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The decomposition method (G. Adomian, “Stochastic Systems,” Academic Press, 
New York, 1983) developed to solve nonlinear stochastic differential equations has 
recently been generalized to nonlinear (and/or) stochastic partial differential 
equations, systems of equations, and delay equations and applied to diverse 
applications. As pointed out previously (see reference above) the methodology is an 
operator method which can be used for nondifferential operators as well. Extension 
has also been made to algebraic equations involving real or complex coefficients. 
This paper deals specifically with quadratic, cubic, and general higher-order 
polynomial equations and negative, or nonintegral powers, and random algebraic 
equations. Further work on this general subject appears elsewhere (G. Adomian, 
“Stochastic Systems II,” Academic Press, New York, in press). 0 1985 Academic 

Press. Inc. 

I. QUADRATIC EQUATIONS 

The decomposition method [ 1, 21 is applied to generic operator equations 
of the form 7~ =g where ST may be a nonlinear (and/or) stochastic 
operator and x a stochastic process on a appropriate probability space. The 
basic equation is considered in the form L/u + Mu = g, or Lu + Nu = g in 
the deterministic case where L is a linear (deterministic) operator and N a 
nonlinear (deterministic) operator. (In the case where the operators involve 
stochasticity, script letters 9, JP” are preferred.) (If we write an ordinary 
quadratic equation ax2 + bx + c = 0 in the form Lu + Nu = g, identifying 
Nx=ax’,L=b, andg=-c we have Lu=g-Nu or 

bx=-c-ax2. 
141 
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142 ADOMIAN AND RACH 

The operation L- ’ in the referenced work for differential equations is an 
integral operator. Here it is simply division by b. Hence 

x = (-c/b) - (a/b) x2 

in the standard format of the referenced work [ 13. The solution x in this 
methodology is now decomposed into components x0 + xi + a.. where x0 is 
taken as (-c/b) here and xi, x2 ,..., are still to be identified. Thus 

x0 = -c/b. 

We now have 

x = x0 - (a/b) x2 

with x, known. In the general methodology, the nonlinear term without the 
coefficient-in this case x*-is replaced by CFzO A, where ,4,(x,,, xi ,..., XJ 
are functions of the xi defined by Adomian [ 1,2]. Since the A, have been 
determined for large classes of nonlinearities by methods previously 
published, we will only list the necessary A, for this paper. Adomian’s A, 
polynomials are found for the particular non-linearity by a generating 
scheme just as one might develop Hermite, Lagrange, or Laguerre 
polynomials. Rules are given in the referenced works. For the example 
Nx =x2 we have 

A,=x; 

A, = 2x,x, 

A,=x;+h,x, 

A, = 2x,x, + 2x,x, 

A, = x: + 2x, x3 + 2x,x, 

A, = 2x,x, + 2x,x, + 2x,x, 

A, =x; + 2x,x, + 2x,x, + 2x,x, 

A, = 2x,x, + 2x,x, + 2x,x, + 2x,x, 

A, =x: + 2x,x, + 2x,x, + 2x,x, + 2x,x, 

Examining the subscripts we note the sum of subscripts in each term is n. 
Now 

x=x0-(a/b) -f A, 
it=0 
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requires 

x1 = - (a/b)A, = - (u/b)x; 

x2 = - (u/b) A 1 = - (u/b)(2x,x,) 

x3 = - (u/b) A 2 = - (u/b)(x: + 2x,x,) 

x4 = - (u/b) A, = - (u/b)(2x,x, + 2x,x,) 

x5 = - (u/b) A, = - (u/b)(x: + 2x,x, + 2x,x,) 

thus the xi are determined. 
We note in the example Nx =x2 that if we expand (x0 +x1 + ... )’ into 

x;+x;+x:+ **a + 2x,x, + 2x,x, + ..a + 2x,x, + a.. , we must choose 
A, = xi but A, could be X: + 2x,x,. The sum of the subscripts for xi or 
x,x, is higher than for the x,x, term. By choosing for any x, only terms 
summing to n - 1, we get consistency with our more general schemes which 
we can use with high-ordered polynomials, trigonometric or exponential 
terms, and negative or irrational powers, or even multidimensional 
differential equations. [ 3,4] 

When the Nx, or in the quadratic case, x2, term is written in terms of 
Adomian’s A, polynomials, the decomposition method solves the equation. 
(Although it is not necessary to discuss it here, if stochastic coefficients are 
involved, the decomposition method achieves statistical separability in the 
averaging process for desired statistics [ I] and no truncations are required.) 
Let’s look at examples: 

EXAMPLE. Consider x2 + 3x + 2 = 0 whose solutions are obviously 
( - 1, -2). Write it in the form 

3x=-2-x2 

x=-g-~x2=x0+x,+x2+-* 

=x,+f f A" 
n=o 

=X0+,-$+ . . . . 

Substituting the A, we have 

x0 = - 0.667 x,=-o.037 
x,=-O.148 x4 = - 0.023 
x2 = - 0.069 x5 = - 0.015 

409/105/1-IO 
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x, = - 0.0106 x,~ = - 0.0033 -- 
x, = - 0.00765 x,, = - 0.00268 

x, = -0.00567 x1* = - 0.0020. 
x, = - 0.0043 

Since an n-term approximation (symbolized by 0,) is given by Cy:i xi, we 
define the error I,U, = (x - 4,)/x. We now have 

$I = - 0.667 

#2=-0.815 

#3 = - 0.884 

lj4 = - 0.92 1 

#5 = - 0.944 

46 = - 0.959 

0, = - 0.970 

$8 = - 0.977 

q$, = - 0.983 
#lo = - 0.987 

y, = 33.3% 

yz = 18.5% 

y3 = 11.6% 

y4 = 7.9% 

ys = 5.6% 

ys = 4.1% 

y,= 3.0% 

y8 = 2.3% 

y9= 1.7% 
ylo= 1.2%. 

which is approaching the smallest root which is -1. The error vC/n becomes 
less than 0.5% by m = 12. If we take the equation x2 - 3x + 2 = 0 we get 
the same numbers above for the xi except they will all be positive. 

EXAMPLE. Consider x2 - 1.25x + 0.25 = 0 or (x - a)(x - 1) = 0. In our 
form it becomes 

-$x=-+X2 

or 

Thus 

x = (l/5) + (4/5) x2. 

x0 = 0.2 

x, = (0.8)(0.2)’ = 0.032 

x2 = (0.8)(2)(0.2)(0.032) = 0.01024 

x3 = (0.8)[(0.032)* + 2(0.2)(0.01)1 = 0.004. 

Thus 4, = 2::: x, is: 

4, = 0.2 

ti2 = 0.232 
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/3 = 0.242 

4, = 0.246 

rapidly converging to 0.25 as expected. 

EXAMPLE. Consider x2 -20x + 36 = 0, which has the roots (2,18). 
Write 

-20x=-36-x2 

36 2 x=x+&x. 

By the same procedure we get 

x0 = 1.8 

x, = 0.16. 

Hence the approximation to only two terms is given by 

#2 =x,, + x1 = 1.96. 

A 3-term approximation is #3 = 1.98, which is already close to the smallest 
root x = 2. 

EXAMPLE. Consider (x - 4)(x - 100) = 0 and write 

401 
4x = 25 +x2 

100 4 
x=-+.--x* 

401 401 

xc) = 0.2493 

x, = (0.0099)(0.2493)’ = 0.0006 

$2 = x, +x1 = 0.2499 % 0.25. 

From these examples we observe that the method yields the smallest root 
and that the further apart the two roots the faster the convergence to the 
correct solution (which we will discuss further in a following section). Of 
course the second root is found by factoring once we have one root. 

Let’s examine the quadratic equation in the form (x - rr)(x - r2) = 0 
where r, , rz are real roots. We have then x2 - (r, + r2) x + r, r2 = 0. Then in 
the standard form [ 1 ] 

(r, + rz) x = r, rz + x2 
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v2 1 
x=---+-x2. 

r1 +r2 r1 +r2 

Now since x = C,“=. x, and we identify x0 = r, r2/(r, + r2), the x,, I for 
n = 0, l,..., are given by 

1 
X n+l =----A, 

r1 + r2 

or 

x=x0+ 2 -L4, 
n=O rl+r2 

where the A,, have already been given for Nx = x2. 
Since r, r2 = c/a and rl + r2 = -b/a in the standard ax2 + bx + c form, we 

have 

x = -(c/b) - (a/b) x2 

where 

x0 = c/b 

x1 = (a/b) xi 

x2 = WPoxl) 

etc. 

Note, e.g., that in solving (x-x)(x - 4) = 0 where we have deliberately 
chosen the 2nd root to be only a little larger than the root rr, we have x2 - 
(n+4)x+47r=O. Wehave 

4n 1 2 x=---t-x 
71t4 nt4 

so that x0 = 1.76. If we consider (x - z)(x - 10) = 0 we get x0 = 2.39. If we 
take the second root as 100, x0 = 3.05 and for the second root x = 1000, 
x0 = 3.13, an error of 0.3% with only the x0 term to obtain the smaller root. 
Thus the results converge to the desired solution more and more quickly, i.e., 
for smaller n, as the roots are further apart. In general for 
(x - r&x - r2) = 0, or x2 - (r, + r2) x + r, r2 = 0, we have the first term 

5 r2 x,=-. 
rl + r2 
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If rz > rl , we have x,, N rlrz/rz = r, . Since the following terms involving the 
A,, are divided by the factor I/(r, t rz) or approximately l/r,, the other 
terms vanish early. 

Decimal Roots 

Finally, as we have previously stated, the roots are not limited to integers. 
Consider, for example, 

x2-5.15x+2.37=0 

5.15x=2.37 +x2 

2.37 1 a\ 
x=5.15+ 5.15 0 -3 A”. 

We get immediately 

x0 = 0.460 

x,=0.0411 

x2 = 0.00735. 

Thus the 3-term approximation #3 =x,, t x, t x2 = 0.50845. Let’s call this 
r2. But rl rz = 2.37 hence r, = 2.37/0.50845 = 4.66. The sum of the roots 
now constitutes a check by comparison with the coefficient of the middle 
term of the quadratic equation. We observe in doing this an error less than 
0.3% and considering we only used a 3-term approximation, the result is 
excellent. 

Complex Roots 

If we have complex roots zr, z2 then (x - z,)(x - z2) = 0 or x2 - 
(z, + zz)x + zlzz = 0. Thus the sum of the roots is the coefficient of the x 
term and the product of the roots is the constant term. Consider an example 
with complex roots but real coefficients 

x2 - 2x f 2 = 0. 

Solving it in the usual manner with decomposition, we have 

x=1+fx2=1+ffA,. 
0 

Therefore we take 

x0= 1 
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and obtain immediately 

i.e., a diverging series (for a quadratic equation with real coefficients) may’ 
indicate complex roots. In that case, as complex roots occur in conjugate 
pairs, e.g., Q + bi and a - bi, their sum is 2a and their product is a2 + b*. 

Comparison with the coefficients in the equation shows 2a = 2 or a = 1 
and uz + b* = 2, hence b = 1. Therefore the roots are 1 + i and 1 - i. 

EXAMPLE. Quadratic equation with complex roots c,, c2 given by 
(x - c,)(x - c,) = 0 or x2 - (cl + c,) x + clcz = 0 where c,, c, E C, the set 
of complex numbers. In the standard Adomian decomposition form, we get 

x=p++x* 

where p = a + $3 and v = y + id can of course be written in terms of real and 
imaginary components of c,, c,. We write 

where 

A,=x; 

A,=2xoxl 

A, = x; + 2x,x, 

A, = 2x,x, + 2x,x, 

’ The associated equation with different signature, x2 - 2.x - 2 = 0, which does have real 
roots, also results in a diverging series. This special case has been handled by an ingenious 
method discussed in Adomian [2], which also solves equations of the form Ny = x such as 
ey = x, for example. 
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Thus 

Xo=P 
x, = VA, = vx; = v/l2 
x2 = VA 1 = v(2x,x,) = 2v5l3 
x3 = VA, = v<x; + 2x,x,) = 5v3p4 
x4 = VA, = v(2x,x, + 2x,x,) = 14v4p5 

x, = k,vm,u”+l for m > 0 

where the k, are constants as previously defined. The solution is 

x= -f k&d’+’ 
n=o 

where the k, are real numbers and the ,u, v are complex numbers, i.e., 
,U = a + i/l and v = y + id. An m-term approximation is 4, = Cf:,’ x,. Now 
let c, = 1 t i and let c, = 10 t 1Oi. In the equation in standard form 

x=p +vx2 

where p=a+ifi and v=ytiS we find a=lO/ll, p=lO/ll, y= l/22, 
6 = -l/22. Thus ,U = (lO/ll)(l t i) and v = (l/22)(1 -i) and 

x=(10/11)(1 ti) t (l/22)(1 -i)x2. 

Then 

x0 = (10/l l)(l t i) 

xi =vp2 = (102/113)(1 + i) 

x2 = 2v*p3 = 2(103/l P)(l + i) 

x3 = 5(104/117)(1 + i) 

x4 = 14(105/119)(1 + i) 

x, = k,,,vmjF1 (m 2 0) 

= k,(1/22)m (1 -i)” (lO/ll)“‘+ * (1 + i)m+’ 

(where the coefficients k, are easily calculated not only for the quadratic 
case but also for cubits in the form x =,u t vx3, quartics in the form 
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x =p + vx4, etc.; similarly we can find coeffkients for x = ,U + v,x2 + v2x3 + 
v3x4 + ... + v,_,x” for real or complex cases). Factoring x, we have 

x, = k&/2)” (lom+l/l P+‘)[(l - i)(l + i)]” (1 + i) 

= k,(1/2)” (lOm+‘/ll *“+‘)(2”)(1 + i) 

=k,(10m+1/112m+1)(1 +i). 

Computing the components x,, 

x0 = (lO/ll)(l + i) = 0.9090(1 + i) 

x1= (102/113)(1 +i)=(100/1331)(1 +i)=O.O751(1 +i) 

x2 = (2)(10)/l 15)(1 + i) = (2000/161051)(1 t i) = 0.0124(1 t i) 

xj= (5)(104/11’)(1 +i)=O.O025(1 +i) 

x4 = 0.00059(1 + i). 

Thus 

II = 0.9090(1 f i) 

fb2 = 0.9842(1 + i) 

#3 = 0.9966(1 + i) 

q+4 = 0.9992(1 + i) 

g& = 0.9998(1 i-i). 

#,-(I ti)=c,, the smallest root. We see the convergence is very rapid 
indeed. Even by d2 we have an excellent solution and the method applies well 
to quadratic equations with complex coeffkients (and is easily extended to 
polynomial equations). The real and imaginary components generally 
converge at different rates. Suppose c, = 1 t i and cr = m, t m,i where for 
illustration we choose m, = 1 and m2 = 2 so that c2 = 1 + 2i. Now a = 7/13, 
/I= 9/13, y = 2/13, 6 = -3/13. Hence ,u = (7/13) t (9/13) i and 
v = (2/13) - (3/13) i so that 

x= (zig) + (~)x2=pt”x2. 

Then 
x,, =p = (7/13) t (9/13) i = 0.5385 t 0.69231’ 

x1 = v/i* = 0.1429 + 0.1584~. 
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x2 = 2v2,u3 = 0.0749 + 0.07 1% 

x3 = 5v3p4 

x4= 14v4p5 

The n-term approximate solutions are: 

4, = 0.5385 t 0.69231’ 

qi2 = 0.6814 t 0.8507i 

#3 = 0.7564 t 0.92251’ 

#,=lti. 

It is clear that the imaginary component is converging more rapidly than the 
real component so we have a differing convergence for the real and 
imaginary components of complex roots. 

II. CUBIC EQUATIONS 

Consider now equations of the type z3 +A2z2 t A,z t A, = 0. The z2 
term is ordinarily eliminated by substituting z = x -A ,/3 to get an equation 
in the form x3 - qx - r = 0. Thus, the equation 

z3 t 9z2 + 232 + 14 = 0 

becomes (substituting z = x - 3) 

x3-4x-1=0 

whose roots are 2.11, -1.86, -0.254. If we solve this by decomposition we 
write the equation in the form [ I] -qx = r - x3 or 

-4x= l-2 

x=--f+p 

x=x,+d f An* 
n=o 
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For this nonlinearity (Nx in Adomian’s notation [ 11) 

A, = 3x:x, 

A, = 3x:x, + 3x,x; 

A, = 3x:x, + 6x,x,x, +x; 

A, = 3x:x, + 3x,x; + 6x,x,x, + 3x:x, 

A, = 3x:x, + 6x0x,x, + 6x,x,x, + 3x:x, + 3x,x;. 

(We caution against simply extrapolating the A,, to higher it. We cannot 
include the complete generating scheme for any n in this paper. It depends 
on the actual nonlinearity and is lengthy to discuss so it will be dealt with 
elsewhere. The objective of this paper is to show applicability to algebraic 
equations, not to provide a handbook.) Thus x0 = -0.25, x, = +A,,= 

14= 
-a - 0.004, etc. Thus the one-term approximation #i = -0.25, the two- 
term approximation dz = -0.254, and x, ‘v 0 for an answer to three decimal 
places so the correct solution is obtained already with )* (again for the 
smallest root). #3 gives -0.254 with no more change to 3 decimal places. 
Computing 6 terms gives -0.25410168, which doesn’t change any further to 
8 place accuracy. 

If we now divide x3 -4x - 1 by x - 0.254, we obtain x2 + 0.254x - 
3.9375, which yields the other two roots by either the quadratic formula or 
the decomposition method. 

The equation x3 - 6x2 + 1 lx - 6 = 0 has roots (1,2, 3). Written in the 
form 

6 6 2 1 3 
x=n++x -xx 

and solving by the decomposition method, it yields x0 = 0.5455, 
x1 = 0.1475,..., and the solution x = 1 in eight terms. 

EXAMPLE. x3 + 4x2 t 8x t 8 = 0 is satisfied by x = -2. Calculating this 
with appropriate A,, for the x2 and x3 terms, we get 

x, = -1.0 

x1 = -0.375 

x2 = -0.234375 

x3 = -0.1640625 

x4 = -0.1179199 

x5 = -0.0835876. 
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If we sum these terms we get approximately x = -1.98, which makes us 
guess x= -2.0 and try it in the equation. (It is interesting to note, however, 
that we actually have an oscillating convergence. If we sum 10 terms, we get 
x = -2.0876342, which is a peak departure from x = -2. At 20 terms we 
have a peak departure in the opposite direction with x = -1.9656587. At 
100 terms we have -1.997313.) 

EXAMPLE. 

x3-6x2+ 11x-6=0 

6 6 1 
x=II+Mx*-IIx3 

,f x,=x,+&f An-+ f B, 
n=o n-0 n-0 

expanding the x2 and x3 terms in our usual polynomials but using A,, and B, 
to distinguish the two. 

x0 = 6/l 1 = 0.5455 

x1= (&)A,- (-&) B,= (r)(s) =0.147531 

x2 = (&)A, - (+)B, = ('9)(Lo)($) =0.0758160 

x3= (+)A*- (+)B,=(+$)(3610)=0.038962 

qi, = 0.5455 

qh2 = 0.69303 1 

#3 = 0.768847 

#4 = 0.80780 

where 4, -+ 1.0 as n -+ co. 
We can 

then 
write x3 - (r, + r2 + r3) x2 + (rl r, + rl r3 + r2 r3) x - r, rz r3 = 0, 

Q-1 r2r3) 
' = (r, r, + 

(5 + 5 + r3) 
r1r3+r2rd+ (r1r2+r,r,+r,r,)XZ 

1 

- (rl 3 + rl r3 + r2 r3) 
X3 
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choose rl < r2 < r3 or r2 = ar, and r3 = pr, where a, /3 are appropriate real 
fractions. Then the equation for x will become 

x=(r1) 
/ 
aP + (1 t a t B)(x*/ri) - (x’lr3 

atptap I 

where the bracketed quantity + 1 and the first solution found is rl . Thus, 
letting w  = (x/r,) 

where y=at/?+a/?. Then if w=C~=~W,, and IJI’=C~=~A,, and 
w3 = C:=o B, 3 

4 wo= - ( 1 Y 

If, for example, ri < + r2 and r2 < h r3, 

(lO)( 100) 1000 
w”= (lo+ 100 + 1000) =XP l 

and 

v1=(&)($$)-(&J% 

so terms are indeed rapidly approaching zero and rl will be the root 
calculated. 

III. POLYNOMIAL OPERATORS 

Higher-degree polynomial equations are similarly solved. In the cubic case 
it is, as we see above, not necessary, of course, to eliminate the quadratic 
term. We can solve the original equation by simply substituting the 
appropriate A,, summations for both x2 and x3 terms. Even higher-degree 
equations (or nonintegral powers or negative powers) can be equally well 
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handled by substituting appropriate A, for each nonlinearity (see Ref. [ 11). 
Let’s consider an equation in the form 

i y,x’=O 
u=O 

where y,, are given constants and seek the roots rl, r2,..., r, (assumed to be 
real) satisfying l-I:=1 (x - r,) = 0. We found if Nx or f(x) = x2, for 
example, A, = xi or f(x,). 

Now we have Nx=C:=, yrxM so A,= ~~=oy,x~. Since c:=. y,,x’ = 
yo + y,x + y*x* + .** + yp”, we can write the A, for each term or for the 
entire polynomial. Let’s consider a specific example of the form f(x) = 
c;=o yrrxfl = ynx” + yn-IX”-’ + . . . + y,x + y. with y, # 0 and yi constant 
for 0 < i < n. 

EXAMPLE. It is interesting to consider a Sth-order polynomial operator 
since no formula exists for n = 5 or higher. The equation x5 - 15x4 + 85x3 - 
225x* + 274x - 120 = 0 has the roots 1, 2, 3, 4, 5. To calculate all the roots 
we rewrite the equation in Adomian’s usual form as 

x = (120/274) + (225/274) x2 - (85/274) x3 

+ (15/274) x4 - (l/274) x5 

x = 0.43796 + 0.82117~~ -0.31022x3 

t 0.054745x4 - 0.0036496x5 

or 

where 

x=k+ i Ynx” 
n=2 

k = 0.43796 

y,=O.82117 

y3 = -0.3 1022 

y4 = 0.054745 

y5 = -0.0036496. 

We have the first approximation $r = x0 = k = 0.43796. 
Then 

x,= y2A,(x2)+ yJ,(x3) + Y4Ao(X4) + Y,Ao(-e. 
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The notation A,(x2) means the A, for the x2 term, etc. Thus 

x1 = 0.82117x; - 0.3 1022x; + O.O54745xQ, - 0.0036496x; 

x, = 0.15751- 0.026060 + 0.0020141 - 0.00005881 

x, = 0.13341. 

Hence #* =x,, +x, = 0.57137. 

x2 = Y2A,(X2) + Y3A,(X3) f Y4Al(X4) + Y54(X5) 

where 

A ,(x2) = 2x,x, 

A,(X3) = 3x:x, 

A 1(x”) = 4x:x, 

A 1(x”) = 5x:x, * 

Consequently, 

x2 = {(0.82117)(2) x,, - (0.3 1022)(3) x’o + (0.05745)(4) xi 

- (0.0036496)(5) xi} x, 

x2 = 0.0746299. 

Then & = 0.6459999 = 0.6460. Continuing 

x3 = Y2A2(X2) + Y3A2(X3) + y4A2(x4) + hA2(x5) 

etc., as necessary. The A, are generated by rather complex rules necessarily 
dealt with elsewhere since they are applicable to differential and partial 
differential equations as well and require much discussion. They are to be 
viewed here as a special set of polynomials proposed by Adomian for the 
expression of nonlinear terms in his decomposition method which are given 
or can be obtained. The first few of these are: 

A, = M-d 

A, = Wdx, 

A3 = + {h3(xJ xi + 6h2(xJ ~1x2 + 6h,(x,) ~3 ] 
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Al=& {h&J x: t 12@,) x:x, t &(-q,)[ 12x: t 24x,x,] 

A,= & IUJx: + 2%(x0)4x, + 6%Wl+4 +x:-d 

where hi = dif/dxi for the function f(x). 
Let’s list final results for the Sth-degree equation above to IO digit 

accuracy. 

x, = 0.4379562044 

x, = 0.1334006838 

x, = 0.0745028484 

x3 = 0.0500356263 

x4 = 0.0449342233 

x5 = 0.0446966625 

x6 = 0.0331390668 

x, = 0.0272374949 

x8 = 0.022258001 

x9 = 0.0196274208 

xl0 = 0.0166467228 

I, = 0.4379562044 

ti2 = 0.5713568882 

#3 = 0.6458597366 

#4 = 0.6958953629 

$, = 0.7408295862 

q& = 0.7855262487 

4, = 0.8186653155 

& = 0.8459028 104 

fd9 = 0.8681608114 

#,,, = 0.8877882322 

#,I = 0.904434955 

y1 = 56.2% 

y2 = 42.9% 

l/f, = 35.4% 

ly4 = 30.4% 

ys = 25.9% 

‘y, = 21.4% 

v, = 18.1% 

l/l8 = 15.4% 

qY9 = 13.9% 
I//,() = 11.2% 

I/, 1 = 9.56% 
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The error v/ decreases gradually to less than 10% by vll but it can easily be 
carried further by computer. The convergence for inversion in this case of a 
quintic operator is relatively poor because of the greater number of more 
closely spaced roots and the case of equal roots will be the poorest case. 

Forf(x) = xk where k is an integer 22, let’s write h, = d”f,dx” for n > 0. 
(We will write h,(x,) for (d”f/dx”)(,=, for the computation of the A,.) Then 
for Xk. 

h,=xk 

h =kxk-’ 
1 

h,=k(k-I)..+-n+I)xk-“= Xk-n 

where (,“) = k!/(k - n)!. Consequently, the A, for f(x) = xk are given by 

A,=x; 

~=](;)x:-~/x, 

A2=f-](:)x~-21x~+](~)x~-~~x* 

A3=~~(:)x:-3~~:+~(;)x:-2~x~x2+~(;)x~-~~x3 

A=& ](~)x~-‘j+~](~)x~-‘~x;x2 

+](~)x~-2[[tx:+x~x3~+](:)x:‘lx4 

x [XIX: +x:x3] + [x2x3+x,x4j+ 1 (;) x:-‘/ x5’ 

We observe that the subscripts for A, always add to n and the superscripts 
of the x,.‘s always add to k. 

The above work will yield the lowest root, or 1, reducing the equation to a 
4th power then the root 2, etc. We can do the problem more rapidly as 
follows. 
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Let’s write a general polynomial in x with constant nonzero coefficients. 

f(x)= ,jkyiXi=y*xk t .‘* +yO* 

Now 

h, = i yixi 
i=k 

h, = ‘s iyixi-’ 
i=k 

yi+ (k>n) 

(k=n) 

h k+l ==0 or h, = 0 for n > k. 

The A,, can now be given 

A, = c yix; 
i=k 
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++ I($& YiXY jw: +x:x31 
+]jJ (:)y~Xh-‘/~X*X3+X,X4)+] i ( :) Yixbl! x5 

i=k i=k 

etc. 

from which polynomial equations can be solved more rapidly than with 
individual substitutions for the various powers as we did earlier in this paper. 

Negative powers. Consider an example like x = 2 + x-* or the more 
general form 

x=k+x-m. 

We write 

2 x,=k+ f A, 
n=O n=O 

with xo=k andx,=A,-, for n> 1. Then 

x5 = A, = $-m(m + l)(m + 2)(m + 3) x,(~+~)x’: - fm(m + 1) 

x(m+2)x, (m+3)X;X2 + m(m + l)x,‘“+“[;x: +x,x,] 

- m;(m+l)x4. 

Ifk=2andm=2,thenxo=2and 

x,=2-*=0.25 

x2 = -2(2) -3 (0.25) = - 0.0625 

x3 = +(2)(3)(2)-4(0.25)2 - (2)(2)-3 (-0.0625) = 0.02734375 

x4 = -0.0146484375 

x5 = -0.0087280273. 
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By #6 we get an excellent approximation to the solution (2.205569431) and 
note again rapid convergence. 

11=2 l/f, = 9.32% 

(b2 = 2.25 wz = -2.02% 

& = 2.1875 ty3 = 0.82% 

#4 = 2.21484375 y4 = -0.42% 

#5 = 2.200189063 w5 = 0.24% 
I& = 2.2089 1709 lya = -0.15% 

Non integer powers. Let’s now consider inversion of algebraic operator 
equations involving fractional or noninteger powers, e.g., consider 

x = k t xl”. 

Write 

f x,=k+ f A, 
n=O n=O 

where x0 = k and x, = A,- I for n > 1. Then 

x1 zz A, = x;‘~ = k’j2 

x2 =A, = fx;“x, = f(k)-‘/* @)‘I* =) 

x3 =A, = ix-‘f2x2 _ +x,3f2X; = $-l/2 
2 0 

X4=A3=0 

~~=A~=-&k-~f~ 

4, = (k) t (k)“2 + 4 f {k-‘i2 $0 - -&k-3f2. 

If k = 2 we expect the solution to converge to x = 4. As verification, we get 

x0 = 2 

x1 = 1.414213562 

x2 = 0.50 

x3 = 0.0883883476 

xq = 0 

x5 = -0.0027621359 
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and 

#1=2 ‘yl = 50% 

yb2 = 3.414213562 w2 = 14.65% 

4, = 3.914213562 ty3 = 2.15% 

#4 = 4.00260191 y4 = -0.065% 

95 = 64 + 0 ws = w4 

& = 3.999839774 W6 = 0.0040%. 

Thus OS is an excellent approximation (in fact #4 is!). With OS we have 
4/1000 of 1% error. Let’s be more general now and consider nonlinear terms 
Nx = x’fm where m belongs to the set of positive integers. 

EXAMPLE. 

x=k+x”“’ 
00 

-S x,=kt f A, 
“50 II=0 

where the A, are the usual Adomian polynomials generated for the specific 
nonlinearity under consideration. Then 

x0 = k 

x, =An-l for n>l. 

The A, are given by 

A, =x;“” 
A, = (l/m) xr’m)-‘x, 

A, = 1/2(l/m)((l/m) - 1)x:‘“‘-*x: t (l/m)x~‘“‘-‘x, 

A, = 1/6(l/m)((l/m) - l)((l/m) - ~)x~‘“‘-~x: 

+ (l/m)((l/m) - 1)xb”m’-2x,x, 

+ (l/rn)~~‘I~)-~x~ 

Since x, = A, _ i in this problem, we now have the x, . Their general form of 
x, is a( l/m) kc”/“)-“+ ‘) where a(l/m) has the form xi nj oi(l/m -pj). If 
m = 2 and k = 2 we get precisely the previous results in the preceding 
example. 

We now also see that we can consider operators involving a cube root, a 
fourth root, etc. 
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Decimalpowers. Now consider solution of algebraic equations involving 
(rational or irrational) decimal powers, first taking up the case of rational 
powers. 

x = k t xalb 

where k is real and a, b are positive integers. Write 

5 x,=k+ ? A, 
n=O Jl=O 

wherex,=kandx,=A,-, forn~l.(ThuswehaveA!x=xa’b=~~~oA,,.) 
Now 

Ao=xfb 

A, = (a/b) xp’b)-‘xl 

A 2 = (a/b) xr’“‘- ’ x2 t i(a/b)((a/b) - 1) x~‘~)-‘x~ 

A, = (a/b) xrlb)-’ x3 t (a/b)((a/b) - 1) x~‘~)-~x,x~ 

t i(a/b)((a/b) - l)((a/b) - 2) x~‘~)-~x:. 

Hence, 

x0 = k 

x, = A, = kalb 

x2 = A 1 = (a/b) k2(a’b)- I 

x3 = A, = {(a/b)* t i(a/b)((a/b) - l)} k3(‘lb’-* 

As a specific case, choose a = 3, b = 11, k = 2. Then a/b = 0.272727... and 
x=2+x3’” 

x0 = 2 f4=2 

x1 = 1.208089444 @2 = 3.208089444 

x2 = 0.1990200144 9, = 3.407109458 

x3 = -0.0109288172 qb4 = 3.396180641. 

Notice 4x and #4 differ very little as we try substitution into the original 
equation of #4 as an approximate solution. Then 

& = 2 t #:“l = 3.395775811. 
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We see $d is very close to $4, differing by about 0.01%. (We have defined 
&,-k+#, ‘lb to see if the approximate solution satisfies the original 
equation.) 

Now we consider the case of irrational powers. Write 

x=k-xY 

letting k be real and y an irrational number such as e or 7~. Now 

wherex,=kandx,=-A,-, fern> 1. SinceNx=xY=C~zoAn, 

A,=$ 

A, = yxoy-1x, 

A,=jx-‘x,+Qy(y- l)x;-‘x: 

A, = yx’xoy-‘x~ + y(y - l)x,y-*x,x, 

+ $y(y- l)(y - 2)x:-3x:. 

Now the components x, of the solution x = CFEo x, can be computed 

x0 = k 

x, = -kY 

x2 = yk*Y-’ 

x3 = - {y* + +y(y - l)} k3y-2 

x4 = {y*(y - 1) + +y(y - l)(y - 2) + y3 + +“(y - l)} k4y-3. 

For a specific example we now choose k = l/z and y = 7c 

x = (l/n) - x* 

(letting n = 3.1415927 and l/z = 0.3 183099 for the computation). We get 
x = 0.296736 which is within a hundredth of 1%. 

Random algebraic equations. The treatment of algebraic equations by 
the decomposition method suggests further generalization to random 
algebraic equations. Such equations, with random coefficients, arise in 
engineering, physics, and statistics whenever random errors are involved. 
Random matrices* too are found in finite-dimensional approximation models 

2 Application of the decomposition method also solves equations with random matrix 
operators. See [5-71. 
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for random Hamiltonian operators and various engineering applications 
concerned with systems of linear random equations. Thus suppose one has 
the equation 

x3 +ax* +px+y=o 

where a is stochastic. Then we have 

x = -(r/P> - (VP) x3 - WP> x2 

where a is a stochastic process and /3, y are constants. We now write 

where the A,, B, are the appropriate Adomian polynomials computed for the 
nonlinear terms x3 and x2. For example, 

hence x1 involves a stochastic coefficient in the second term. Continuing one 
writes 4, and appropriate statistics such as (4,). 

If we consider a quadratic operator and a forcing term in the form 

y* -I- by + c = x(t) 

where b and c can be functions of t, we can write immediately 
y = (l/b)(t - c) - (l/b) CzEoA,(y2), or, since y, = (l/b)(t - c) and 
y, = - (l/b)A,, etc., 

y1 = - ; (x - c)’ 

y, = ; (x - c)” 

y, = - $ (x - c)” 

y= -f w”k”(x-c)“-l 

n=O 
bhtl 

with k, as appropriately defined constants. Clearly x(t) can be stochastic (or 
x(t, 0)). The b(t) can have a fluctuating or random component and be 
written as bO(t) + P(t, o), in which case 
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Conclusions. We have seen that algebraic equations can be handled by 
the decomposition method and it provides a useful method for computation 
of roots of polynomial equations often yielding a very rapid convergence. As 
discussed earlier by Adomian [ 11, we have a computational and highly 
convergent system to solve problems of the real world more realistically 
without assumptions changing the essential nonlinear nature. Whether we 
deal with differential or partial differential equations [ 1,2,4,5] or algebraic 
systems as demonstrated in this paper (and in Ref. [513), an accurate 
methodology is available for physical applications and more realistic 
modeling. 
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