the disclosure of the group keys
and the converge delay of EGSR procedures. The analysis
shows that EGSR achieves low complexity and low com-
munication overhead, distributing the group key in a
timely manner.

The remainder of the paper is structured as follows. In
Section 2, we discuss related work, while in Section 3, we
describe the system model and explain SOLSR model and
its requirements. In Section 4, we show the details of the
proposed protocol and, in Section 5, we show the analytical
results. In Section 6, we present the conclusions.
2. Related work

Secure routing protocols for ad hoc networks require
key management, because these protocols are typically
based on cryptographic schemes to protect routing infor-
mation. Usually, a distributed certificate authority
[12,43,27,17] is adopted to achieve authentication and
non-repudiation and, after that, authenticated nodes
establish a secret group key to secure the communication.
Hence, public key schemes are used to restrict and authen-
ticate the group of users that can access the network, while
secret key schemes are used to sign messages without
great energy consumption. Standard approaches for group
key management are based on centralized procedures,
which are not well suited for ad hoc networks due to the
low connectivity and the absence of infrastructure [31].

A distributed cryptographic scheme to establish a group
key is the contributory key agreement [2,38,39,32], in
which all nodes cooperate to form a new group key. Never-
theless, these protocols overcharge network with control
messages to generate a new group key. Usually, contribu-
tory key agreement proposals are based on the Diffie–
Hellman algorithm [10], which is a public key distribution
mechanism. The contributory key agreement extends this
algorithm to allow a group to share a key. Burmester–
Desmedt (BD) [4] is a group-key agreement algorithm
based on Diffie–Hellman, which generates the group key
on rounds. The BD algorithm lists the nodes in a ring struc-
ture, which means that after node n, we find node 1. In the
first round, each node selects a private secret, generates a
public value according to this secret, and floods the net-
work with this public value. In the second round, each node
i uses its selected secret and the public value sent by nodes
i + 1 and i � 1 to generate a new public value, which is also
flooded in the network. Finally, in the last round, each node
uses its secret and all the received values to generate the
new group key. This is done through one exponentiation
using the selected secret and n exponentiations with small
exponents, where n is the number of nodes in the network.
Hence, the group key is chosen based on the contribution of
the whole network, which makes this algorithm robust
against the choice of a weak group key.

Another approach similar to BD is the Group Diffie-
Hellman (GDH-3) [37]. This proposal focuses on networks
in which some nodes are energy-constrained devices. Thus,
assuming a network with n nodes, n � 1 nodes execute a
few exponentiations to obtain the key, while one node
executes n exponentiations. In the first round, each node
selects a private value. Then, node 1 sends the public value
calculated based on the selected private value to node 2,
which further calculates a new public value based on its
selected private value and on the public value received
from node 1. Node 2 sends this new public value to node
3, which repeat this procedure until the interactive mech-
anism reaches node n � 1. In the second round, node n � 1
uses the value received from node n � 2 to calculate an
exponentiation using its selected secret value as exponent.
Then, node n � 1 floods the network with the resulting
value. In the third round, each node i factors out the value
received from node n � 1 with its own secret and sends the
result to node n. Node n, which has a greater computa-
tional power than the other nodes, calculates and sends a
special value to each node. Based on its selected secret
and on the value received from node n, each node can
calculate the group key.

N.C. Fernandes, O.C.M.B. Duarte / Computer Networks 55 (2011) 759–778 761
In addition to the GDH.3 protocol, Steiner et al. propose
an auxiliary mechanism, called Auxiliary Key Agreement
(AKA), to adapt GDH.3 and some other protocols to events
such as a joining node, a partition merging, etc. [38]. In-
deed, a protocol suite including AKA, called CLIQUES, is
proposed to support dynamic group operations in Diffie–
Hellman-based group-key-agreement algorithms. AKA re-
duces both message and computation overhead to all
group operations after the initial development of the group
key. The main idea of AKA is that a controller node stores
all the partial values, Li, and manipulates them whenever
there is a group operation, assuming that each node knows
all the other nodes in the network. No mechanism to elect
and replace this controller, however, is presented in CLI-
QUES, as well as no mechanism to control network mem-
bership is provided. Moreover, there is no mechanism to
inform new nodes or new groups being merged to the cur-
rent controller. If the controller node leaves the network
without being replaced, the mechanisms proposed in
AKA cannot be used and the initial group-key agreement
must be re-executed.

Kim et al. propose the Tree-Based Group Diffie–Hellman
(TGDH) protocol to reduce message and processing over-
heads in the contributory group-key agreement [16]. Each
member of the network represents a leaf node in a binary
tree and has a set of keys arranged from the leaf node up to
the root node in this binary tree. As a consequence, all
nodes share the root-node secret key, which is the group
key. To accomplish membership changes, TGDH selects a
special member, called sponsor, to update the keys when-
ever a new member joins or leaves the group. Also, this
protocol balances the binary tree in network-partition-
splitting, network-partition-merging, and node-joining/
leaving events. According to Gangwar and Sarje [13], TGDH
has moderate costs when the tree is fully balanced. Hence,
the events of node join, partition split, and partition merg-
ing are costly, because they can imbalance the binary tree.

The use of trees on contributory key agreement with
elliptic curve cryptography (ECC) is also being adopted to
reduce energy costs. Kumar et al. propose a region-based
group-key agreement protocol based on ECC, which uses
the Group Elliptic Curve Diffie–Hellman protocol (GECDH)
and the Tree-based Group Elliptic Curve Diffie–Hellman
protocol (TGECDH). In this proposal, the group of nodes
is broken into region-based subgroups, each one with a dif-
ferent leader. Each region-based subgroup has its own
group key, and the leaders communicate using an outer
group key. Thus, if there is a membership change on a spe-
cific group, only the key of that group is updated. Mean-
while, if a leader leaves the network, then both the group
key of the leader group and the outer group key are up-
dated [20]. Although this proposal is based on regions,
there are no comments about how to divide the network
into regions or how to elect the leaders. Moreover, the pro-
tocol assumes that data such as the number of nodes or the
moment a member leaves the network is known, but no
mechanisms to disseminate these data are provided. Other
disadvantage, according to the authors, is that it takes crit-
ical time to generate a new contributory group key. An-
other proposal based on ECC is proposed by Li-Ping et al.,
in which a contributory group-key agreement protocol is
developed over a circular hierarchical group model [25].
In this proposal, referred to as CH-ECC, the network is di-
vided into h layers composed of subgroups of size c. Each
subgroup has a different group key, while, based on these
keys, the whole network is able to generate a group key.
The CH-ECC, however, does not detail how to form the cir-
cular hierarchical groups in a decentralized way.

A challenge for contributory key agreement proposals
are to establish the order of the nodes to form the group
key and, for some schemes, such as GDH.3 and TGDH, also
to specify which node is the ‘n’ node or the sponsor node.
In addition, these mechanisms assume that all nodes know
the routes to each other, which is a strong assumption if
we take into consideration the case of a group key for se-
cure routing in ad hoc networks. In this situation, nodes
do not know any route, because they are not able to ex-
change control messages before establishing a group key.
Hence, all contributory key agreement control messages
must be flooded in the network.

Key pre-distribution schemes address the key distribu-
tion for networks composed of energy-constrained devices.
In this approach, an administrator selects a pool of keys
from the key space. Each node receives a random subset
from the key pool before network deployment. Any pair
of nodes able to find a common key within their subsets
can use that key to establish a secure communication. After
the stabilization of secure links, nodes select a group key
[28,7]. Luo et al. propose a group-key management system
based on key pre-distribution and on the contributory key
agreement [28]. In this protocol, nodes must keep a list
with all excluded nodes and pre-distributed keys of ex-
cluded nodes are discarded. This can imply in a connectivity
problem, in case of many excluded nodes. Chan et al. pro-
pose the ‘q-composite scheme’, the ‘multipath reinforce-
ment scheme’, and the ‘random-pairwise keys scheme’ to
enable characteristics like node-to-node authentication
and quorum-based revocation [7]. The main disadvantage
of this kind of proposals for self-organized ad hoc networks
is the premise of an administrator that must configure all
the nodes. Also, the disclosure of some node secret keys
can compromise the whole network.

Cluster-based and location-based protocols aim to build
a scalable key management and to reduce the number of
messages transmitted when a node join or leave the net-
work [39,18,26,23,22]. Distributed, Efficient Clustering Ap-
proach (DECA) uses clusters to distribute keys in ad hoc
networks [24]. The disadvantage of DECA and also other
cluster-based proposals is their high-energy consumption
for managing clusters if network membership often
changes. Another approach to distribute group keys on
multicast environments based on clusters is the Optimized
Multicast Cluster Tree with Multipoint Relays (OMCT with
MPR), whose main idea is to use information of OLSR pro-
tocol to elect the local controllers of the created clusters
[3]. OMCT with MPRs assumes that routing control mes-
sages have been exchanged before the key distribution.
In SOLSR, however, all routing control messages must be
signed. Therefore, key distribution must be deployed be-
fore the exchange of routing control messages. Then, OMCT
with MPRs is not useful to distribute a group key in the
SOLSR protocol.

762 N.C. Fernandes, O.C.M.B. Duarte / Computer Networks 55 (2011) 759–778
Our proposal for managing group key in ad hoc net-
works, called efficient group-key management for secure
routing (EGSR), significantly reduces the control-message
overhead when compared with contributory key agree-
ment protocols or cluster-based protocols. Besides, our
protocol does not depend on the establishment of secrets
before the network deployment, as occurs in the key pre-
distribution schemes. Therefore, even if authorized nodes
are hacked, network security is not completely compro-
mised. EGSR deals with the challenges of frequent network
access by non-authorized nodes that illicitly obtained the
group key and network partitions. Instead of most of
group-key agreement/distribution proposals, our protocol
is able to identify all dynamic group events that affect
group-key-based routing in ad hoc network, such as nodes
joining the network, network initialization, and network
partition merging. Additionally, EGSR specifies how to
authenticate nodes and how to securely distribute the
group key in the dynamic group events with a small over-
head, assuming the existence of a distributed certificate
authority. A distributed entity, such as the distributed cer-
tificate authority, is needed by most of group key manage-
ment protocols to specify the list of authorized nodes and
to support node authentication. The exceptions are the
key pre-distribution schemes, which replace this entity
by an administrator which install secrets in all authorized
nodes before network deployment. The main advantage of
our protocol is the low energy consumption, due to the
small number of messages required for the key distribu-
tion, especially in joining-node and partition-merging
events. In addition, EGSR group key distribution works
without the knowledge of the available routes. This is
important because secure routing protocols only accept
control messages signed with the group key, and then,
the group-key distribution must occur before the calcula-
tion of the routes.
3. System model

3.1. Network model

Our protocol works under the assumption of mobile
nodes which collaboratively support network operation.
Network partitions can occur at any time and nodes fre-
quently join and leave the network. We define as group
the set of nodes that can communicate through routes of
one or more hops.

We assume that a distributed certificate authority con-
trols network membership [43,27], which means that this
entity knows which are the nodes that can access the net-
work. By network membership, we mean all the nodes
that are authorized by a third party, such as a certificate
authority, to access the network. The certificate authority
creates certificates for each authorized node, associating a
public key Pki to an identity idi. Each node knows its pub-
lic and private keys as well as its certificate a priori. We
also assume that this distributed certificate authority is
able to notify authorized nodes whenever there is a
change on the network membership, through the emis-
sion of a revoked certificate list. The revoked certificate
list contains all certificates that are still valid, but cannot
be used anymore.

Authorized nodes in the same group must share the
same group key to exchange routing control messages.
We assume that nodes run the Secure Optimized Link State
Routing protocol (SOLSR) [14], which is an extension to
provide security for the Optimized Link State Routing pro-
tocol (OLSR) [8].

3.2. OLSR and SOLSR

OLSR is a pro-active and link-state-based routing proto-
col and, thus, its routing table is constructed based on
information generated by node neighbors and also on all
possible destinations in the network. To mitigate the over-
load effect caused by the control-message flooding events,
OLSR limits the flooding procedure using the multipoint
relay (MPR) mechanism. In this mechanism, every node se-
lects its set of multipoint relay (MPR) nodes among the
one-hop neighbors. The basic rule for the MPR selection
procedure is that each node must reach all two-hop neigh-
bors through its MPR set. Because selecting the best MPR
set, which means to find the smallest set of one-hop neigh-
bors that reaches all the two-hop neighbors, is a hard prob-
lem, this selection is done through heuristics. The RFC of
OLSR [8] suggests an algorithm based on first selecting
one-hop neighbors that are the only one to reach a specific
two-hop neighbor. After that, the algorithm calculates the
number of two-hop neighbors that each of the remaining
one-hop neighbors reaches, excluding the two-hop neigh-
bors that were already reached by the first selected MPR
nodes. Then, the one-hop neighbor that reaches more
two-hop neighbors is selected as MPR. Next, all the two-
hop neighbors that this selected one-hop neighbor reaches
are excluded of the two-hop neighbor set and the algo-
rithm is run again until the two-hop neighbor set is empty.

The MPR nodes are responsible for forwarding routing
messages in flooding events. Therefore, when a node sends
a routing message which must be flooded, only its MPR will
forward the message, reducing control message overload.
This procedure is repeated by the MPR nodes of each MPR
in a flooding, which guarantees that a message will reach
the whole network. It is important noticing that the MPR
nodes reduce the overhead in a flooding, but they usually
do not eliminate all the redundancies in a flood event. An
example of a flood event using MPR nodes is on Fig. 1.

Because each node in OLSR monitors its links with
neighbors, every time a link failure or a new link is de-
tected, the node floods the network with the current link
state. Hence, all the nodes in the network can update their
routing table. This way, OLSR correctly handles mobility in
ad hoc networks.

SOLSR secures OLSR through two mechanisms: access
control and message replay protection [14,40,1]. SOLSR as-
sumes that all nodes authorized to access the network
share a group key a priori. Then, all SOLSR messages are
signed with this group key to perform the access control.
As a consequence, non-authorized nodes cannot create or
modify control messages in the network. SOLSR, however,
does not specify how the group key is managed or
distributed.

Fig. 1. Example of the use of MPR nodes in a flood event. The number of nodes retransmitting the message and number of message copies each node
receives are reduced.

N.C. Fernandes, O.C.M.B. Duarte / Computer Networks 55 (2011) 759–778 763
The message replay protection of SOLSR prevents mali-
cious nodes from replaying old control messages to dam-
age routing. Thus, each node controls the difference
between its own clock and the clocks of other communi-
cating nodes. Therefore, the first time two nodes, A and B,
need to communicate, they exchange their timestamps,
TAj

and TBj
, to discover the difference between their clocks,

TA;B ¼ TAj
� TBj

. When node A sends a message to node B, it
sends the timestamp of the moment the message was sent,
TS. After node B receives the message, it checks Condition
(1), given by

TS � TBi
� S 6 TA;B 6 TS � TBi

þ S; ð1Þ

where S is the maximum delay tolerance in the transmis-
sion and TBi

is the current timestamp of node B. Since node
A and node B are neighbors, S is chosen as a small value. If
this condition does not hold, then node B classifies the
message as a replay and discards the message. This mech-
anism prevents, for instance, malicious nodes from replay-
ing old Hello messages from an authorized node to forge
the presence of this authorized node elsewhere in the net-
work. Because authorized nodes always check Condition
(1) after receiving a control message and non-authorized
nodes which does not have the current group key cannot
modify the fields inside the signed control message, a re-
play of old Hello messages can always be detected by
any authorized node in the network. As a consequence of
the message replay protection, nodes know the difference
between their clocks and the clock of their neighbors in
SOLSR, which means that the network has a weak
synchronization.

Our protocol, EGSR, aims to solve the group key distri-
bution and management in a complete distributed fashion.
Accordingly, only nodes which can obtain a certificate out
of the revoked certificate list are able to successfully run
EGSR, obtain the current group key, send routing messages,
and access the secure network.

3.3. Adversary model

We consider as adversary any non-authorized node or
any authorized malicious node. Adversaries may behave
in a malicious way, damaging network by creating, modify-
ing or discarding messages. Also, non-authorized nodes
that obtained the group key may behave properly, but con-
suming network resources, such as bandwidth. For these
reasons, EGSR always tries to exclude non-authorized
nodes from the network. Excluding a node means discard-
ing all messages going to or coming from this node and
preventing this node from receiving a group key.

Malicious authorized nodes are hard to detect and ex-
clude in the network layer when using symmetric keys to
sign routing control messages. Hence, routing attacks can
be detected, but a malicious authorized node cannot be ac-
cused based only on the observation of routing control
messages. The exclusion of this kind of node is not on the
scope of this work.

We do not make assumptions about processing power
of the adversaries. We assume that adversaries can steal
group keys and can collude, but they are always minority
in the network. This minority is important to guarantee
that the ad hoc network has a high chance of trustful pack-
et forwarding, independent of our protocol or of the mali-
cious node actions.

4. The proposed scheme

The proposed protocol uses asymmetric cryptography
to distribute the group key to all the nodes. The distribu-
tion is accomplished by three main procedures. The first
one, the group-key distribution, is responsible for estab-
lishing a new group key in cases of node exclusion and
periodical group-key replacement. It is worth mentioning
that routing, unlike other applications, does not require
group-key replacement when a node joins the network be-
cause confidentiality is not a goal. The second procedure
deals with the challenges of node-joining, partition-merg-
ing, and network-initialization events. The third procedure
treats the leader failure detection and the leader replace-
ment. In EGSR, the group-key distribution is initialized in
each round by a round leader. If the round leader fails, it
is necessary to automatically replace the round leader to
continue the group-key distribution.

4.1. Group-key distribution

The group-key distribution procedure is trigged to re-
place the group key in three cases: periodically, whenever

764 N.C. Fernandes, O.C.M.B. Duarte / Computer Networks 55 (2011) 759–778
a node is excluded, or when a bad behavior is detected by a
bad behavior detection system (BBDS) [29,42,41]. The
group-key distribution is periodically executed to exclude
non-authorized nodes which illicitly obtained the current
group key but do not have a private key of an authorized
node. For instance, an authorized user may reveal the
group key to a non-authorized friend in order to allow
his friend to access network resources. The group key dis-
tribution is also executed when a node is excluded to guar-
antee that the excluded node does not have the current
group key. Hence, the distributed certificate authority re-
vokes the certificate of the excluded node and sends the
updated revoked certificate list to all nodes. This event
causes the revocation of the current group key and the dis-
tribution of a new group key. After that, the excluded node
is neither able to obtain the new group key nor to generate
new control messages. Finally, the group-key distribution
can be triggered by the BBDS, because when the BBDS
sends an alert, it means that there is an adversary that
should be excluded from the network. This adversary,
however, cannot be identified in the routing layer due to
the use of group keys, which do not authenticate users. If
this adversary is not authorized, but has disclosed the
group key, it will be purged after a new group-key
distribution.

Fig. 2 illustrates the group-key distribution procedure. In
EGSR, nodes are able to select a round leader in each group-
key distribution, as we show in Section 4.5. The round leader
initiates the group-key distribution through the broadcast
of an Announcement message, which indicates the exis-
tence of a new group key. When the neighbors of the round
leader listen to the Announcement message, they send an
Order message asking the new group key. The round leader
Fig. 2. Group-key-distribution procedure model and an exam
ends the process by sending to each neighbor a Response
message, which contains the new group key encrypted with
the public key of its neighbor. The neighbors that are
multipoint relays (MPRs) of the leader further retransmit
the Announcement message, and the two-hop neighbors
of the leader select an MPR to obtain the new group key.
The leader, its MPRs, the MPRs of MPRs of the leader etc.
repeat this procedure, just as in a controlled flooding, to
attain all the nodes of the network and to guarantee that
all nodes will receive the new group key.

The messages used on the group-key distribution are in
Fig. 3. The ‘Signature with Private Key’, ‘Certificate’, and
‘New Group-key Encrypted with Neighbor Public Key’
fields have variable size, depending on the hash function,
cryptographic algorithms, and key size. The certificate
and the message signature authenticate the sending node
and guarantee the content integrity. Besides, the key distri-
bution for each pair of nodes is only successful if both
nodes prove that they have a valid certificate issued by
the certificate authority and that they are not on the re-
voked certificate list. The ‘Key Sequence Number’ identifies
the group key being distributed. The ‘Current Round
Leader’, ‘Next Round Leader’, ‘Group-Key Distribution
Interval’, and ‘Distribution-Start Timestamp’ fields are
important for the round-leader selection procedure and
the round-leader failure detection, as we explain later.
The ‘Distribution-Start Timestamp’ field generated by the
round leader, ln, which we call Tbj

ðlnÞ, is updated hop-
by-hop. Thus, based on Tbj

ðlnÞ received from node j, node
i estimates the time of the beginning of the group-key dis-
tribution procedure, Tbi

ðlnÞ, on its own clock according to

Tbi
ðlnÞ ¼ Tbj

ðlnÞ � Tj;i; ð2Þ
ple of the group-key distribution on a generic network.

Fig. 3. Group-key distribution messages.

N.C. Fernandes, O.C.M.B. Duarte / Computer Networks 55 (2011) 759–778 765
where Tj,i is provided by SOLSR and indicates an estimative
of the difference between the clock of node j and the clock
of node i. Hence, all nodes know approximately when the
current group-key distribution has begun and when the
next group-key distribution should start.

Due to the group key distribution procedure, even if a
non-authorized node has an old group key, it cannot obtain
the new one. As the new group key is randomly chosen and
is encrypted with the public key of the destination node,
non-authorized nodes cannot derive the new group key
from an old group key nor spoof the group-key distribution
to obtain it.

4.1.1. Using the new group key
Nodes must begin to use the new group key approxi-

mately at the same time. Therefore, a node i calculates
the expected time to start using the new group key,
Twi
ðlnÞ, given by

Twi
ðlnÞ ¼ Tbi

ðlnÞ þ Tn � Hmax: ð3Þ

In this equation, Tbi
ðlnÞ is the approximate time when the

group-key distribution procedure began according to node
i, given by Eq. (2), Tn represents an upper bound of the
maximum delay an MPR takes to transmit the new group
key to its neighbors, and Hmax represents the number of
hops between the round leader and the farthest node,
which is obtained with data collected by SOLSR.

Node i starts to use the new group key after Twi
ðlnÞ,

although it accepts messages signed with the old or the
new group key in the period given by Twi

ðlnÞ � a and
Twi
ðlnÞ þ a, where a represents the delay tolerance. After

Twi
ðlnÞ þ a, messages not signed with the new group key
are discarded. If a node j does not receive the group key be-
fore Twj

ðlnÞ þ a, it will obtain the new key based on the pro-
cedures described in Sections 4.2 and 4.5, which deal with
partition-merging events and round-leader failures. In-
deed, if the node does not obtain the group key, it will con-
clude that the current leader has failed and will choose
new leaders until the node becomes the leader and chooses
another key or the node will detect that its neighbors have
a different group key and will start a partition merging
procedure. Due to a and to these procedures EGSR only
needs a weak synchronization provided by SOLSR time-
stamp exchange.

4.2. Gathering the current group key

The group-key distribution procedure treats excluded
nodes, but not joining nodes. When an authorized node
joins the network, it must obtain the current group key.
Similarly, when two network partitions restore a common
link, they must establish a common group key to guarantee
that all the routing control messages are accepted by the
nodes of both partitions. It is important to notice that if
an authorized node leaves the network or if a network par-
tition occurs, there is no need for key replacement. These
nodes were not suspected of malicious actions and were
not excluded, so they can own the current group key, be-
cause they are not expected to damage the network.

We propose three procedures to a node or a group of
nodes obtain the current group key: the joining-node
procedure, the partition-merging procedure and the net-
work-initialization procedure. The joining-node procedure
allows authorized nodes which do not hold the group key

Table 1
Notations used in the procedure descriptions.

Notation Meaning/Action

?M Receive message M
?1 M First reception of message M
!M Send message M

X Not X

C1 ^ C2 C1 and C2

C1 _ C2 C1 or C2

[C1]j[C2] If condition C1 holds, then do C2

CA Certificate of node A
CB Certificate of node B
Gk Network group key
GkPt1

Group key of partition 1
GkPt2

Group key of partition 2
PkA Public key of node A
PkB Public key of node B
pkA Private key of node A
pkB Private key of node B
Lrev Revoked certificate list
Lact Active node list obtained with SOLSR

766 N.C. Fernandes, O.C.M.B. Duarte / Computer Networks 55 (2011) 759–778
to obtain it with any other authorized node. The partition-
merging procedure joins network partitions caused by con-
nection problems [9] or when nodes leave the network.
Therefore, these two procedures to an authorized node
gather the current group key make EGSR robust to nodes
that frequently join and leave the network, delays in the
group-key distribution procedure, and link losses. The net-
work-initialization procedure organizes the nodes and
establishes a group key when nodes are joining to create
a new network.

Any authorized node that does not have the group key
can obtain it with any other authorized node. In the end
of the process, nodes will have a common group key to
be used in secure routing.

4.2.1. Joining-node procedure
A node can join the network if it was previously autho-

rized and has obtained a valid certificate. Fig. 4 shows the
joining-node procedure when node B joins the network
and obtains the group key with node A, which belongs to
the group and has the current group key. After this proce-
dure, node B can exchange timestamps with its neighbors
and send/receive routing control messages, such as the
periodic Hello messages of SOLSR. Tables 1 and 2 show
notations used in this paper.

The joining-node procedure uses two messages: Join
and Accept. The Join message, depicted in Fig. 5(a), signals
to node A that node B is a joining node. The Join message
contains the new node certificate and also a signature with
node B’s private key, because node B must prove to node A
that it is an authorized node. The Accept message, de-
scribed in Fig. 5(b), informs the current parameters of node
A’s partition: the group key, which node A uses to send
routing control messages, the number of nodes in the par-
tition, used in the partition-merging procedure, and the
relevant data for the next group-key distribution.
Fig. 4. Message exchange over time in the joining-node procedure, assuming
4.3. Partition-merging procedure

We need to identify each group of nodes in the network
with different group keys to detect and merge network
partitions. EGSR uses the signature of the SOLSR Hello mes-
sages as partition identifiers. A partition-merging scenario
is detected if a signature of a Hello message of a neighbor
was not generated with the current group key. Hence, if
two neighbors have different group keys and there are
more than TH seconds since the last group-key update
and TP seconds since one of these nodes started a parti-
tion-merging procedure, then these nodes are in different
partitions and should start the partition-merging proce-
dure. The period of TH seconds guarantees that a group-
key update is not happening at that moment and the
that node A is already on the network and node B is the joining node.

Table 2
Notations used to cryptographic operation descriptions in the procedures.

Notation Meaning/Action

/(M,Pk) Encrypt M using public key Pk
/�1(M,pk) Decrypt M using private key pk
#(M,Gk) Encrypt M using group key Gk
#�1(M,Gk) Decrypt M using group key Gk
u(C,PkCA) Check certificate C using the public key of the

certificate authority PkCA

W(Sig,Pk) Check signature of the message, Sig, using the public
key Pk

h(Sig,Gk) Check if signature of the message, Sig, was not
generated
using the group key Gk

X(E,L) Check if element E is not on list L

N.C. Fernandes, O.C.M.B. Duarte / Computer Networks 55 (2011) 759–778 767
period of TP seconds avoids malicious nodes from trying to
exhaust the battery of a node with frequent false partition-
merging procedures.

Fig. 6 describes the partition-merging procedure. First,
the nodes that detected the partition exchange the mes-
sages Join, Associate and Confirmation, depicted in
Fig. 5(a), 7(a), and 7(b), to obtain the data about each other
and about each partition. Each node executes only one par-
tition merging procedure at a time. Hence, if many nodes
send the Join message to node A, node A will send the Asso-
ciate only for the first communicating node, to avoid
unnecessary message overhead. After this message ex-
change, both nodes know the group key and the number
of nodes of the other partition. The node in the smallest
partition, which is node B in our example, then announces
itself as immediate round leader and distributes the group
key of partition 1 through the flood of the Partition mes-
sage, described in Fig. 7(c). In this message, node B warns
its partition about the partition-merging procedure and
advertises the new group key and the group-key distribu-
tion data of partition 1. Therefore, after all nodes in parti-
tion 2 receive this message, they can exchange routing
control messages with nodes of partition 1 and, also, they
are able to detect failures in the leader selection of the next
group-key distribution, as we show in Section 4.5.
Fig. 5. Messages used in the joinin
It is worth mentioning that EGSR does not authenticate
every node in a partition merging procedure, because all
nodes with the group key are trusted. Instead of the group
key distribution procedure, here there is no need to
authenticate all the nodes to check if all belong to the
group. Then, as depicted in Fig. 6, the Partition message
is signed with the group key of partition 2 instead of pri-
vate key of node B and the new group key is encrypted
with the group key of partition 2. Hence, the partition-
merging procedure has low energy consumption.

Since many partition-merging procedures can occur at
the same time, EGSR uses a decision process based on three
rules to avoid loops. First, if a node detects a partition, it
starts the procedure sending a Join message only if its IP
is greater than the other node IP. This avoid that both
nodes start the procedure at the same time. Second, if there
are more than one partition merging occurring at the same
time, the Partition messages of the smaller partitions are
always discarded and the group key of the partition with
more nodes is adopted. Third, if partitions have the same
size, the partition with the leader with the greatest IP ad-
dress will predominate and the Partition messages of the
other partitions are discarded. Therefore, after the parti-
tion-merging procedure, all partitions are expected to
share a unique group key of the greatest partition.
4.4. Network-initialization procedure

The network-initialization procedure guarantees that
nodes organize themselves in the beginning of the network
and, after a period of time, all nodes share a unique group
key in a distributed way. The worst case scenario occurs
when a group of nodes joins the new network simulta-
neously. A node assumes it is in the network initialization
phase if, after listening the medium for a period TL, the
node does not receive any Hello message from an autho-
rized node. Thus, this node chooses a group key and starts
to send Hello messages. After that, all arriving nodes must
just accomplish the joining-node procedure to receive the
group key and access the network. Nevertheless, if more
g-node procedure of EGSR.

Fig. 6. Message exchange over time in the partition-merging procedure.

768 N.C. Fernandes, O.C.M.B. Duarte / Computer Networks 55 (2011) 759–778
than one node starts the network-initialization procedure
at the same time, each node will choose a different group
key. These nodes realize that they are actually neighbors
and have different keys when they receive the Hello mes-
sages sent by the other nodes. As a consequence, they will
start partition-merging procedures. Indeed, the nodes will
arrange themselves in small partitions with one hop neigh-
bors and these small partitions will further merge, as
shown in Fig. 8. The partition-merging procedure is re-
peated until the whole network attains a unique key.

4.5. Round-leader management

The round leader randomly chooses a group key and
starts the group-key distribution procedure. Therefore,
the leader plays a special role in each group-key-distribu-
tion round and is a single point of failure, which could dis-
rupt the entire group-key management. Furthermore, if a
malicious node is chosen as leader, it could choose weak
group keys to damage the network security. To avoid these
problems, we propose two procedures: the round-leader
selection and the round-leader replacement.

The round-leader selection follows a rule to avoid that
colluding malicious nodes are always the round leaders.
Also, this procedure avoids extra message overhead, be-
cause the nodes reach to the same decision based only
on the already stored data of SOLSR. Indeed, SOLSR pro-
actively lists all the possible destinations in the network,
which correspond to the list of all active nodes. Although
SOLSR routes can often vary, this list is considered stable
and can be used to select the round leaders with a really
low error rate. This means that all nodes will probably
choose the same node as next round leader.

A round leader selects the next round leader by creating
a circular ordered list based on the active-node IP address
list provided by SOLSR. The round leader selects its succes-
sor in this list as the next round leader. As a consequence, a
malicious node cannot easily choose another malicious
node as round leader, because all nodes can verify if the
next round leader was correctly chosen. Moreover, if a
malicious node is selected as round leader and it chooses
a weak group key, the nodes that run a bad behavior detec-
tion system (BBDS) can detect this and warn the next
round leader to start a new group-key distribution.

According to the round-leader selection, the round lea-
der is chosen before the moment of the next group-key dis-
tribution. Therefore, the round leader might be unavailable
in the next group-key distribution, compromising the
group-key management. EGSR avoids this problem with
the proposed self-adaptive round-leader replacement pro-
cedure, which detects a leader failure and replaces the
leader.

Fig. 7. Messages used in the partition-merging procedure of EGSR.

Fig. 8. Network-initialization procedure when seven nodes join the network almost simultaneously.

N.C. Fernandes, O.C.M.B. Duarte / Computer Networks 55 (2011) 759–778 769
A node j detects that the round leader ln failed when a
group-key distribution is pretended to start, but no neigh-
bors sent the Announcement Message after the expected
time to receive the new group key, Tkj

ðlnÞ. Based on the
hop-by-hop delay to receive the new group key, node j
estimates this expected time, Tkj

ðlnÞ, which we define by

Tkj
ðlnÞ ¼ Ts þ Tn � Hln ;j þ d; ð4Þ

where d is the delay tolerance and Hln ;j is the number of
hops from the round leader ln up to node j. The variable
Tn is an estimate of the maximum delay for group-key dis-
tribution from an MPR to its neighbors and Ts is the ex-
pected time for the start of the group-key distribution
procedure, which is given by

Ts ¼ Tbj
ðln�1Þ þ TG; ð5Þ
where Tbj
ðln�1Þ is the time the last group-key distribution

began, which is given by Eq. (2), and TG is a protocol
parameter to establish the interval between automatic
group-key replacements, which is given by the Accept
message in the group-key distribution. The round leader
is considered absent if the new group key is not received
up to Tkj

ðlnÞ.
When a node detects that round leader ln has failed, it

selects the next round leader, ln+1, in the circular ordered
list of the active nodes. A node j calculates a new expected
time to receive the key, T 0kj

ðlnþ1Þ based on the time to the
node that will be the next leader, ln+1, notices that the cur-
rent round leader has failed and the delay to node j receive
the key generated by the round leader ln+1. Thus, in order to
calculate the expected time to receive the group key after a
leader failure, we propose the expression given by

770 N.C. Fernandes, O.C.M.B. Duarte / Computer Networks 55 (2011) 759–778
T 0kj
ðlnþ1Þ ¼ Ts þ Tn � Hlnþ1 ;ln þ d

� �
þ Tn � Hlnþ1 ;j � Tn þ d
� �

: ð6Þ

The time to start using the new group key, Twj
ðlnþ1Þ, is

recalculated according to Eq. (3) to the new round leader.
The round-leader replacement procedure is accomplished
for a node when it obtains the new group key. Then, if i
leaders fail, then each node chooses the new leader, ln+i,
and estimates the maximum delay to receive the new
group key by

T 0kj
ðlnþiÞ ¼ Ts þ

Xi

j¼1

Tn � Hlnþj ;lnþj�1
þ Tn � Hlnþi;j

þ ðiþ 1Þ � d:

ð7Þ

Eq. (3) is then used to estimate the time to start using the
new group key.
Fig. 9. State machines of
If the network experiences connection losses and con-
gestion, the group key can get a great delay to be delivered
and the round-leader failure procedure can be wrongly
evoked. In this case, if a node obtains different group keys,
but still has not start to use any of these keys, it chooses as
the new group key the one sent by the oldest round leader
and updates its estimated delay to deliver the group key, Tn.
5. Protocol analysis

5.1. Petri net analysis

State machine models of EGSR procedures are devel-
oped to validate the protocol characteristics, as shown in
Fig. 9. These state machines were converted into a single
Petri net and we used the ARP tool, version 2.3 [30] to
EGSR procedures.

N.C. Fernandes, O.C.M.B. Duarte / Computer Networks 55 (2011) 759–778 771
evaluate if the protocol fulfills the three classic properties:
boundedness, liveness, and repetitiveness [21].

The results show that the protocol has the expected
properties: boundedness, because protocol has a finite
number of states; liveness, as there are no dead-locks, rep-
resenting that all actions of the protocol are possible; and
repetitiveness, because it is possible to return to the initial
state from any state in the Petri net through at least one
sequence of transitions. Then, the proposed protocol has
neither loops nor states from which it is not possible to
reach any other state.

5.2. Security analysis

In this section, we discuss potential security issues and
how our protocol handles them.

5.2.1. Group-key disclosure
If a non-authorized node obtains the current group key

Gkn, it can sign routing control messages and damage the
network. Nevertheless, this non-authorized node can only
use the obtained group key by a restricted period of time,
because the group key will be changed in the next group-
key update. The non-authorized node cannot obtain the
new key, because it does not have the private key and a
valid certificate required by the Order message in the
group-key distribution procedure. Assuming fr is the aver-
age frequency of the automatic group-key distribution,
which replaces the group key, then we can estimate that
the malicious node will be excluded from the network in
a period p 6 1/fr. Besides, if the non-authorized node does
malicious actions, a BBDS created with any intrusion
detection system and/or any trust system can detect the
malicious action and send an alarm before the next auto-
matic group-key distribution. This alarm triggers a new
group-key distribution procedure, quickly excluding the
non-authorized node.

5.2.2. Internal attacks against EGSR
We assume in EGSR that a non-authorized node can

steal a group key. In these cases, the non-authorized node
will participate in the network until the next group key
distribution. Hence, we must guarantee that this non-
authorized node cannot interfere on EGSR functions.

A malicious node that does not send or forward control
messages may try to damage EGSR in four different ways:
not starting a group-key distribution when it is the leader;
not forwarding the key in the group-key distribution when
it is an MPR; not forwarding the Partition message in the
partition-merging procedure; and starting an EGSR proce-
dure without finishing it. If a malicious node is the leader
and does not start the group-key distribution, then it will
be automatically replaced by all nodes, which will select
a new leader in a distributed way. Hence, the attack will
only cause an extra delay in the new group-key distribu-
tion. In the cases a malicious node is an MPR node that
does not cooperate on the group-key distribution or does
not forward Partition messages, this failure will probably
be fixed by the other MPR redundant nodes and will only
introduce a greater delay on the group-key distribution/
partition-merging procedure. In the absence of redundan-
cies on a flood with MPRs, EGSR also works, because the
nodes that did not receive the new group key will create
a small group with a different group key, which will trigger
a partition-merging procedure with some non-malicious
neighbor that obtained the group key. After the partition
merging, all nodes will share the same group key and EGSR
duties are accomplished. Finally, in the cases a malicious
node starts an EGSR procedure without finishing it, the ef-
fect will only be a small delay. As we showed in Fig. 9, all
the states of EGSR have a timeout to return to the Common
State, avoiding dead-locks. Hence, malicious nodes can in-
crease EGSR control overhead and delays to obtain a group
key, but they cannot disrupt the protocol. It is worth men-
tioning that proposals based on contributory group key
agreement have no tolerance to these kinds internal at-
tacks, because the mechanisms always depends on the col-
laboration of the whole network. If a malicious node does
not contribute generating its own public value when it is
needed, the mechanism cannot be accomplished and the
group key is not generated.

5.3. EGSR reliability in dynamic environments

Dynamic environments are common scenarios for ad
hoc networks and are characterized by frequent network
partitions and/or mobile nodes. To guarantee EGSR reli-
ability in dynamic environments, we need small conver-
gence times and also robustness to message losses and to
node departures. Mobility can cause message losses if
nodes that are neighbors loose their connectivity while
they are in an EGSR procedure. Partitions can cause nodes
to abruptly depart while an EGSR procedure is running.

The node departures caused by network partition
events do not influence the joining node procedure or the
group key distribution of EGSR. The group key distribution
is not affected, because, if a group key does not reach all
the nodes, a new leader will be automatically chosen to se-
lect and distribute a new key. Also, when a joining node
tries to obtain the group key of a node and this node leaves
the network, then the joining node must choose another
node to obtain the group key. Indeed, the partition events
only influence on the leader choice, because it changes the
allocated IP list. The use of SOLSR guarantees that this list
is always updated, but there is a convergence time to de-
tect all the nodes that left the network in SOLSR. Hence,
if a partition is formed and, just after that, a group key dis-
tribution is started, the new leader choice can have a great-
er delay.

The partition merging procedure robustness is based on
the use of timers and on the control of the number of nodes
in each partition. SOLSR guarantees the consistency on the
number of nodes in each partition. Hence, every time a
node tries to start a new partition merging procedure, only
the group key of the greatest partition will be used in the
network. Even if there are many simultaneous partition
procedures, after all the partition merging events, all the
nodes will share the group key of the greatest partition.
If there are partitions with the same size, other parameters
can be used to decide which partition has the greatest pri-
ority, such as the IP of the current leader. In addition, EGSR
uses timers to avoid that a node starts many partition

772 N.C. Fernandes, O.C.M.B. Duarte / Computer Networks 55 (2011) 759–778
procedures at the same time. Hence, if a node has recently
participated of a partition merging, it will not start a new
one for a short period, to increase the chances of network
stabilization before the new partition merging procedure
starts.

The mobility has no impact on EGSR if the nodes contact
time is enough for the neighbor nodes exchanging at most
four EGSR messages. If this assumption is not hold, the net-
work routes are not available, and some EGSR procedure
has begun, then this procedure will be restarted with an-
other neighbor node. Hence, EGSR timeouts guarantee
the absence of deadlocks. If routes are available and up-
dated by SOLSR, then the EGSR procedures can continue
using the routes to maintain the node communication,
even though the nodes are not neighbors anymore. We
do not consider that the flood is impacted by the mobility
because of the redundancies of this process.

5.3.1. Analytical analysis of the convergence delay
In this section, we present an analytical evaluation of

convergence delay of EGSR procedures, assuming no errors
in the message transmission. The objective is to show that
the protocol works even if the scenario is dynamic and the
protocol procedures are frequently called.

In this analysis, we assume that the network topology is
a grid for calculating the number of hops among nodes and
the number of MPR nodes. For simplicity, we consider in
this analysis that the average number of MPR nodes in a
network is given by

ffiffiffiffi
N
p

, where N is the number of nodes
in the network. Moreover, the maximum number of hops
will always be smaller than

ffiffiffiffi
N
p

. For calculating the packet
latency, we assume that all EGSR messages are smaller
than 1500 bytes, to guarantee that messages are not frag-
mented by the transport protocol. This is an acceptable
assumption if we consider the use of public keys of 1024
bits, a group key of 128 bits and a message authentication
code with an output of 128 bits. These are common values
when using AES [36], RSA [35], HMAC [19], and MD5 [34],
which are known algorithms for symmetric cryptography,
asymmetric cryptography, message authentication, and
hash function, respectively. Hence, in the following analy-
sis, we assume that the messages have size M = 1500B for
considering the worst case for EGSR.

First, we analyze the delay for distributing a new group
key for the whole network. In this procedure, each node of
the network, except for the round leader, receives an
Announcement message, which is broadcasted by an MPR
node, and then, the node exchanges two unicast messages
with the MPR. We considered in this analysis that all
neighbors verify the signature of the Announcement mes-
sage simultaneously. Hence, we can estimate the delay for
distributing the group key for the whole network, Tdd, by

Tdd ¼ ðMpþ1Þ � Tuþ2 � ðN�1Þ � TuþðMpþ1Þ
� ðTsg þ2 � TckÞþ ð2 � Tsg þ4 � Tckþ Tekþ TdkÞ � ðN�1Þ;

ð8Þ

where Tu is the delay for a node to send a message of size M
to a neighbor, Mp is the number of MPR nodes, Tsg is the de-
lay for signing the message with asymmetric cryptography,
Tck is the delay for checking this kind of signature, Tek is the
delay for encrypting the group key with asymmetric cryp-
tography, and Tdk is the delay for decrypting the group key
with asymmetric cryptography. Assuming the use of IEEE
802.11G, the messages can be sent in a rate of 54 Mbps
and Tu � (1500 � 8)/(54 � 106) = 0.22 ms. We did not con-
sider the propagation delay, because it is a negligible value
of approximately 1 ls [15]. We also estimate the crypto-
graphic delays using a portable computer and the OpenSSL
benchmark [33], obtaining Tsg = Tdk � 0.02 s, and Tck = Tek �
0.9 ms. Hence, if we assume, for instance, a network with
100 nodes, then Tdd � 6.6 s.

We can also estimate the delay of the partition merging
mechanism, Tdp. In this case, nodes exchange three unicast
messages, and then, the smallest partition is flooded. We
consider that the messages sent by the MPR nodes during
the flood are processed by the neighbors simultaneously,
because the message is sent in broadcast. Hence,

Tdp ¼ ð3þMpP
Þ � Tu þ 3 � Tsg þ 5 � Tck þ 2 � Tek þ 2 � Tdk

þMpP
� ðTes þ Tss þ Tds þ TcsÞ; ð9Þ

where MpP
is the number of MPR nodes in the smallest par-

tition, Tes and Tds are the delays for encrypting and decrypt-
ing, respectively, the new group key with the current group
key, Tss is the delay for calculating the signature of the mes-
sage using a message authentication code such as HMAC,
and Tcs is the time for checking this signature. Using
OpenSSL with a portable computer, we estimate Tes = Tds �
0.04 ms, Tss = Tcs � 0.01 ms. Assuming Tu � 0.22 ms and
P = 50 nodes, than Tdp � 0.1 s.

Hence, even in a network with high mobility, we can
guarantee that neighbor nodes usually have enough con-
tact time to accomplish their EGSR procedures. We also ob-
served that the partition merging procedure is very fast,
because it mainly uses symmetric cryptography, while
the group key distribution is slower due to use of asym-
metric cryptography. The delay in the partition merging
must be small, because nodes can only send routing mes-
sages between the partitions after the procedure is accom-
plished. The group key distribution delay, however, does
not impact the routing protocol, because nodes control
the time the group key will be used after the group key dis-
tribution began. Moreover, assuming the previous parame-
ters, if the network partition event frequency is smaller
than 1/6.6 = 0.15 events per second, we can also guarantee
that frequent partitions will not decrease EGSR reliability.

5.4. Performance analysis

In the previous sections, we showed the security
robustness and the reliability in dynamic environments
of EGSR. Now, we analyze the energy consumption of EGSR
and compare our proposal to protocols based on contribu-
tory group-key agreement. We show that EGSR has the
smallest energy consumption and that it is efficient even
on non-favorable scenarios.

In order to show that our protocol is suitable for energy
constrained devices, we analyze the energetic performance
with Matlab 7. We used a simple model to evaluate our
protocol, in which we estimate the number of message
transmissions and the number of messages receptions of

Table 4
Cryptographic consumption for small devices based on the ‘‘StrongARM’’
microprocessor.

Algorithm Action Cost

RSA Encrypt/Verify 0.74 mJ/1024-bit message
RSA Decrypt/Sign 15 mJ/1024-bit message
AES Encrypt/Decrypt 0.00217 mJ/128-bit block
HMAC Sign/Verify 0.0108 mJ/1024-bit message
DH operation Modular

exponentiation
14.6 mJ/1024-bit message

N.C. Fernandes, O.C.M.B. Duarte / Computer Networks 55 (2011) 759–778 773
each node in the network. We considered a network free of
errors or collisions, because we wanted to evaluate the im-
pact of the message exchange of the protocols without the
interference of a saturated network or other effects that
could hide the main differences in the functionalities of
the protocols. We also estimate the average number of
cryptographic operations carried out. Unless we state dif-
ferently, our scenario comprises 256 nodes, using the IEEE
802.11 standard, with an average node density of 0.0121
nodes/m2, which corresponds to a dense community net-
work [5]. We use these parameters to guarantee a non-
favorable scenario in all evaluations, because both the
density and the number of nodes influence protocols based
on network flooding events. We consider a scenario free of
errors, because we wanted to evaluate the protocols func-
tions without the interference of external parameters. We
consider that the average number of neighbors of each
node is approximately constant even with the mobility.
We use the default values for SOLSR message rate, which
are one Hello per two seconds and one Topology Control
(TC) per five seconds, as suggested in the RFC 3626 [8].
The other parameters used in this analysis are on Table 3.
Because the frequency of nodes leaving/joining the net-
work as well as the number of partition splitting/merging
events depends on the scenario, we assume, in this first
analysis, the same frequency for all these parameters. Con-
sequently, the network begin with 256 nodes and ends
with the same amount of nodes, because the number of
nodes joining is the same of the number of nodes leaving
the network. Also, the energy impact of each procedure
over the whole system is proportional to the individual
energy consumption of each procedure. In the second
analysis, we compare the energy consumption of each
procedure.

The amount of traffic exchanged among nodes depends
on the size of each message. We specify the size of mes-
sages in EGSR, but this data is not specified in the other
mechanisms. As a consequence, we only analyze the num-
ber of message transmitted and the amount of energy
expended with cryptographic operations.

The energy consumption with cryptographic operations
considered in this analysis are relative to ‘‘StrongARM’’
microprocessor, designed for embedded low-power envi-
ronments. These microprocessors are suitable for cellular
phones, PDAs and sensor nodes. Energy consumption is
on Table 4 [6]. We choose RSA with 1024-bit key, Ad-
vanced Encryption Standard (AES) with 128-bit key length,
Table 3
Parameters of the proposed EGSR protocol.

Variable Value

Number of nodes 256
Average number of neighbors per node 8
Average number of MPRs among neighbors per node 4
Total time 1 h
Group-key distribution frequency 10 dist/h
Partition-splitting/merging frequency 10 part/h
Node-joining frequency 10 join./h
Node-exclusion frequency 10 exc./h
Average number of nodes on the revoked certificate list 30
and keyed-Hash Message Authentication Code (HMAC)
with 128-bit key length as cryptography functions, be-
cause they are well-known and largely used.
5.4.1. Performance impact of proposed EGSR protocol
We compared the energy consumption with crypto-

graphic operations of our proposal, the EGRS protocol, with
SOLSR protocol to evaluate our proposal overhead over the
routing protocol. Also, we compared the system composed
of SOLSR and EGSR with a modified version of SOLSR using
asymmetric cryptography, called Modified-SOLSR. The use
of a private key to sign all messages in secure routing proto-
cols based on asymmetric cryptography simplifies the iden-
tification of malicious nodes. Asymmetric cryptography,
however, consumes much more energy than symmetric
cryptography, as we show when we compare the modified
version of SOLSR, which is based on asymmetric cryptogra-
phy, with the traditional SOLSR and SOLSR + EGSR. By com-
paring the traditional SOLSR and SOLSR + EGSR, we can
measure the impact of the proposed group-key manage-
ment over the whole system. Indeed, SOLSR does not provide
any group-key management, although the security of the
routing protocol depends on it.

We consider the worst case performance conditions for
our protocol, which means that the analyzed node always
consumes the maximum energy per procedure. Therefore,
we assume that the analyzed node is always an MPR in
the group-key distribution procedure and its partition al-
ways changes the group key in the partition-merging pro-
cedures. Fig. 10(a), (b), and (c) show the energy consumed
by one node during one hour.

Fig. 10 shows the performance of SOLSR, Modified
SOLSR, and SOLSR plus our proposal EGRS, denoted by
SOLSR + EGRS, which makes the secure group-key manage-
ment. Fig. 10(a) depicts the impact of the number of nodes
over EGRS and SOLSR. Network size has a greater impact
over the Modified-SOLSR and SOLSR than over EGSR, be-
cause both routing protocols often use many flooding
events to maintain the link states. EGSR flood events are
less common, because they occur only in a restricted area
of the network during network partition merging events.
EGSR increases SOLSR security without adding great en-
ergy consumption. Indeed, Modified-SOLSR consumes up
to 62 times more energy than SOLSR + EGRS. Hence, the
use of EGSR increases SOLSR security with a low energy
consumption, which is adequate for networks composed
of constrained devices. Fig. 10(b) shows the network den-
sity impact over EGSR, SOLSR, and Modified SOLSR. We
considered that the network is composed of 256 nodes

Fig. 10. The proposed EGSR worst case performance analysis. Per node energy consumption due to cryptographic operations during one hour.

774 N.C. Fernandes, O.C.M.B. Duarte / Computer Networks 55 (2011) 759–778
and that the MPRs are calculated as if the nodes were dis-
posed in a grid. In this configuration, Modified-SOLSR con-
sumes up to 68 times more energy than SOLSR + EGSR.
Besides, EGSR only consumes less than 21% of the energy
of the system formed by SOLSR and EGSR. Finally, in
Fig. 10(c) we observe the impact of EGSR when we increase
the group-key distribution rate. The group key distribution
consumes more energy than the partition merging and the
joining node procedures, which means that it is the most
impacting procedure of EGSR and gives an upper bound
of EGSR energy consumption. Hence, we increase the group
key distribution rate up to one distribution per minute,
which is a high rate that could help in scenarios where
authorized nodes send the group key to friends which
are not authorized to access network resources. Even for
a frequent key distribution rate of one key distribution
per minute, our proposal EGSR consumes less than 39%
of the total energy of the complete system composed by
SOLSR plus EGRS, proving that EGRS has a small influence
in the system performance.

We do not provide the analysis of the number of trans-
mitted messages in the comparison of SOLSR + EGSR and
Modified-SOLSR, because the number of messages ex-
changed by both SOLSR and Modified-SOLSR are just the
same. Hence, the only interesting parameter is the number
of messages exchanged by EGSR. Hence, in the following
analysis we show the number of transmitted messages
and energy consumption with cryptographic operations
of each procedure of EGSR. Indeed, in the next analysis,
we compare our proposal, EGSR, with contributory key
agreement mechanisms: Group Diffie–Hellman (GDH.3)
[37], Burmester–Desmedt (BD) [4], and the CLIQUES using
GDH.3 [38]. In BD, all nodes spend the same amount of en-
ergy and, in GDH.3, there is a special node responsible for
executing more cryptographic operations, assuming that at
least one node has more CPU and energy power. The BD
and GDH.3 protocols only generate a new group key, and
consequently, the same algorithm is executed for the net-
work initialization, network partition splitting/merging,
and node joining/leaving. The CLIQUES using GDH.3 im-
proves GDH.3 performance according to the type of the dy-
namic group event. These three mechanisms assume there
is an auxiliary procedure to detect dynamic group events,
to organize nodes, and to authenticate nodes in the
group-key distribution. CLIQUES using GDH.3 also assumes
there is a mechanism to elect a controller node and to
maintain the data required by the controller node to per-
form dynamic group events. Our proposal not only detects
all these dynamic group events, but also organizes and
authenticates nodes.

In the next analysis, we compared our proposal, EGSR,
with contributory key agreement mechanisms: Group Dif-
fie–Hellman (GDH.3) [37], Burmester-Desmedt (BD) [4],
and the CLIQUES using GDH.3 [38]. In BD, all nodes spend
the same amount of energy and, in GDH.3, there is a
special node responsible for executing more cryptographic

Fig. 11. Group-key distribution due to key update and node exclusion in EGSR and in the main contributory group-key agreement proposals.

N.C. Fernandes, O.C.M.B. Duarte / Computer Networks 55 (2011) 759–778 775
operations, assuming that at least one node has more CPU
and energy power. The BD and GDH.3 protocols only gen-
erate a new group key, and consequently, the same algo-
rithm is executed for the network initialization, network
partition splitting/merging, and node joining/leaving. The
CLIQUES using GDH.3 improves GDH.3 performance
according to the type of the dynamic group event. These
three mechanisms assume there is an auxiliary procedure
to detect dynamic group events, to organize nodes, and
to authenticate nodes in the group-key distribution. CLI-
QUES using GDH.3 also assumes there is a mechanism to
elect a controller node and to maintain the data required
by the controller node to perform dynamic group events.
Our proposal not only detects all these dynamic group
events, but also organizes and authenticates nodes.

We present the sum of cryptographic operation energy
consumption of all nodes and the number of transmitted
messages during the group-key distribution. The analysis
of cryptographic operation energy consumption does not
consider energy consumed with the authentication in
EGSR, because GDH.3 and CLIQUES only deal with the cryp-
tographic operations to obtain a new group key, but they
do not specify an authentication procedure. Therefore, we
just compare the energy on the key distribution/agree-
ment. Besides, BD uses many exponentiations with small
exponents, while GDH.3 uses a few exponentiations with
large exponents, which is much more energy consuming.
Since our energy data refers to exponentiations with large
exponents, we do not analyze the cryptographic operation
energy consumption of BD.1 In addition, the evaluated
group-key agreement mechanisms assume that all group
members can hear all messages and that nodes know the
routes to each other in the network. Network routes, how-
ever, are not always available when distributing a group
key for routing, and then, all messages of these protocols
are flooded to guarantee that the message will always
achieve the destination node.

In Fig. 11(a), we show the energy consumed with cryp-
tographic operations to distribute a group key due to peri-
1 A previous work on measurements of energy costs using BD and GDH.3
empirically shows that BD consumes more energy with cryptography and
message transmission than GDH.3 [6].
odical replacements of the group key and to node
exclusions. Here, we consider a network composed of
256 nodes with approximately eight neighbors per node
and the number of MPRs is calculated as if the nodes were
placed in a grid. We denote ‘EGSRDIST’ as the EGSR group-
key distribution procedure, which is evoked in node exclu-
sions, key updates, and the bad behavior detection system
notifications. Also, we call ‘CLIQUESUP’ the group-key-up-
date mechanism in CLIQUES using GDH.3 and ‘CLIQUESEXC’
the node exclusion in CLIQUES using GDH.3. We observe
that our proposal outperforms the three protocols regard-
less of the number of nodes. GDH.3 consumes up to 3.72
times more energy than EGSR, while both ‘CLIQUESEXC’
and ‘CLIQUESUP’ consumes up to 1.8 more energy than
EGSR. On the other hand, ‘EGSRDIST’ expends more mes-
sages than ‘CLIQUESEXC’ and ‘CLIQUESUP’, as we see in
Fig. 11(b). The main reasons for that are the EGSR detec-
tion/warning of the need for a new group-key distribution
and the messages exchanged to guarantee an authenti-
cated communication. The control messages for these tasks
are not taken into account in the analysis for CLIQUES, BD,
and GDH.3, because these mechanisms do not specify how
to accomplish these required tasks.

Fig. 12(a) and (b) show the energy consumption and the
number of transmitted messages when a node joins the
network for EGSR, denoted as ‘EGSRJOIN’, CLIQUES using
GDH.3, denoted as ‘CLIQUESJOIN’, and GDH.3. We observe
that EGSR is much less energy consuming than these
mechanisms. Indeed, even CLIQUES using GDH.3 consumes
up to 714 times more energy with cryptographic opera-
tions to distribute a key and 43 times more messages than
EGSR. GHD.3 consumes up to 948 times more energy with
cryptography and send about 7.34 � 103 times more mes-
sages than EGSR. EGSR outperforms these protocols be-
cause the new node event in EGSR is performed locally,
while in the other mechanisms it demands message floods.

We also compared the energy consumption with cryp-
tographic operations and the number of transmitted mes-
sages in network-partition-merging procedures and in
network-initialization procedures assuming that all nodes
join the network at the same time. We considered the
worst case of partition merging for EGSR, which we call
‘EGSRPART’ in the graphs. Thus, the network is partitioned

Fig. 12. Group-key distribution due to a node joining event in EGSR and in the main contributory group-key agreement proposals.

776 N.C. Fernandes, O.C.M.B. Duarte / Computer Networks 55 (2011) 759–778
into two equal-sized groups to maximize the number of
retransmissions of the Partition message. According to
Fig. 13(a), CLIQUES using GDH.3 partition-merging proce-
dure, denoted as ‘CLIQUESPART’, presents the same results
than GDH.3. Indeed, CLIQUES using GDH.3 assumes that
the partition merging should be a re-execution of GDH.3.
Both Fig. 13(a) and (b) show that our protocol outperforms
GDH.3, BD, and CLIQUES using GDH.3. EGSR consumption
Fig. 13. Group-key distribution due to a partition-merging event in EG

Fig. 14. Group-key distribution due to network initialization in EGSR
with cryptographic operations is up to 155 times smaller
than the GDH.3 and the number of transmitted messages
is up to 811 times smaller than the number of messages
in GDH.3. In the initialization, depicted in Fig. 14, we ob-
serve our protocol initialization procedure performance,
which we call ‘EGSRINIT’. We do not compare EGSR with CLI-
QUES in the initialization, because this protocol suite is
based on the assumption that the network initialization
SR and in the main contributory group-key agreement proposals.

and in the main contributory group-key agreement proposals.

N.C. Fernandes, O.C.M.B. Duarte / Computer Networks 55 (2011) 759–778 777
is always performed as the original contributory key agree-
ment protocol, which corresponds to GDH.3 in our analy-
sis. Indeed, even though EGSR initialization mechanism is
done through n � 1 partition merging procedures, where
n is the number of nodes, our protocol outperforms
GDH.3 in up to 2 times, when comparing the energy with
cryptographic operations and up to 70 times, when com-
paring the number of transmitted messages.

6. Conclusions

In this paper, we presented and evaluated the efficient
group-key management for secure routing protocol (EGSR).
Our protocol restricts non-authorized access to the net-
work through periodic and triggered group-key replace-
ment. EGSR with SOLSR makes ad hoc routing more
secure against non-authorized nodes with small energy
consumption. Moreover, the proposed protocol synchro-
nizes the new group-key use and is robust against node
failures and network partitions.

The analysis of our protocol indicated that it correctly
works and is implementable. Besides, it is adequate to en-
ergy constrained devices. The analysis showed that EGSR
consumes less energy and transmits fewer messages than
BD, GDH.3, and CLIQUES using GDH.3, which are known
protocols of group-key agreement. Moreover, the joining-
node procedure and the partition-merging procedure of
EGSR are energy efficient. This is an important characteris-
tic, because these events are common in ad hoc networks
and should be executed without large energy consump-
tion. Therefore, the use of EGSR increases routing security
in ad hoc networks without a great impact over network
performance.

Acknowledgment

The authors thank CAPES, CNPq, FAPERJ, and FINEP.

References

[1] C. Adjih, T.H. Clausen, P. Jacquet, A. Laouiti, P. Muhltahler, D. Raffo,
Securing the OLSR protocol, in: IFIP Med-Hoc-Net, June 2003, pp. 1–10.

[2] Y. Amir, Y. Kim, C. Nita-Rotaru, J.L. Schultz, J. Stanton, G. Tsudik,
Secure group communication using robust contributory key
agreement, IEEE Transactions on Parallel and Distributed Systems
15 (5) (2004) 468–480.

[3] M.S. Bouassida, I. Chrisment, O. Festor, Efficient group key
management protocol in MANETs using the multipoint relaying
technique, in: International Conference on Networking, International
Conference on Systems and International Conference on Mobile
Communications and Learning Technologies (ICN/ICONS/MCL 2006),
April 2006, pp. 64–71.

[4] M. Burmester, Y. Desmedt, A secure and efficient conference key
distribution system, Lecture Notes in Computer Science 950 (1998)
275–286.

[5] M.E.M. Campista, I.M. Moraes, P. Esposito, A. Amodei Jr., L.H.M.K.
Costa, O.C.M.B. Duarte, The ad hoc return channel: a low-cost
solution for brazilian interactive digital TV, IEEE Communications
Magazine 45 (1) (2007) 136–143.

[6] D.W. Carman, P.S. Kruus, B.J. Matt, Constraints and Approaches for
Distributed Sensor Network Security (final). Tech Report 00-010, NAI
Labs, September 2000.

[7] H. Chan, A. Perrig, D. Song, Random key predistribution schemes for
sensor networks, in: IEEE Symposium on Security and Privacy, May
2003, pp. 197–213.

[8] T. Clausen, P. Jacquet, Optimized Link State Routing Protocol (OLSR),
RFC 3626, October 2003.
[9] D.O. Cunha, O.C.M.B. Duarte, G. Pujolle, A cooperation-aware routing
scheme for fast varying fading wireless channels, IEEE
Communications Letters 12 (10) (2008) 794–796.

[10] W. Diffie, M.E. Hellman, New directions in cryptography, IEEE
Transactions on Information Theory IT-22 (6) (1976) 644–654.

[11] N. Fernandes, O.C.M.B. Duarte, An efficient group key management
for secure routing in ad hoc networks, in: IEEE Globecom 2008
Computer and Communications Network Security Symposium
(GC’08 CCNS), December 2008, pp. 1–5.

[12] N.C. Fernandes, M.D.D. Moreira, O.C.M.B. Duarte, A self-organized
mechanism for thwarting malicious access in ad hoc networks, in:
2010 Proceedings IEEE INFOCOM, San Diego, CA, USA, March 2010,
p. 5.

[13] R.C. Gangwar, A.K. Sarje, Secure and efficient dynamic group key
agreement protocol for an ad hoc network, in: International
Symposium on Ad Hoc and Ubiquitous Computing (ISAUHC ’06),
December 2006, pp. 56–61.

[14] A. Hafslund, A. Tonnesen, R.B. Rotvik, J. Andersson, O. Kure, Secure
extension to the OLSR protocol, in: OLSR Interop and Workshop, San
Diego, California, August 2004, pp. 1–4.

[15] IEEE 802.11 Working Group, IEEE standard 802.11-2007, Standard
802.11, IEEE Computer Society, November 2007.

[16] Y. Kim, A. Perrig, G. Tsudik, Simple and fault-tolerant key agreement
for dynamic collaborative groups, in: Proceedings of the Seventh
ACM conference on Computer and Communications Security (CCS
’00), ACM, New York, NY, USA, 2000, pp. 235–244.

[17] J. Kong, P. Zerfos, H. Luo, S. Lu, L. Zhang, Providing robust and
ubiquitous security support for mobile ad-hoc networks, in: Ninth
International Conference on Network Protocols (ICNP’01), November
2001, pp. 251–260.

[18] E. Konstantinou, Cluster-based group key agreement for wireless ad
hoc networks, in: Third International Conference on Availability,
Reliability and Security (ARES 08), March 2008, pp. 550–557.

[19] H. Krawczyk, M. Bellare, R. Canetti, HMAC: Keyed-Hashing for
Message Authentication, RFC 2104, February 1997.

[20] K. Kumar, V. Sumathy, J.N. Begum, Efficient region-based group key
agreement protocol for ad hoc networks using elliptic curve
cryptography, in: IEEE International Advance Computing
Conference (IACC 2009), March 2009, pp. 1052–1060.

[21] D. Lamch, Verification and analysis of properties of dynamic systems
based on petri nets, in: International Conference on Parallel
Computing in Electrical Engineering (PARELEC’02), 2002, pp. 92–94.

[22] L. Lazos, R. Poovendran, Power proximity based key management for
secure multicast in ad hoc networks, Wireless Network 13 (1) (2007)
127–148.

[23] D. Li, S. Sampalli, An efficient group key establishment in location-
aided mobile ad hoc networks, in: Second ACM International
Workshop on Performance Evaluation of Wireless ad hoc, Sensor,
and Ubiquitous Networks (PE-WASUN’05), 2005, pp. 57–64.

[24] J.H. Li, R. Levy, M. Yu, B. Bhattacharjee, A scalable key management
and clustering scheme for ad hoc networks, in: International
Conference on Scalable Information Systems (INFOSCALE’06), vol.
28, 2006, pp. 1–10.

[25] Z. Li-Ping, C. Guo-Hua, Y. Zhi-Gang, An efficient group key agreement
protocol for ad hoc networks, in: Fourth International Conference on
Wireless Communications, Networking and Mobile Computing
(WiCOM ’08), October 2008, pp. 1–5.

[26] J. Liu, D. Sacchetti, F. Sailhan, V. Issarny, Group management for
mobile ad hoc networks: design, implementation and experiment,
in: Sixth International Conference on Mobile Data Management
(MDM’05), ACM Press, 2005, pp. 192–199.

[27] H. Luo, J. Kong, P. Zerfos, S. Lu, L. Zhang, URSA: ubiquitous and robust
access control for mobile ad hoc networks, IEEE/ACM Transactions
on Networking 12 (6) (2004) 1049–1063.

[28] L. Luo, R. Safavi-Naini, J. Baek, W. Susilo, Self-organised group key
management for ad hoc networks, in: ACM Symposium on
Information, Computer and Communications Security
(ASIACCS’06), March 2006, pp. 138–147.

[29] S. Marti, T.J. Giuli, K. Lai, M. Baker, Mitigating routing misbehavior in
mobile ad hoc networks, in: Proceedings of the Sixth Annual
International Conference on Mobile Computing and Networking
(MobiCom), New York, NY, USA, 2000, pp. 255–265.

[30] C.A. Maziero, ARP: Petri Net Analyzer, 1990.
[31] J.V.D. Merwe, D. Dawoud, S. McDonald, A survey on peer-to-peer key

management for mobile ad hoc networks, ACM Computing Surveys
39 (1) (2007).

[32] Q. Niu, Study and implementation of a improved group key protocol
for mobile ad hoc networks, in: Eighth ACIS International Conference
on Software Engineering, Artificial Intelligence, Networking, and

778 N.C. Fernandes, O.C.M.B. Duarte / Computer Networks 55 (2011) 759–778
Parallel/Distributed Computing (SNPD 2007), Vol. 1, July 2007, pp.
304–308.

[33] OpenSSL Core and Development Team, OpenSSL - Cryptography and
SSL/TLS Toolkit, April 2010, <http://www.openssl.org>.

[34] R. Rivest, The MD5 Message-Digest Algorithm, RFC 1321, April 1992.
[35] R.L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital

signatures and public-key cryptosystems, Communications on ACM
26 (1) (1983) 96–99.

[36] J. Schaad, R. Housley, Advanced Encryption Standard (AES) Key Wrap
Algorithm, RFC 3394, September 2002.

[37] M. Steiner, G. Tsudik, Waidner, Diffie–Hellman key distribution
extended to group communication, in: CCS ’96: Proceedings of the
Third ACM Conference on Computer and Communications security,
1996, pp. 31–37.

[38] M. Steiner, G. Tsudik, M. Waidner, Key agreement in dynamic peer
groups, IEEE Transactions on Parallel and Distributed Systems 11 (8)
(2000) 769–780.

[39] J.C.M. Teo, C.H. Tan, Energy-efficient and scalable group key
agreement for large ad hoc networks, in: Second ACM
International Workshop on Performance Evaluation of Wireless ad
hoc, Sensor, and Ubiquitous Networks (PE-WASUN’05), 2005, pp.
114–121.

[40] A. Tonnesen, Implementing and Extending the Optimized Link State
Routing Protocol, Master’s Thesis, University of Oslo, August 2004.

[41] P.B. Velloso, R.P. Laufer, O.C.M.B. Duarte, G. Pujolle, A trust model
robust to slander attacks in ad hoc networks, in: Worshop in
Advanced Networking and Communications (ANC) jointly with
ICCCN’2008, August 2008, pp. 1–6.

[42] B. Wang, S. Soltani, J.K. Shapiro, P.-N. Tan, Local detection of selfish
routing behavior in ad hoc networks, in: International Symposium
on Parallel Architectures, Algorithms, and Networks, IEEE Computer
Society, Los Alamitos, CA, USA, 2005, pp. 392–399.

[43] L. Zhou, Z.J. Haas, Securing ad hoc networks, IEEE Network 13 (6)
(1999) 24–30.
Natalia Castro Fernandes received an elec-
trical engineering degree in 2006 and a M.Sc.
degree in electrical engineering in 2008 from
UFRJ, Brazil. Currently, she is a D.Sc. student
with UFRJ. Her major research interests are in
ad hoc networks and security.
Otto Carlos M. B. Duarte received the Elec-
tronic Engineer degree and the M.Sc. degree in
electrical engineering from UFRJ, Brazil, in
1976 and 1981, respectively, and the Dr. Ing.
degree from ENST/Paris, France, in 1985. Since
1978, he has been a Professor with UFRJ. His
major research interests are in multicast, QoS
guarantees, security, and mobile communi-
cations.

http://www.openssl.org

	A lightweight group-key management protocol for secure ad-hoc-network routing
	Introduction
	Related work
	System model
	Network model
	OLSR and SOLSR
	Adversary model

	The proposed scheme
	Group-key distribution
	Using the new group key

	Gathering the current group key
	Joining-node procedure

	Partition-merging procedure
	Network-initialization procedure
	Round-leader management

	Protocol analysis
	Petri net analysis
	Security analysis
	Group-key disclosure
	Internal attacks against EGSR

	EGSR reliability in dynamic environments
	Analytical analysis of the convergence delay

	Performance analysis
	Performance impact of proposed EGSR protocol

	Conclusions
	Acknowledgment
	References

