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1. Introduction

The free Poisson algebras were first considered in [12]. They are naturally and closely related to
polynomial algebras, free associative algebras, and free Lie algebras. For example, the free Poisson
algebra and Poisson brackets were used in [13,14] to prove that the Nagata automorphism of the
polynomial algebra of rank three is wild.

A systematic study of free Poisson algebras was started in [8] where several open questions on
their structure were formulated. It was proved in [8] that the centralizer of a nonconstant element of
a free Poisson algebra in the case of characteristic zero is a polynomial algebra in a single variable; this
is an analogue of the famous Bergman Centralizer Theorem [1]. Then in [10] it was proved that locally
nilpotent derivations of free Poisson algebra of rank two in the case of characteristic zero are trian-
gulable and that automorphisms of these algebras are tame; these are analogues of the well-known
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Rentschler Theorem [11] and Jung Theorem [5] respectively. Finally, in [9] the Freiheitssatz was proved
for free Poisson algebras over a field of characteristic zero.

In this paper we continue the study of free Poisson algebras and solve positively a question for-
mulated in [8] by proving that every two Poisson dependent elements in a free Poisson algebra over
a field of characteristic zero are algebraically dependent. In fact we prove a bit more: any two Poisson
dependent elements which are rational over a free Poisson algebra are algebraically dependent.

As a corollary, we give another proof of the result from [10] that the automorphisms of free Pois-
son algebra of rank two in the case of characteristic zero are tame (see also [9]).

2. The main part

Below P =P (X) denotes a free Poisson algebra on a set of generators X = {x1, ..., x,} over a field
F of characteristic zero. Recall (see, for example [12]) that P is isomorphic to S(Lie(X)), where Lie{X)
is the free Lie algebra over X and S(V) means the symmetric algebra over a vector space V. Denote
by y1 =x1,¥2=X2,...,¥n = Xn, Yn+1 = {X1, X2}, ... a basis of Lie(X) consisting of the Lie monomials
which are ordered by increasing Lie degree (and arbitrary for monomials of the same degree). Hence
as a commutative algebra P is a polynomial algebra F[y1, y2,...] with infinitely many generators.
For elements f, g € P we denote by fg their product as elements of F[y1, y¥2,...] and by {f, g} their
Poisson product (the Poisson bracket) which is defined on y1, y2,... as elements of Lie(X), extended
on monomials of P by the Leibnitz law, and then on P by linearity.

A family of polynomial weight degree functions can be defined on F[y1, y3,...] by giving arbitrary
real weights w; = w(y;) to the generators and extending it on monomials M = y{‘yéz -+« by w(M) =
> i jiw(yi). Then for f € F[y1,y2,...] degree can be defined as D(f) = max(w(M) | M € f), ie.
maximum by all monomials contained in f with non-zero coefficients. Of course not all of these
functions make sense for P as a Poisson algebra. We say that a weight degree function D on P is
compatible with the Poisson structure if it satisfies the following natural condition:

for any two monomials M1, M2 € P (as a polynomial algebra) the bracket {My, M,} is D-homoge-
neous.

For example the weight which is defined on a Lie monomial y as the number of appearances of a
free generator x, in y defines a compatible degree function dy,. It is easy to check that in order to
define a compatible degree function the weight should be given on a Lie monomial y by

w(y) =) (W) —)dy(y) +c¢

where w(x;) and c are arbitrary real numbers. To see it define A(i, j) = w(y;) + w(y;) — D{yi, yj})
for two different Lie monomials y;, y;. Take {y;y;, vk} = {yi, ¥}y + yilyj, v} where yi, yj, vk
are pairwise different Lie monomials. Then D({y;, yi}y;) = D(yi{y;j, Y&}, A@, k) = A(j, k), and
A(i, j) = c is a constant. Therefore weight w is completely determined by w; = w(x;) and ¢ = A(i, j).

Examples of compatible degree functions are dy, defined above and the Poisson degree which
corresponds to w(x;) =---=w(x,) =1, c =0 (i.e. to the Lie degree). Total polynomial degree deg on
F[y1,y2,...] is also compatible and corresponds to w(x1) =---=w(X;) =c=1.

Recall that deg({f, g}) = deg(f) + deg(g) — 1 for homogeneous f and g if {f, g} # 0. Similar
relation is true for any compatible weight degree function: D({f, g}) = D(f) + D(g) —c if {f, g} #0
and f and g are D-homogeneous.

Below we will consider only the weights for which all parameters are integers.

Elements aq,...,a;, of a Poisson algebra S are called Poisson dependent if there exists a non-
zero element p(xy,...,Xn) in the free Poisson algebra P{x1,...,xm) such that p(ay,...,am) =0
in S; the elements ay, ..., ay are called algebraically dependent if there exists a non-zero polynomial

fx1,...,xm) € F[x1,...,Xn] such that f(aj,...,an)=0.
Element u is called algebraic over a Poisson algebra S if u belongs to a commutative algebra 7
containing S (as a commutative subalgebra) and p(u) =0 in 7 for a non-zero polynomial p € S[t].
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If § is a domain the bracket can be extended uniquely from S to the field S(u). Indeed, take a non-
zero polynomial p(t) =); pit! where p; € S for which p(u) = 0 of the minimal degree possible. If an
extension of the bracket exists and we use the same notation for it then 0= {f, p(u)} ={f, ulp’(u) +
Ylf, pilul for any f € S which defines {f,u} provided p’(u) # 0, i.e. in the zero characteristic case
or for a separable extension. It is a straightforward computation to check that this bracket makes
S(u) a Poisson algebra.

Denote by Q the field of fractions of P considered as a commutative polynomial algebra. We can
extend the bracket from P to Q as we saw above. A compatible weight degree function D can be
extended from P to Q by D(%) = D(a) — D(b). We will call Q a free Poisson field.

Lemma 1. Let f, g be elements algebraic over a free Poisson algebra P.If f, g € P[f, g] are Poisson dependent
and r1(x1, X2),2(X1, X2) € F(X1, x2) are rational functions thenr1(f, g),r2(f, g € P(f, g) are also Poisson
dependent.

Proof. Elements f, g are Poisson dependent if the basic Lie monomials of f, g are algebraically
dependent. Denote by y1,...,¥n(@ the set of all basic Lie monomials with d(y;) < a. Consider
the smallest A for which y1(f, g),y2(f,8)...., YN (f, &) are algebraically dependent. It is easy

to check using induction on a; = d(yi(x1,x2)) that yi(r1(f,g),r2(f,8) € F(f,.®lys(f.2,---,
YN@)(f,8]. Hence there is an algebraic dependence between y1(ri(f,g),r2(f.8)).,...,

YNy (1 (f, 8),12(f. 8). O
For f € Q denote by supp(f) the minimal set of polynomial variables on which f depends.

Lemma 2. Let f, g € Q be elements which are algebraically independent. Then for a given polynomial weight
degree function D there exists an element h € F[ f, g] such that the leading forms fp, hp are algebraically
independent.

Proof. A standard proof of this fact would be based on the notion of Gelfand-Kirillov dimension
(see [4]) and is well known for the polynomial case. We give a proof using Poisson brackets which is
possible in the case of zero characteristic.

Consider supp(f) U supp(g) = {yi,,---, i, }. Since f, g are algebraically independent we may as-
sume without loss of generality that f, g, yi,,..., yj, are algebraically independent and introduce on
F(yi;, ..., ¥i,) a deficiency function (somewhat similar to the one introduced in [7]) by

def(f,h)=D(]yi1 ,,,,, y,-k(fvh,}’iga--wJ/ik))—D(h)

where inl,”_,yl.k (f,h,yiz,-..,yi) is the Jacobian of f,h,yi,,...,yi,, ie. the determinant of the cor-
responding Jacobi matrix. This function is defined and has values in Z when inl ,,,,, Vi (f,h,yis,
- Vi) #0.

since Jy, ..y, (fs PCFL ), Yis 5 Vi) = Jyiy.oys, (F & Yiss -, Yi) 35 for any p e FIf, g] and
]yi1 ,,,,, Vi (f. & Yis»---»¥i,) # 0 function def is defined on any algebraically independent pair from

F[f, gl
Observe that

def(f, h¥) = def(f, h),
def(f,hr(f)) =def(f,h), r(f)eF(f)\O,
def(f,h) <D(f) —c,

where c is a constant which depends only on degrees of f,y;,,..., yi,.
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If fp and gp are algebraically dependent then there exists a non-zero polynomial q =
Zf:o qi(x)y' € F[x, y] for which all monomials with non-zero coefficients have the same D degree,
k = deg,(q) is minimal possible, and q(fp, gp) = 0. In our setting elements f, g’ =q(f, g) are alge-
braically independent. Denote in this lemma only inl,,_”y,.k (f h, Yig, ..., yi,) by {f,h}.

We have

def(f.£) =D({S.£)) - D(£) =D L{fahe'}) - D(e)

1

> D({f.ak(f)8*}) — D(ar(f)g") = def(f, g*) = def(f, g)

since D(g') < D(qk(f)g") while D({f.qk(f)g"}) = Dkar(f)g"™") + D({f. g} = D(X;iqi(f)g"™ ") +
D{f,gh) =D i{f.qi(f)g'}) (recall that ), iqi(fD)g};] #0). If fp,gp, are algebraically depen-
dent, we repeat the procedure and obtain a pair f, g” with def(f, g”) > def(f, g’). Since def(f,h) <
D(f) — c for any h and def(f, h) € Z, the process will stop after a finite number of steps and we will
get an element h € F[ f, g] for which hp is algebraically independent with fp. O

Lemma 3. Let f, g € Q be elements which are Poisson dependent but not algebraically dependent. Then there
exists a pair of elements which are homogeneous relative to any compatible weight degree function D with the
same property.

Proof. Denote by hp the leading form of h € Q relative to D. From the definition of compatibility
yi(f,&p =yi(fp, gp) if yi(fp, gp) #0. Since P(f, g) =0 for a Poisson polynomial, Pp(fp, gp) =0
for a polynomial Pp consisting of monomials M of P for which D(M(fp, gp)) is maximal possible.
Hence fp, gp are Poisson dependent.

If fp and gp are algebraically dependent then we can use Lemma 2 to find an element h € F[ f, g]
such that hp and fp are algebraically independent and to obtain a D-homogeneous pair of Poisson
dependent elements which are algebraically independent. The space of compatible weights is finite
dimensional lattice, hence we can obtain a pair of Poisson dependent elements which are algebraically
independent and are homogeneous relative to all compatible degree functions. O

We will call elements which are homogeneous relative to all compatible degree functions com-
pletely homogeneous.

Lemma 4. Let f, g € Q be a Poisson dependent pair and x be the smallest element in supp(f). Write f =
X' fx+---, g=x"gy+---, where fy, gx do not contain x and dots stand for terms with smaller (polynomial)
degrees in x. Then the pair fy, gx is Poisson dependent as well.

Proof. Consider the Poisson polynomial P(x1, x2) for which P(f, g) =0; it is a sum of monomials of
the type

k] kz . ks

U=y yy --Y¥s,

where y; are Lie monomials in x1, x;. We have

{fvg}:Xner{fx,gx}'i'"'s
Vilf, &) =xNyi(fx,g) +---, Ni=ndy, (yi) +mds, (1),
u(f, ) =x""u(f, g0+, Nw=Y) kN,
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where again dots mean terms of smaller degree in x. Observe that x cannot appear in {fx, gx} or in
¥i(fx, 8&x) when d(y;) > 1 since for any y € supp(f), z € supp(g) we have {y, z} > y > x. Therefore,

0=P(f,8) = Q(fx, gx" +---,

where N = max{N(u) | u monomial in P(x1,x2)}, Q(x1,x2) = ZN(U):N u(xq, x2). Since all monomials
u in P(xq,xp) are linearly independent, we have Q (x1,x;) # 0 and hence fy, gx are Poisson depen-
dent. O

Lemma 5. In the conditions of Lemma 4, assume that fy =1, f =x" +ax"~!1 +..., deg g« > 0. Then the pair
nx + o, gy is Poisson dependent.

Proof. Let us check by induction on the Poisson degree that y;(f,g) = xNiy;(nx + o, gx) + - - - for
i > 1, where N; = (n — 1)dy, (yi) + mdy, (y;) for any Lie monomial with i > 1 and dots stand for the
terms of smaller degree in x (recall that deg,(g) =m). The base of induction for y,(f, g) = g is clear.
A Lie monomial yi(f, g) with k > 2 can be presented as either {y;(f, g), f} or {y;(f, g), g} where
y; is @ monomial with a smaller Poisson degree. If [ =1 then k =3 is the only interesting case and
y3(f. @) ={f. g =(X"+ax T XMgy4- -} =T, g b+ X T o, gy} 4= X T x4
o, gx} +---. If I > 1 then by induction y;(f, g) = xMy;(nx + «, gx) + --- and similar computations
verify the claim. It is essential that x is the smallest element in supp(f) because supp({y, z}) does
not contain x if y > x and no additional powers of x may appear as results of Poisson brackets.

Therefore for u = y’;‘ygzn-y’f the leading form of u(f,g) relative to x is x™1+Nuy,nx +

o, gx) - ys(nx + a, gk where Ny = (n — 1)dy, (yl;2 cyky 4 md,Q(y’é2 -..y%). Hence different

monomials of P(f, g) cannot cancel in the x-leading form of P(f, g) and the elements nx + «, gx
are Poisson dependent. 0O

Consider now a pair of algebraically independent elements f, g € Q. By the Shirshov-Witt The-
orem a subalgebra of a free Lie algebra is a free Lie algebra (see [15,17]) so the elements of
supp(f) Usupp(g) generate a free Lie algebra £ with the free basis which contains two smallest ele-
ments x, y of supp(f)Usupp(g). Elements x and y are different since otherwise supp(f)Usupp(g) = x
and f, g are algebraically dependent. If P is the free Poisson algebra which correspond to £ and Q
is the field of fractions of P then f, g € Q. Though f, g are possibly written through different gener-
ators, the size of supp(f) Usupp(g) did not change.

Assume that there exists a pair of algebraically independent Poisson dependent elements in a free
Poisson field Q. Then we can find a pair which is minimal in the following sense: the size |f, g| of
supp(f) U supp(g) is minimal possible, Q is generated by supp(f) U supp(g), elements f and g are
completely homogeneous.

As we observed | f, g| does not change when we replace the original Poisson field with the “min-
imal” one. The elements may stop being completely homogeneous but by Lemma 3 we can produce
a completely homogeneous pair which belongs to F[f, g], hence the union of supports of these two
elements belongs to the union of supports of the original elements. Since |f, g| is minimal it implies
that the size cannot become smaller, so the union of supports of a completely homogeneous pair is
the same as for the original pair.

Recall that if two homogeneous polynomials f, g € F[X] are algebraically dependent then there
exists a homogeneous polynomial h € F[X] such that f =ah¥, g= gh! for some «, B € F and natural
numbers k, [ (see, for example, [2]). Similar statement is true for two algebraically dependent homo-
geneous rational functions f, g € F(X) if one of them, say f, has a non-zero degree. Indeed, since we
may assume that D(fig/) is the same for all monomials of g

of.o= Y.  qf'g=o0

iD(f)+jD(g)=d
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If D(g) =0 then q(f,2) = fq4(g), ga(g) =0 and g € F. If D(g) # 0 then q(f,g) = fg"G(f g~
where p, o are relatively prime integers for which pD(f) =0 D(g) and q(x) € F[x]. Hence q(f, g)
fagh [1(f”g=° —c;) where c¢; € F, an algebraic closure of F. So f? —cg® =0 for some ¢ € F. Fur-
thermore, if ro +so =1, r,s€Z, and h= f°g" then h? is proportional to f and h® is proportional
to g. If we also assume that h is not a proper power (of a rational function) then all rational functions
which are algebraically dependent with h belong to F(h).

Lemma 6. Let f, g € Q be a minimal pair. If x is the smallest element in supp(f) U supp(g), then there exists
a minimal pair f =x+ f1, g where supp(f1) U supp(g) % x.

Proof. Write f =x"fy+---, g=x"gyx+ ---, where fy, g« do not contain x and dots stand for terms
with smaller (polynomial) degrees in x. Then the pair fx, gx is Poisson dependent by Lemma 4 and
is algebraically dependent since |fx, gx| < |f, g|. If D(fx) =0 for any compatible degree function con-
sider the second smallest element y € supp(f) Usupp(g) and present f = y" f), +--. where f, does
not contain y and dots stand for terms with smaller degrees in y. If D(fy) =0 for any compatible
degree function then D(x") = D(y™) for any compatible degree. But x, y are elements of a free basis,
so the Poisson degrees dy and dy are compatible degree functions and either x = y which is impos-
sible or n =ny = 0. Similar considerations for g show that either D(gy) or D(gy) is not identically
zero or m=my = 0. If n =m = 0 consider polynomial dependence q between f, gx and a minimal
pair f,g1 =q(f,g). Then g; = x*gix + --- where k < 0. So either D(gix) or D(g1y) is not identically
zero. Since x, y are elements of a free basis we can reorder them as well as f, g; and assume that
D(fx) # 0 for some compatible degree function. Then by remarks above there exists a completely
homogeneous element h € Q such that fy =c1h? gy = c2h? where ¢1,c3 € F \ 0, D(h) #0 for some
compatible degree function, and a # 0. Without loss of generality we may assume that c; =c; = 1.
Hence f =x"h®+ ..., g=x"h? +.... The pair fbg~% f e Q is Poisson dependent by Lemma 1. We
can write flg=k = xIn—km 4 gxni—km—1 4 ... Hence by Lemma 5 the pair (In — km)x + «, h® is Pois-
son dependent. Recall that supp(c) U supp(h) 3 x. Therefore (In — km)x + « and h are algebraically
independent if (In — km) # 0. So if (In — km) # 0 we proved the lemma.

If In — km = 0 then algebraically independent rational functions f, g have algebraically dependent
leading forms relative to polynomial deg,. According to Lemma 2 ring F[f, g] contains an element g’
such that deg,-leading forms of f and g’ are algebraically independent. Since supp(g’) C supp(f) N
supp(g) the pair f, g’ is minimal and we can use it to prove the lemma. O

Theorem 1. Every two Poisson dependent elements in the free Poisson field Q are algebraically dependent.

Proof. Assume that the theorem is not true. Then by the previous lemmas there exists a completely
homogeneous Poisson dependent algebraically independent pair f =x + f1, g € Q, where the size
| f, g| is minimal possible, x is the minimal element in supp(f) U supp(g) and supp(f1) Usupp(g) 3 x,
and x is an element of the free basis of P.

Consider the smallest element y € supp(g) and write f =y"f, +---, g =y"g, + --- where
supp(fy) U supp(gy) # y. Elements f, and g, should be Poisson dependent by Lemma 4 and al-
gebraically dependent since |fy, gy| < |f, gl.

If n=0 then fy, =x+ f1, and g, are algebraically dependent and d(fy) = 1. Hence g, = cfjl}
and b = 0 since otherwise supp(gy) > x. If furthermore m =0 then g =c+ --- where c € F and we
will replace g by =g —c. Then g = ym'gy + --- where m # 0. Furthermore, f, =x+ fi, and g,
are Poisson and algebraically dependent, which as above is possible only if g, € F. Since y is a Lie
monomial and y # x there is an element z # x in the free basis for which d,(y) ;é 0 and dZ(E)
fd,(y) # 0. But D(g) =0 for any compatible weight degree function. Therefore g, ¢ F, gy = cfy
where b is a non-zero integer, and supp(gy) > x, a contradiction. We can conclude that m # 0 and that
fy,my +mp are Poisson dependent by Lemma 5. Since fy, =x+ f1, where all elements of supp(fiy)
are larger than x and all elements of supp(8) are larger than y we can see that y;(x+ f1y,y +8) =
Yi(x,y) + --- for any Lie monomial y; where --- stand for Lie monomials larger than y;(x, y). Hence
these elements are Poisson independent and n = 0 is impossible.
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Since x is an element of the free basis it follows from the complete homogeneity that 0 =d,(x) =
dz(y" fy). Therefore d,(fy) = —nd,(y) # 0. Elements fy, g, are algebraically dependent, hence f, =
cih’, gy = czhP for some element h where a 0 and we may assume that c; =cy = 1.

Ifb=0and m#0 then g=y™+--- and f, and my + $ are Poisson dependent. They are alge-
braically independent since y ¢ supp(fy), y € supp(my+ ). But supp(fy,) Nsupp(gy) # x and we have
a contradiction with the minimality of the pair f, g. If m =0 consider §=g — 1. Then & = y™g, +---
where M # 0 and g, = h® because fy =h® where a # 0. Now, dx(f) =dx(x) =1=dx(y" fy), d.(f) =
dz(x) =0 =d(y" fy) and dx(fy) =1 — ndx(y), d:(fy) = —nd(y). Since dy(y™h?) =0, d,(y™h") =0
and dx(fy) =1 —ndx(y), d,(fy) = —nd,(y) both fil =b = 0, which is impossible. Therefore b # 0.

Replace now g by =g %fP. Then § = y¥ + y*~18; + ---. The case k =0 could be brought to
a contradiction just as the case b =m = 0 above. Therefore k # 0.

Elements ky + 21, fy are algebraically independent since supp(fy) 3 y and k % 0. Since

supp(ky + g1) Usupp(fy) C supp(f) U supp(g)

we should have supp(ky + 1) U supp(fy) = supp(f) Usupp(g) by the minimality condition and x €
supp(g1) (x ¢ supp(fy) since n > 0). Recall that § = g7 fb and therefore x € supp(g;) only if n=1,
ie if f=yh?+ (x+68)+--- where --- stand for the terms with negative powers in y. Hence g =

m% =y 4+ [b(x+8)h 9 —ash™®]y*1 +... and 1 =b(x+ 8)h~* —aeh™®.

The elements (ky + g1) fy, fy are Poisson dependent by Lemma 1. Hence [ky + b(x + §)h~® —
ach™b1h® = b(x + 8) — agh®b + kyh® and h? are Poisson dependent.

It is clear that supp(h?) is a proper subset of supp(g). So we may apply induction on the size of
supp(g) to prove the theorem. The base of induction when |g| =1 corresponds to g = y™, m # 0. As
we have seen above in order to avoid a contradiction we should have f = y"f, +--- where n #0,
fy ¢ F,and gy ¢ F. But gy =1 and we have a contradiction which proves the theorem. O

It was shown in [8] that f, g € P is algebraically dependent if and only if {f, g} =0 i.e. f and
g are Poisson commuting. Of course if two elements f,g of a Poisson algebra which is a domain
are algebraically dependent they Poisson commute: p(f, g) =0 implies that pg(f, g){f, g} =0. The
theorem shows that for f, g € Q Poisson commuting implies an algebraic dependence. Hence for the
pairs from Q the notions of Poisson commuting, algebraic dependence, and Poisson dependence are
equivalent.

Corollary 1. Let f,g e O, {f, g} # 0. Then f, g generate a free Lie algebra with respect to the bracket {, },
and they generate a free Poisson subalgebra in Q in complete analogy to the case of free associative algebras.

Observe that the theorem is evidently not true for more than two elements: the elements
X1,X2, {X1,x} are Poisson dependent but are algebraically independent. It is not true as well if
char F = p > 0; the elements xl,xg are algebraically independent but {x1,x§} = pxé’f1 {x1,x2}=0.

3. Application to automorphisms

It is well known [3,5,16,6] that the automorphisms of polynomial algebras and free associative
algebras in two variables are tame. The automorphisms of free Poisson algebras in two variables over
a field of characteristic zero are also tame [10]. In [9] this result was obtained as a corollary of the
Freiheitssatz for Poisson algebras. Here we show that the result follows from our theorem as well.

Theorem 2. (See [10].) Automorphisms of the free Poisson algebra P(x, y) of rank two over a field F of char-
acteristic O are tame.
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Proof. Let o be an automorphism of P, =P(x, y). Since any (tame) automorphism of F[x, y] can be
lifted to a (tame) automorphism of P,, we can assume without loss of generality that the abelianiza-
tion of « (that is, its homomorphic image under the natural epimorphism Aut(P,) — Aut(F[x, y])) is
the identity automorphism of F[x, y]. It remains to show that then « is the identity automorphism
of 'Pz.

Let a(x) = f, a(y) = g. Assume that either f # x or g # y. If we take weights w(x) = p, w(y) =1
where p >0 then f. =x and g~ =y where f. and g. are the lowest Poisson forms of f and g
with respect to w. If we start now to decrees p then for some non-positive value of p either f. #x
or g~ # y for the corresponding f. and g~. Let us take the largest p with this property. Then f.
and g~ are Poisson w-homogeneous, dy (f~) = p, dw(g~) =1, fo =x+ f1, g~ =y + g1, Where at
least one of f1, g1 is non-zero and their abelianizations in F[x, y] are both zero. Clearly, f~ and g~
are Poisson independent.

Let x = X(f, g) for some Poisson polynomial X(x1,x2), then x = (X(f, g))~ = X~(f~, g~) since
f~ and g~ are Poisson independent. Similarly, y belongs to the Poisson subalgebra generated by f.
and g~. Therefore, the w-homogeneous Poisson forms f~ , g~ generate P;.

Consider now the Poisson leading forms (/f\:) and (g~) of f- and g. with respect to the Poisson
degree, when d(x) = d(y) = 1. If they were Poisson independent, then as above they would gener-
ate P,. But this is impossible since otherwise their abelianizations, the images under the epimorphism
P, — F[x, y], would generate F[x, y], while at least one of them is 0.

Next we can use our theorem and conclude that (/]_”:/) and Cg\:) are algebraically dependent. There-
fore up to scalars they are h?, h? for a certain Poisson-homogeneous element h € P, and non-negative
integers a, b. Then we have ad,, (h) = p, bdy, (h) =1 where p < 0, which is impossible. O
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