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1. Introduction

The free Poisson algebras were first considered in [12]. They are naturally and closely related to
polynomial algebras, free associative algebras, and free Lie algebras. For example, the free Poisson
algebra and Poisson brackets were used in [13,14] to prove that the Nagata automorphism of the
polynomial algebra of rank three is wild.

A systematic study of free Poisson algebras was started in [8] where several open questions on
their structure were formulated. It was proved in [8] that the centralizer of a nonconstant element of
a free Poisson algebra in the case of characteristic zero is a polynomial algebra in a single variable; this
is an analogue of the famous Bergman Centralizer Theorem [1]. Then in [10] it was proved that locally
nilpotent derivations of free Poisson algebra of rank two in the case of characteristic zero are trian-
gulable and that automorphisms of these algebras are tame; these are analogues of the well-known
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Rentschler Theorem [11] and Jung Theorem [5] respectively. Finally, in [9] the Freiheitssatz was proved
for free Poisson algebras over a field of characteristic zero.

In this paper we continue the study of free Poisson algebras and solve positively a question for-
mulated in [8] by proving that every two Poisson dependent elements in a free Poisson algebra over
a field of characteristic zero are algebraically dependent. In fact we prove a bit more: any two Poisson
dependent elements which are rational over a free Poisson algebra are algebraically dependent.

As a corollary, we give another proof of the result from [10] that the automorphisms of free Pois-
son algebra of rank two in the case of characteristic zero are tame (see also [9]).

2. The main part

Below P = P 〈X〉 denotes a free Poisson algebra on a set of generators X = {x1, . . . , xn} over a field
F of characteristic zero. Recall (see, for example [12]) that P is isomorphic to S(Lie〈X〉), where Lie〈X〉
is the free Lie algebra over X and S(V ) means the symmetric algebra over a vector space V . Denote
by y1 = x1, y2 = x2, . . . , yn = xn, yn+1 = {x1, x2}, . . . a basis of Lie〈X〉 consisting of the Lie monomials
which are ordered by increasing Lie degree (and arbitrary for monomials of the same degree). Hence
as a commutative algebra P is a polynomial algebra F [y1, y2, . . .] with infinitely many generators.
For elements f , g ∈ P we denote by f g their product as elements of F [y1, y2, . . .] and by { f , g} their
Poisson product (the Poisson bracket) which is defined on y1, y2, . . . as elements of Lie〈X〉, extended
on monomials of P by the Leibnitz law, and then on P by linearity.

A family of polynomial weight degree functions can be defined on F [y1, y2, . . .] by giving arbitrary
real weights wi = w(yi) to the generators and extending it on monomials M = y j1

1 y j2
2 · · · by w(M) =∑

i ji w(yi). Then for f ∈ F [y1, y2, . . .] degree can be defined as D( f ) = max(w(M) | M ∈ f ), i.e.
maximum by all monomials contained in f with non-zero coefficients. Of course not all of these
functions make sense for P as a Poisson algebra. We say that a weight degree function D on P is
compatible with the Poisson structure if it satisfies the following natural condition:

for any two monomials M1, M2 ∈ P (as a polynomial algebra) the bracket {M1, M2} is D-homoge-
neous.

For example the weight which is defined on a Lie monomial y as the number of appearances of a
free generator xk in y defines a compatible degree function dxk . It is easy to check that in order to
define a compatible degree function the weight should be given on a Lie monomial y by

w(y) =
∑

i

(
w(xi) − c

)
dxi (y) + c

where w(xi) and c are arbitrary real numbers. To see it define �(i, j) = w(yi) + w(y j) − D({yi, y j})
for two different Lie monomials yi, y j . Take {yi y j, yk} = {yi, yk}y j + yi{y j, yk} where yi , y j , yk
are pairwise different Lie monomials. Then D({yi, yk}y j) = D(yi{y j, yk}), �(i,k) = �( j,k), and
�(i, j) = c is a constant. Therefore weight w is completely determined by wi = w(xi) and c = �(i, j).

Examples of compatible degree functions are dxk defined above and the Poisson degree which
corresponds to w(x1) = · · · = w(xn) = 1, c = 0 (i.e. to the Lie degree). Total polynomial degree deg on
F [y1, y2, . . .] is also compatible and corresponds to w(x1) = · · · = w(xn) = c = 1.

Recall that deg({ f , g}) = deg( f ) + deg(g) − 1 for homogeneous f and g if { f , g} �= 0. Similar
relation is true for any compatible weight degree function: D({ f , g}) = D( f ) + D(g) − c if { f , g} �= 0
and f and g are D-homogeneous.

Below we will consider only the weights for which all parameters are integers.
Elements a1, . . . ,am of a Poisson algebra S are called Poisson dependent if there exists a non-

zero element p(x1, . . . , xm) in the free Poisson algebra P 〈x1, . . . , xm〉 such that p(a1, . . . ,am) = 0
in S ; the elements a1, . . . ,am are called algebraically dependent if there exists a non-zero polynomial
f (x1, . . . , xm) ∈ F [x1, . . . , xm] such that f (a1, . . . ,am) = 0.

Element u is called algebraic over a Poisson algebra S if u belongs to a commutative algebra T
containing S (as a commutative subalgebra) and p(u) = 0 in T for a non-zero polynomial p ∈ S[t].
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If S is a domain the bracket can be extended uniquely from S to the field S(u). Indeed, take a non-
zero polynomial p(t) = ∑

i piti where pi ∈ S for which p(u) = 0 of the minimal degree possible. If an
extension of the bracket exists and we use the same notation for it then 0 = { f , p(u)} = { f , u}p′(u)+∑

i{ f , pi}ui for any f ∈ S which defines { f , u} provided p′(u) �= 0, i.e. in the zero characteristic case
or for a separable extension. It is a straightforward computation to check that this bracket makes
S(u) a Poisson algebra.

Denote by Q the field of fractions of P considered as a commutative polynomial algebra. We can
extend the bracket from P to Q as we saw above. A compatible weight degree function D can be
extended from P to Q by D( a

b ) = D(a) − D(b). We will call Q a free Poisson field.

Lemma 1. Let f , g be elements algebraic over a free Poisson algebra P . If f , g ∈ P [ f , g] are Poisson dependent
and r1(x1, x2), r2(x1, x2) ∈ F (x1, x2) are rational functions then r1( f , g), r2( f , g) ∈ P ( f , g) are also Poisson
dependent.

Proof. Elements f , g are Poisson dependent if the basic Lie monomials of f , g are algebraically
dependent. Denote by y1, . . . , yN(a) the set of all basic Lie monomials with d(y j) � a. Consider
the smallest A for which y1( f , g), y2( f , g), . . . , yN(A)( f , g) are algebraically dependent. It is easy
to check using induction on ai = d(yi(x1, x2)) that yi(r1( f , g), r2( f , g)) ∈ F ( f , g)[y3( f , g), . . . ,

yN(ai)( f , g)]. Hence there is an algebraic dependence between y1(r1( f , g), r2( f , g)), . . . ,

yN(A)(r1( f , g), r2( f , g)). �
For f ∈ Q denote by supp( f ) the minimal set of polynomial variables on which f depends.

Lemma 2. Let f , g ∈ Q be elements which are algebraically independent. Then for a given polynomial weight
degree function D there exists an element h ∈ F [ f , g] such that the leading forms f D , hD are algebraically
independent.

Proof. A standard proof of this fact would be based on the notion of Gelfand–Kirillov dimension
(see [4]) and is well known for the polynomial case. We give a proof using Poisson brackets which is
possible in the case of zero characteristic.

Consider supp( f ) ∪ supp(g) = {yi1 , . . . , yik }. Since f , g are algebraically independent we may as-
sume without loss of generality that f , g, yi3 , . . . , yik are algebraically independent and introduce on
F (yi1 , . . . , yik ) a deficiency function (somewhat similar to the one introduced in [7]) by

def( f ,h) = D
(
Jyi1 ,...,yik

( f ,h, yi3 , . . . , yik )
) − D(h)

where Jyi1 ,...,yik
( f ,h, yi3 , . . . , yik ) is the Jacobian of f ,h, yi3 , . . . , yik , i.e. the determinant of the cor-

responding Jacobi matrix. This function is defined and has values in Z when Jyi1 ,...,yik
( f ,h, yi3 ,

. . . , yik ) �= 0.

Since Jyi1 ,...,yik
( f , p( f , g), yi3 , . . . , yik ) = Jyi1 ,...,yik

( f , g, yi3 , . . . , yik )
∂ p
∂ g for any p ∈ F [ f , g] and

Jyi1 ,...,yik
( f , g, yi3 , . . . , yik ) �= 0 function def is defined on any algebraically independent pair from

F [ f , g].
Observe that

def
(

f ,hk) = def( f ,h),

def
(

f ,hr( f )
) = def( f ,h), r( f ) ∈ F ( f ) \ 0,

def( f ,h) � D( f ) − c,

where c is a constant which depends only on degrees of f , yi1 , . . . , yik .



L. Makar-Limanov, I. Shestakov / Journal of Algebra 349 (2012) 372–379 375
If f D and gD are algebraically dependent then there exists a non-zero polynomial q =∑k
i=0 qi(x)yi ∈ F [x, y] for which all monomials with non-zero coefficients have the same D degree,

k = degy(q) is minimal possible, and q( f D , gD) = 0. In our setting elements f , g′ = q( f , g) are alge-
braically independent. Denote in this lemma only Jyi1 ,...,yik

( f ,h, yi3 , . . . , yik ) by { f ,h}.
We have

def
(

f , g′) = D
({

f , g′}) − D
(

g′) = D

(∑
i

{
f ,qi( f )gi}) − D

(
g′)

> D
({

f ,qk( f )gk}) − D
(
qk( f )gk) = def

(
f , gk) = def( f , g)

since D(g′) < D(qk( f )gk) while D({ f ,qk( f )gk}) = D(kqk( f )gk−1) + D({ f , g}) = D(
∑

i iqi( f )gi−1) +
D({ f , g}) = D(

∑
i{ f ,qi( f )gi}) (recall that

∑
i iqi( f D)gi−1

D �= 0). If f D , g′
D are algebraically depen-

dent, we repeat the procedure and obtain a pair f , g′′ with def( f , g′′) > def( f , g′). Since def( f ,h) �
D( f ) − c for any h and def( f ,h) ∈ Z, the process will stop after a finite number of steps and we will
get an element h ∈ F [ f , g] for which hD is algebraically independent with f D . �
Lemma 3. Let f , g ∈ Q be elements which are Poisson dependent but not algebraically dependent. Then there
exists a pair of elements which are homogeneous relative to any compatible weight degree function D with the
same property.

Proof. Denote by hD the leading form of h ∈ Q relative to D . From the definition of compatibility
yi( f , g)D = yi( f D , gD) if yi( f D , gD) �= 0. Since P ( f , g) = 0 for a Poisson polynomial, P D( f D , gD) = 0
for a polynomial P D consisting of monomials M of P for which D(M( f D , gD)) is maximal possible.
Hence f D , gD are Poisson dependent.

If f D and gD are algebraically dependent then we can use Lemma 2 to find an element h ∈ F [ f , g]
such that hD and f D are algebraically independent and to obtain a D-homogeneous pair of Poisson
dependent elements which are algebraically independent. The space of compatible weights is finite
dimensional lattice, hence we can obtain a pair of Poisson dependent elements which are algebraically
independent and are homogeneous relative to all compatible degree functions. �

We will call elements which are homogeneous relative to all compatible degree functions com-
pletely homogeneous.

Lemma 4. Let f , g ∈ Q be a Poisson dependent pair and x be the smallest element in supp( f ). Write f =
xn fx + · · · , g = xm gx + · · · , where fx, gx do not contain x and dots stand for terms with smaller (polynomial)
degrees in x. Then the pair fx, gx is Poisson dependent as well.

Proof. Consider the Poisson polynomial P (x1, x2) for which P ( f , g) = 0; it is a sum of monomials of
the type

u = yk1
1 yk2

2 · · · yks
s ,

where yi are Lie monomials in x1, x2. We have

{ f , g} = xn+m{ fx, gx} + · · · ,
yi( f , g) = xNi yi( fx, gx) + · · · , Ni = ndx1(yi) + mdx2(yi),

u( f , g) = xN(u)u( fx, gx) + · · · , N(u) =
∑

ki Ni,
i
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where again dots mean terms of smaller degree in x. Observe that x cannot appear in { fx, gx} or in
yi( fx, gx) when d(yi) > 1 since for any y ∈ supp( f ), z ∈ supp(g) we have {y, z} > y � x. Therefore,

0 = P ( f , g) = Q ( fx, gx)xN + · · · ,

where N = max{N(u) | u monomial in P (x1, x2)}, Q (x1, x2) = ∑
N(u)=N u(x1, x2). Since all monomials

u in P (x1, x2) are linearly independent, we have Q (x1, x2) �= 0 and hence fx, gx are Poisson depen-
dent. �
Lemma 5. In the conditions of Lemma 4, assume that fx = 1, f = xn +αxn−1 +· · · , deg gx > 0. Then the pair
nx + α, gx is Poisson dependent.

Proof. Let us check by induction on the Poisson degree that yi( f , g) = xNi yi(nx + α, gx) + · · · for
i > 1, where Ni = (n − 1)dx1 (yi) + mdx2 (yi) for any Lie monomial with i > 1 and dots stand for the
terms of smaller degree in x (recall that degx(g) = m). The base of induction for y2( f , g) = g is clear.
A Lie monomial yk( f , g) with k > 2 can be presented as either {yl( f , g), f } or {yl( f , g), g} where
yl is a monomial with a smaller Poisson degree. If l = 1 then k = 3 is the only interesting case and
y3( f , g) = { f , g} = {xn +αxn−1 +· · · , xm gx +· · ·} = nxn−1+m{x, gx}+xn−1+m{α, gx}+· · · = xn−1+m{nx+
α, gx} + · · · . If l > 1 then by induction yl( f , g) = xNl yl(nx + α, gx) + · · · and similar computations
verify the claim. It is essential that x is the smallest element in supp( f ) because supp({y, z}) does
not contain x if y � x and no additional powers of x may appear as results of Poisson brackets.

Therefore for u = yk1
1 yk2

2 · · · yks
s the leading form of u( f , g) relative to x is xnk1+Nu y2(nx +

α, gx)
k2 · · · ys(nx + α, gx)

ks where Nu = (n − 1)dx1 (yk2
2 · · · yks

s ) + mdx2 (yk2
2 · · · yks

s ). Hence different
monomials of P ( f , g) cannot cancel in the x-leading form of P ( f , g) and the elements nx + α, gx

are Poisson dependent. �
Consider now a pair of algebraically independent elements f , g ∈ Q. By the Shirshov–Witt The-

orem a subalgebra of a free Lie algebra is a free Lie algebra (see [15,17]) so the elements of
supp( f ) ∪ supp(g) generate a free Lie algebra L with the free basis which contains two smallest ele-
ments x, y of supp( f )∪supp(g). Elements x and y are different since otherwise supp( f )∪supp(g) = x
and f , g are algebraically dependent. If P is the free Poisson algebra which correspond to L and Q
is the field of fractions of P then f , g ∈ Q. Though f , g are possibly written through different gener-
ators, the size of supp( f ) ∪ supp(g) did not change.

Assume that there exists a pair of algebraically independent Poisson dependent elements in a free
Poisson field Q. Then we can find a pair which is minimal in the following sense: the size | f , g| of
supp( f ) ∪ supp(g) is minimal possible, Q is generated by supp( f ) ∪ supp(g), elements f and g are
completely homogeneous.

As we observed | f , g| does not change when we replace the original Poisson field with the “min-
imal” one. The elements may stop being completely homogeneous but by Lemma 3 we can produce
a completely homogeneous pair which belongs to F [ f , g], hence the union of supports of these two
elements belongs to the union of supports of the original elements. Since | f , g| is minimal it implies
that the size cannot become smaller, so the union of supports of a completely homogeneous pair is
the same as for the original pair.

Recall that if two homogeneous polynomials f , g ∈ F [X] are algebraically dependent then there
exists a homogeneous polynomial h ∈ F [X] such that f = αhk , g = βhl for some α,β ∈ F and natural
numbers k, l (see, for example, [2]). Similar statement is true for two algebraically dependent homo-
geneous rational functions f , g ∈ F (X) if one of them, say f , has a non-zero degree. Indeed, since we
may assume that D( f i g j) is the same for all monomials of q

q( f , g) =
∑

iD( f )+ jD(g)=d

qij f i g j = 0.
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If D(g) = 0 then q( f , g) = f aqa(g), qa(g) = 0 and g ∈ F . If D(g) �= 0 then q( f , g) = f a gb̃q( f ρ g−σ )

where ρ,σ are relatively prime integers for which ρD( f ) = σ D(g) and q̃(x) ∈ F [x]. Hence q( f , g) =
f a gb ∏

( f ρ g−σ − ci) where ci ∈ F , an algebraic closure of F . So f ρ − cgσ = 0 for some c ∈ F . Fur-
thermore, if rρ + sσ = 1, r, s ∈ Z, and h = f s gr then hσ is proportional to f and hρ is proportional
to g . If we also assume that h is not a proper power (of a rational function) then all rational functions
which are algebraically dependent with h belong to F (h).

Lemma 6. Let f , g ∈ Q be a minimal pair. If x is the smallest element in supp( f ) ∪ supp(g), then there exists
a minimal pair f̃ = x + f1 , g̃ where supp( f1) ∪ supp(̃g) /	 x.

Proof. Write f = xn fx + · · · , g = xm gx + · · · , where fx, gx do not contain x and dots stand for terms
with smaller (polynomial) degrees in x. Then the pair fx, gx is Poisson dependent by Lemma 4 and
is algebraically dependent since | fx, gx| < | f , g|. If D( fx) = 0 for any compatible degree function con-
sider the second smallest element y ∈ supp( f ) ∪ supp(g) and present f = yn1 f y + · · · where f y does
not contain y and dots stand for terms with smaller degrees in y. If D( f y) = 0 for any compatible
degree function then D(xn) = D(yn1 ) for any compatible degree. But x, y are elements of a free basis,
so the Poisson degrees dx and dy are compatible degree functions and either x = y which is impos-
sible or n = n1 = 0. Similar considerations for g show that either D(gx) or D(g y) is not identically
zero or m = m1 = 0. If n = m = 0 consider polynomial dependence q between fx, gx and a minimal
pair f , g1 = q( f , g). Then g1 = xk g1x + · · · where k < 0. So either D(g1x) or D(g1y) is not identically
zero. Since x, y are elements of a free basis we can reorder them as well as f , g1 and assume that
D( fx) �= 0 for some compatible degree function. Then by remarks above there exists a completely
homogeneous element h ∈ Q such that fx = c1ha , gx = c2hb where c1, c2 ∈ F \ 0, D(h) �= 0 for some
compatible degree function, and a �= 0. Without loss of generality we may assume that c1 = c2 = 1.
Hence f = xnha + · · · , g = xmhb + · · · . The pair f b g−a , f ∈ Q is Poisson dependent by Lemma 1. We
can write f l g−k = xln−km + αxnl−km−1 + · · · . Hence by Lemma 5 the pair (ln − km)x + α,ha is Pois-
son dependent. Recall that supp(α) ∪ supp(h) /	 x. Therefore (ln − km)x + α and h are algebraically
independent if (ln − km) �= 0. So if (ln − km) �= 0 we proved the lemma.

If ln − km = 0 then algebraically independent rational functions f , g have algebraically dependent
leading forms relative to polynomial degx . According to Lemma 2 ring F [ f , g] contains an element g′
such that degx-leading forms of f and g′ are algebraically independent. Since supp(g′) ⊂ supp( f ) ∩
supp(g) the pair f , g′ is minimal and we can use it to prove the lemma. �
Theorem 1. Every two Poisson dependent elements in the free Poisson field Q are algebraically dependent.

Proof. Assume that the theorem is not true. Then by the previous lemmas there exists a completely
homogeneous Poisson dependent algebraically independent pair f = x + f1, g ∈ Q, where the size
| f , g| is minimal possible, x is the minimal element in supp( f )∪ supp(g) and supp( f1)∪ supp(g) /	 x,
and x is an element of the free basis of P .

Consider the smallest element y ∈ supp(g) and write f = yn f y + · · · , g = ym g y + · · · where
supp( f y) ∪ supp(g y) /	 y. Elements f y and g y should be Poisson dependent by Lemma 4 and al-
gebraically dependent since | f y, g y| < | f , g|.

If n = 0 then f y = x + f1y and g y are algebraically dependent and dx( f y) = 1. Hence g y = cf b
y

and b = 0 since otherwise supp(g y) 	 x. If furthermore m = 0 then g = c + · · · where c ∈ F and we
will replace g by g̃ = g − c. Then g̃ = ym̃ g̃ y + · · · where m̃ �= 0. Furthermore, f y = x + f1y and g̃ y

are Poisson and algebraically dependent, which as above is possible only if g̃ y ∈ F . Since y is a Lie
monomial and y �= x there is an element z �= x in the free basis for which dz(y) �= 0 and dz (̃g) =
m̃dz(y) �= 0. But D (̃g) = 0 for any compatible weight degree function. Therefore g̃ y /∈ F , g̃ y = cf b

y
where b is a non-zero integer, and supp(̃g y) 	 x, a contradiction. We can conclude that m �= 0 and that
f y,my + mβ are Poisson dependent by Lemma 5. Since f y = x + f1y where all elements of supp( f1y)

are larger than x and all elements of supp(β) are larger than y we can see that yi(x + f1y, y + β) =
yi(x, y) + · · · for any Lie monomial yi where · · · stand for Lie monomials larger than yi(x, y). Hence
these elements are Poisson independent and n = 0 is impossible.
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Since x is an element of the free basis it follows from the complete homogeneity that 0 = dz(x) =
dz(yn f y). Therefore dz( f y) = −ndz(y) �= 0. Elements f y, g y are algebraically dependent, hence f y =
c1ha , g y = c2hb for some element h where a �= 0 and we may assume that c1 = c2 = 1.

If b = 0 and m �= 0 then g = ym + · · · and f y and my + β are Poisson dependent. They are alge-
braically independent since y /∈ supp( f y), y ∈ supp(my +β). But supp( f y)∩ supp(g y) /	 x and we have
a contradiction with the minimality of the pair f , g . If m = 0 consider g̃ = g − 1. Then g̃ = ym̃ g̃ y +· · ·
where m̃ �= 0 and g̃ y = hb̃ because f y = ha where a �= 0. Now, dx( f ) = dx(x) = 1 = dx(yn f y), dz( f ) =
dz(x) = 0 = dz(yn f y) and dx( f y) = 1 − ndx(y), dz( f y) = −ndz(y). Since dx(ym̃hb̃) = 0, dz(ym̃hb̃) = 0
and dx( f y) = 1 − ndx(y), dz( f y) = −ndz(y) both m̃ = b̃ = 0, which is impossible. Therefore b �= 0.

Replace now g by g̃ = g−a f b . Then g̃ = yk + yk−1 g̃1 + · · · . The case k = 0 could be brought to
a contradiction just as the case b = m = 0 above. Therefore k �= 0.

Elements ky + g̃1, f y are algebraically independent since supp( f y) /	 y and k �= 0. Since

supp(ky + g̃1) ∪ supp( f y) ⊆ supp( f ) ∪ supp(g)

we should have supp(ky + g̃1) ∪ supp( f y) = supp( f ) ∪ supp(g) by the minimality condition and x ∈
supp(̃g1) (x /∈ supp( f y) since n > 0). Recall that g̃ = g−a f b and therefore x ∈ supp(̃g1) only if n = 1,
i.e. if f = yha + (x + δ) + · · · where · · · stand for the terms with negative powers in y. Hence g̃ =

(yha+(x+δ)+···)b

(ymhb+εym−1+···)a = yk + [b(x + δ)h−a − aεh−b]yk−1 + · · · and g̃1 = b(x + δ)h−a − aεh−b .

The elements (ky + g̃1) f y, f y are Poisson dependent by Lemma 1. Hence [ky + b(x + δ)h−a −
aεh−b]ha = b(x + δ) − aεha−b + kyha and ha are Poisson dependent.

It is clear that supp(ha) is a proper subset of supp(g). So we may apply induction on the size of
supp(g) to prove the theorem. The base of induction when |g| = 1 corresponds to g = ym , m �= 0. As
we have seen above in order to avoid a contradiction we should have f = yn f y + · · · where n �= 0,
f y /∈ F , and g y /∈ F . But g y = 1 and we have a contradiction which proves the theorem. �

It was shown in [8] that f , g ∈ P is algebraically dependent if and only if { f , g} = 0 i.e. f and
g are Poisson commuting. Of course if two elements f , g of a Poisson algebra which is a domain
are algebraically dependent they Poisson commute: p( f , g) = 0 implies that pg( f , g){ f , g} = 0. The
theorem shows that for f , g ∈ Q Poisson commuting implies an algebraic dependence. Hence for the
pairs from Q the notions of Poisson commuting, algebraic dependence, and Poisson dependence are
equivalent.

Corollary 1. Let f , g ∈ Q, { f , g} �= 0. Then f , g generate a free Lie algebra with respect to the bracket { , },
and they generate a free Poisson subalgebra in Q in complete analogy to the case of free associative algebras.

Observe that the theorem is evidently not true for more than two elements: the elements
x1, x2, {x1, x2} are Poisson dependent but are algebraically independent. It is not true as well if
char F = p > 0; the elements x1, xp

2 are algebraically independent but {x1, xp
2 } = pxp−1

2 {x1, x2} = 0.

3. Application to automorphisms

It is well known [3,5,16,6] that the automorphisms of polynomial algebras and free associative
algebras in two variables are tame. The automorphisms of free Poisson algebras in two variables over
a field of characteristic zero are also tame [10]. In [9] this result was obtained as a corollary of the
Freiheitssatz for Poisson algebras. Here we show that the result follows from our theorem as well.

Theorem 2. (See [10].) Automorphisms of the free Poisson algebra P 〈x, y〉 of rank two over a field F of char-
acteristic 0 are tame.
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Proof. Let α be an automorphism of P2 = P 〈x, y〉. Since any (tame) automorphism of F [x, y] can be
lifted to a (tame) automorphism of P2, we can assume without loss of generality that the abelianiza-
tion of α (that is, its homomorphic image under the natural epimorphism Aut(P2) � Aut(F [x, y])) is
the identity automorphism of F [x, y]. It remains to show that then α is the identity automorphism
of P2.

Let α(x) = f , α(y) = g . Assume that either f �= x or g �= y. If we take weights w(x) = ρ , w(y) = 1
where ρ � 0 then f

∼
= x and g

∼
= y where f

∼
and g

∼
are the lowest Poisson forms of f and g

with respect to w . If we start now to decrees ρ then for some non-positive value of ρ either f
∼

�= x
or g

∼
�= y for the corresponding f

∼
and g

∼
. Let us take the largest ρ with this property. Then f

∼

and g
∼

are Poisson w-homogeneous, dw( f
∼

) = ρ , dw(g
∼

) = 1, f
∼

= x + f1, g
∼

= y + g1, where at
least one of f1, g1 is non-zero and their abelianizations in F [x, y] are both zero. Clearly, f

∼
and g

∼

are Poisson independent.
Let x = X( f , g) for some Poisson polynomial X(x1, x2), then x = (X( f , g))

∼
= X

∼
( f

∼
, g

∼
) since

f
∼

and g
∼

are Poisson independent. Similarly, y belongs to the Poisson subalgebra generated by f
∼

and g
∼

. Therefore, the w-homogeneous Poisson forms f
∼

, g
∼

generate P2.
Consider now the Poisson leading forms (̃ f

∼
) and (̃g

∼
) of f

∼
and g

∼
with respect to the Poisson

degree, when d(x) = d(y) = 1. If they were Poisson independent, then as above they would gener-
ate P2. But this is impossible since otherwise their abelianizations, the images under the epimorphism
P2 � F [x, y], would generate F [x, y], while at least one of them is 0.

Next we can use our theorem and conclude that (̃ f
∼

) and (̃g
∼

) are algebraically dependent. There-
fore up to scalars they are ha,hb for a certain Poisson-homogeneous element h ∈ P2 and non-negative
integers a,b. Then we have adw(h) = ρ , bdw(h) = 1 where ρ < 0, which is impossible. �
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