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Let S be a finite set with v  elements. It is known that there exists a sequence 
of three-element subsets of S such that each two-element subset of S is contained 
in exactly X terms of the sequence if and only if X(u - 1)/2 and Xv(v - 1)/6 are 
integers. The known proof is somewhat complicated when v  = 2 (mod 6), and 
this paper provides a simpler proof for this case. Proofs are also given for all 
other values of u by reviewing known constructions or providing new ones. 

We shall introduce the following notation and terminology. Throughout 
this paper, A, k, v denote integers such that X 3 1, k >, 2, v > 3. A 
2-subset of a set S is a subset of S with cardinal number 2. An array is 
a finite sequence Bl ,..., Bb of non-empty finite sets such that b > 0 and 
1 B, j = 1 B, j = ... = j Bb I. The sets Bi are the blocks of the array 
and the array is said to have block number b, block size j Bl 1 and order 
1 B, v ‘.. u Bb /. The replication number of an element [ of B, v *a. U Bb 
in the array is the number of values of i for which t E Bi . If all elements 
ofB,u .*. u Bb have the same replication number in the array Bl ,..., Bb 
then this number is called the replication number of the array. A (v, k, A)- 
array is an array Bl ,..., Bb of order v and block size k such that, for each 
2-subset A of B, u ... u Bb , there are exactly h values of i for which 
A C Bi . If B, )*.s) Bb is a (v, k, h)-array and S = Bl u ... v Bb , then 
S has $v(v - 1) 2-subsets each of which is a 2-subset of h blocks, and each 
block has &k(k - 1) 2-subsets, so that $hv(v - 1) = $bk(k - l), i.e., 
b = hv(v - I)/k(k - 1). Furthermore, if e ES and f(l),...,f(r) are the 
distinct values of i for which 5 E Bi and Al ,..., A,-, are the 2-subsets of S 
which include .$, then each Aj is contained in exactly h of the sets 
Bm..., BftT) and each Bftl) contains exactly k - 1 of the sets A, ,..., A,-, , 
so that h(v - 1) = r(k - l), i.e., r = h(v - l)/(k - 1). This argument 
shows that a (v, k, X)-array has block number hv(v - l)/k(k - 1) and 
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replication number X(V - l)/(k - 1). Therefore necessary conditions for 
the existence of a (v, k, Qarray are that 

h(v - l)/(k - 1) and Xv(u - l)/k(k - 1) are integers, (1) 

Evidently a further necessary condition is that v 3 k. It is well known 
(see [5], for example) that these necessary conditions are not in general 
sufficient; but they tend to be sufficient for small values of k. Specifically, 
the existence of a (v, 2, h)-array is trivially demonstrable for all u, h, and 
Hanani [6,7] has proved the existence of a (v, k, h)-array whenever 
a, k, X satisfy (1) and v > k and k E (3, 4, 5}, with the sole exception [4; 
5, p. 2911 that no (15, 5, 2)-array exists. Hanani’s arguments are some- 
what complicated, and the present paper concerns a simpler treatment 
of the easiest case k = 3. 

A (v, k, h)-array is in standard terminology called a balanced incomplete 
block design with parameters b, v, r, k, h, where b, r, denote the integers 
hv(v - I)/k(k - l), h(v - l)/(k - l), which have been shown to be the 
block number and replication number of the array. The non-standard 
term “(a, k, h)-array” is used here for brevity. Balanced incomplete block 
designs are one of the main themes of combinatorial analysis, and much of 
the relevant work has been concerned with trying to determine the set of 
ordered triples (v, k, h) for which (27, k, h)-arrays exist. The first value of k 
for which this problem becomes non-trivial is k = 3, and hence a natural 
introduction to the subject would be a connected account of how, using 
reasonably simple and direct constructions only, one can obtain (v, 3, h)- 
arrays for all possible choices of v, X. Unfortunately, such an account does 
not exist: the required constructions are so widely scattered through the 
literature as to be very difficult to locate, and no simple construction 
seems to have been known hitherto for the case o = 2 (mod 6). The 
literature contains evidence that other mathematicians besides myself 
have been caused difficulty by the lack of an organized account of such 
material: for example, some authors seem to have been unaware of the 
construction for (z,, 3, 1)-arrays with v = 1 (mod 6) which was given by 
Skolem [lo] and is described below. 

The purpose of this paper is to assemble in one place a set of simple 
constructions which establish the existence of a (a, 3, h)-array for all 
possible choices of v, h. Some of these constructions are merely collected 
from other literature, and hence much of this paper should be viewed as 
expository. The construction given for the case v = 2 (mod 6) is, however, 
believed to be new and substantially simpler than any previously known. 
The constructions given for the cases v = 0, 4 (mod 6) are also new 
so far as I know, although reasonably simple constructions for these 
cases were given by Bhattacharya [l] with the help of an idea of Bose [2]: 
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it might be arguable that the constructions in the present paper are very 
slightly simpler than those of [l]. 

Our task, therefore, is to demonstrate the existence of a (v, k, h)-array 
if k = 3 and (1) holds. In other words, we have to prove the existence of 
a (v, 3, Q-array whenever h = nh, for some positive integer n, where X, 
assumes the values 2, 1, 6, 1, 2, 3 when v is congruent to 0, 1, 2, 3, 4, 5, 
respectively, modulo 6. To prove this, it suffices (as was observed by 
Hanani [6]) to prove the existence of a (u, 3, X,)-array, because if & ,..., Bb 
is a (v, 3, &)-array and BDb+ is defined to be Bi for i = l,..., b and 
p = l,..., n - 1 then B,, B, ,..., Bnb is a (v, 3, n&)-array. Accordingly, 
the remainder of this note discusses the construction of a (u, 3, X,)-array. 

A (v, 3, 1)-array is known as a Steiner triple system of order u, and the 
result to be proved when v = 1 or 3 (mod 6) is a classical theorem on 
Steiner triple systems which was conjectured by Steiner [l l] and first 
proved by Reiss [9]: since that time, many methods of constructing 
Steiner triple systems have been devised. For ZJ = 3 (mod 6) we remind 
the reader of the following well known simple construction for a (v, 3, l)- 
array, which seems to have been given independently in [2] and [IO]. Let 
t be a positive integer and let 01,, , a1 ,..., azt , p,, , p1 ,..., ,& , y0 , y1 ,..., yzt 
be 6t + 3 distinct elements. For i E (0, l,..., 2t) and any non-zero integer q 
define ai+(~+~)~ y Pi+(2t+l)n y s+(2t+l)a to be CY~ , pi , yi , respectively, so that 
the meaning of the symbols 01~) pU, yU now depends only on the con- 
gruence class of u modulo 2t + 1. Then it is an easy exercise to show that, 
if the sets 

{% 3 pi 2 yi), {% 9 Pi-7 7 /A+r>, {Pi 7 Yi-r 9 Yi+r), {Yi 9 &i--T 2 %+rl 

(i = 0, l,..., 2t; r = 1, 2 ,..., t) 

are arranged in a sequence, this sequence will be a (6t + 3, 3, 1)-array. 
Moreover, if we introduce three additional elements 6, E, 5 we can establish 
the existence of a (6t + 4, 3, %)-array and a (6t + 6, 3, 2)-array. First, 
it is an easy exercise to show that a sequence of sets, obtained by writing 
down each of the sets 

lai 2 Pi-v > fiifrl9 Vi 3 Yi-r 2 Yi+T), {Yi 3 Oli--T 9 ai+rl 

(i = 0, l,..., 2t; r = 1, 2 ,..., t) 

twice and each of the sets 

{% 2 pi 3 Yi>, is, Bi 3 Yi>, ts, Yi > %I, is9 4 9 Bi> 

(i = 0, l,..., 2t) 
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once is a (6t + 4, 3, 2)-array. Second, it is easily shown that a sequence 
of sets, obtained by writing down each of the sets 

@, EY 0, {% > Pi > Yil, 6% > Pi-s > Bi+s>, {Pi 9 Y&-s > Yi+sl, 

{Yi 2 1 
Oli-s , %+sJ (i = 0, l)...) 2t; s = 2, 3 )...) t) 

twice and each of the sets 

once, is a (6t + 6, 3, 2)-array. Thus the existence of a (v, 3, &)-array 
has been established for u = 0, 3, 4 (mod 6), except in the simple cases 
u = 3,4, 6 whose consideration may be left to the reader. 

When v = 1 (mod 6), the simplest direct construction for a (v, 3,1)-array 
known to the author is one of Skolem [IO]. Let v = 6t + 1. Let 
e 1 ,.a’, 8,, , r& ,..., dzt , #r ,..., t,GZt , x be 6t + 1 distinct elements. For 
any i E {l,..., 2t) and any non-zero integer q define ei+2tq , I#J~+~~* , #i+ztQ 
to be ei , I$~ , & , respectively. Then it is fairly easy to see that the sets 

when arranged in a sequence, constitute a (0, 3, I)-array. 
The theme of this paper emphasizes proofs by direct construction; but 

the reader may be referred to [3, pp. 91-941 for an elegant proof by 
induction of the existence of a Steiner triple system of order ~1 whenever 
2, is congruent to 1 or 3 modulo 6. A simpler, but at present unpublished, 
inductive proof of this fact has been obtained by Professor H. Hanani and 
was described at the Calgary International Conference on Combinatorial 
Structures and Their Applications in June 1969. 

We have now only to establish the existence of (v, 3, &)-arrays when 
v = 2, 5 (mod 6). This will be done by giving constructions for a 
(2t + 1, 3, 3)-array and a (2t + 2, 3, 6)-array which work for all positive 
integers t. The construction for a (2t + 1, 3, 3)-array was, in essentials, 
given on page 323 in Skolem’s appendix to the second edition of [S], 
and I am indebted to Dr. D. A. Sprott for bringing it to my notice. So far 
as I know, the construction for a (2t + 2, 3, 6)-array is new and sub- 
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stantially simpler than any other known method of obtaining (v, 3, A,)- 
arrays when u = 2 (mod 6). 

Let 7r0 , rrI ,..., 7rzt , p be 2t + 2 distinct elements. For any i E (0, l,..., 2t) 
and any non-zero integer 4 define 7ri+(2t+l)a to be ni . We make the con- 
vention that if .Zh is a sequence with 2t + 1 terms for h = l,..., m then 

2122 ... ,Z’,,L denotes the sequence with (2t + 1)~ terms obtained by 
writing down the terms of ZI and then the terms of & and so on, ending 
with the terms of Z’, . Now let di, denote the sequence 

{no--T, no, ~o+rl, {Tl--T 9 Tl 3 ~lfT1, {r2--r 3 rz > ~TTz+T),..., IT2b-r 9 =!zt , n2t+J 

and r denote the sequence 

b To 9 4, {P, 711 > ‘IT219 {P, 372 3 4,..., {P, =2t 3 772t+d 

and A denote the sequence 

{P, no 9 n21, b-5 Tl, d If, n2 > ~*I,**., {P, r2t 3 n2t+2>- 

Then it is an easy exercise to show that Q1Q2 ... Gt is a (2t + 1, 3,3)-array 
and that 

@1@2~2@3@3@4@4 -.a @t-,@D,-,@,@,lTA 

is a (2t + 2, 3, 6)-array. 
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