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OBJECTIVES The aim of this study was to test the hypothesis that abnormal scaling characteristics of heart
rate (HR) predict sudden cardiac death in a random population of elderly subjects.

BACKGROUND An abnormality in the short-term fractal scaling properties of HR has been observed to be
related to a risk of life-threatening arrhythmias among patients with advanced heart diseases.
The predictive power of altered short-term scaling properties of HR in general populations
is unknown.

METHODS A random sample of 325 subjects, age 65 years or older, who had a comprehensive risk
profiling from clinical evaluation, laboratory tests and 24-h Holter recordings were followed
up for 10 years. Heart rate dynamics, including conventional and fractal scaling measures of
HR variability, were analyzed.

RESULTS At 10 years of follow-up, 164 subjects had died. Seventy-one subjects had died of a cardiac
cause, and 29 deaths were defined as sudden cardiac deaths. By univariate analysis, a reduced
short-term fractal scaling exponent predicted the occurrence of cardiac death (relative risk
[RR] 2.5, 95% confidence interval [CI], 1.9 to 3.2, p , 0.001) and provided even stronger
prediction of sudden cardiac death (RR 4.1, 95% CI, 2.5 to 6.6, p , 0.001). After adjusting
for other predictive variables in a multivariate analysis, reduced exponent value remained as
an independent predictor of sudden cardiac death (RR 4.3, 95% CI, 2.0 to 9.2, p , 0.001).

CONCLUSIONS Altered short-term fractal scaling properties of HR indicate an increased risk for cardiac
mortality, particularly sudden cardiac death, in the random population of elderly subjects.
(J Am Coll Cardiol 2001;37:1395–402) © 2001 by the American College of Cardiology

Despite the recognition that sudden cardiac arrest accounts
for one-half of all coronary heart disease-related deaths and
presents as the first manifest of the disease in about 20% to
30% of the deaths, there is little information on specific risk
markers of arrhythmic death among the general population
(1). Since a large majority of sudden cardiac deaths occur
among more general segments of the population, impart as
the problem will require sensitive and specific screening
methods applicable to the general population. However, the
majority of the studies on risk markers of arrhythmic events
have focused on the patients with a specific heart disease,
often advanced. Large epidemiological surveys have not
been able to identify risk markers of sudden death as a
specific entity even though general risk markers for athero-
sclerosis do identify risk of sudden death nonspecifically
(2–5).

Measurement of heart rate (HR) variability has provided
information on the risk for future arrhythmic events among
patients with heart disease. Previous studies in general

populations have also shown that abnormal HR variability
predicts both nonsudden fatal and nonfatal cardiac events,
as well as noncardiac causes of death (6–9). Increasing
evidence shows that scaling properties of HR behavior,
analyzed by methods based on nonlinear system theory, may
provide more powerful information on the risk for life-
threatening arrhythmic events than do the traditional mea-
sures in the patients with depressed left ventricular function
(10–15). In this study, we tested the hypothesis that altered
short-term fractal scaling properties of HR predict sudden
cardiac death in a randomly selected general population of
elderly subjects.

METHODS

Population. In connection with a large survey of the health
status of the elderly in the city of Turku, Finland, a random
sample of 480 people, age 65 or older, living in the
community was obtained from the register of the Social
Insurance Institution. The final population comprised 347
subjects, a participation rate of 72%. The final analyses of
ambulatory electrocardiographic recordings were available
in 325 subjects. Information concerning enrollment, diag-
nosis, measurement of baseline variables and follow-up has
been described in detail previously (16,17). Mortality sta-
tistics, hospital records, autopsy findings and death certifi-
cates were used to determine the mode of death and
mortality after the 10-year follow-up for each subject.
Deaths were classified as sudden cardiac, nonsudden car-
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diac, cerebrovascular and other causes. A death was deter-
mined sudden cardiac death when it occurred within 1 h
after the onset of an abrupt change in symptoms and when
autopsy data (when available) did not reveal a noncardiac
cause of sudden death. Classification of deaths was per-
formed blindly by the events committee before the analysis
of HR variability.
HR variability analysis. Twenty-four hour electrocardio-
graphic recordings were performed with a portable two-
channel tape recorder (Oxford Medilog, Oxford, United
Kingdom). The data were sampled digitally (frequency,
256 Hz) and transferred to a computer for analysis of HR
variability. All recordings were first edited automatically
followed by careful detailed manual editing. The standard
deviation of all normal beat intervals and mean length of the
R-R intervals were used for conventional time domain
measurements (18).

For long-term scaling analysis, the power-law relation-
ship of R-R intervals was calculated from the frequency
range of 1024 to 1022 Hz. The point power spectrum was
logarithmically smoothed in the frequency domain, and the
power was integrated into bins spaced 0.0167 log (Hz)
apart. A robust line-fitting algorithm of log (power) versus
log (frequency) was then applied, and the slope of this line
was calculated (19), yielding the long-term scaling exponent
(b).

For short-term scaling analysis, the detrended fluctuation
analysis was used. The method quantifies the fractal-like
correlation properties. In this method, the root-mean-
square fluctuation of integrated and detrended time series is
measured in each observation window and plotted against
the size of the window on a log-log scale. Heart rate
correlations were defined specifically for short-term (,11

beats, a1) fluctuation in the data based on the previously
established “crossover point” on the log-log plot (11–15,20).
Low exponent value near 0.5 corresponds to random dy-
namics and value near 1.5 to highly correlated interbeat
dynamics. The characteristics of fractal analysis by the
detrended fluctuation analysis are described in the Appen-
dix. The details of this method have been described previ-
ously (20).
Statistical analysis. The baseline data were used as the
explanatory variables. The chi-square test was used for
categorical and t test for continuous variables. A p value
,0.05 was considered significant.

Cox proportional hazards regression analyses were used
to assess the association between risk predictors and the
modes of mortality using SPSS for Windows version 9.0.
To find the best cut-off points for HR variability indexes,
the dichotomization cut-off points that maximized the
hazard ratios were sought, with all-cause mortality as the
end point. Kaplan-Meier survival curves with log-rank
analysis were computed. Each measure was tested univari-
ately and retested after adjustment for other risk factors.
Receiver operating characteristic curves showing sensitivity
as functions of the specificity were computed with
GraphROC software (Turku, Finland) (21) for comparisons
of the performance of HR variability indexes.

RESULTS

After a minimum of 10 years of follow-up, 164 (n 5 50.5%)
subjects had died. Seventy-one had died of cardiac cause of
whom 29 had died suddenly. Among 19 victims who had
postmortem examinations, the classification of sudden car-
diac death was not contradicted by the presence of diagnosis
of cause of death and by the presence of heart disease.
Twenty-five additional subjects had died of cerebrovascular
disease. Sixty-eight had died due to various other causes,
such as cancer, accidents or unknown causes.
Univariate predictors of mortality. Table 1 depicts the
values of HR variability indexes in different modes of death
and among survivors. Comparisons between the survivors

Table 1. Heart Rate Variability Measures of Survivors, of Subjects Who Died During the
Follow-up and of Subjects in Various Mortality Subgroups

Short-Term Fractal
Exponent (a1)

Power-Law
Slope (b) SDNN

Survivors (n 5 161, 49.5%) 1.14 6 0.17 21.35 6 0.17 139 6 35
All-cause mortality (n 5 164, 50.5%) 1.03 6 0.20‡ 21.45 6 0.21‡ 129 6 36*

Cardiac mortality (n 5 71, 43.3% of deaths) 0.97 6 0.19‡ 21.45 6 0.20‡ 126 6 35†
Sudden cardiac death (n 5 29, 40.8% of

cardiac deaths)
0.92 6 0.19‡ 21.47 6 0.18‡ 123 6 41*

Autopsy verified sudden cardiac death (n 5 19,
26.8% of cardiac deaths)

0.92 6 0.17‡ 21.49 6 0.20† 125 6 43

Nonsudden cardiac mortality (n 5 42, 59.2%
of cardiac deaths)

1.01 6 0.19† 21.44 6 0.21† 127 6 32*

Cerebrovascular mortality (n 5 25, 15.2% of deaths) 1.08 6 0.18 21.49 6 0.22† 131 6 37
Noncardiovascular mortality (n 5 68, 41.5% of deaths) 1.07 6 0.22* 21.41 6 0.23* 132 6 38

*p , 0.05; †p , 0.01; ‡p , 0.001 are significance levels for differences. p values determined in Student t test analysis.
SDNN 5 standard deviation of all N-N intervals.

Abbreviations and Acronyms
CI 5 confidence interval
HR 5 heart rate
RR 5 relative risk
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and those who had died identified the short-term fractal
scaling exponent (a1) as having an association with overall
mortality (relative risk [RR] 1.7, 95% confidence interval
[CI], 1.4 to 1.9, p , 0.001). The reduced exponent value
(,1.0) was the dichotomized variable that robustly pre-
dicted cardiac death (RR 2.5, 95% CI, 1.9 to 3.2, p ,
0.001). It was an even stronger predictor of sudden cardiac
death (RR 4.1, 95% CI, 2.5 to 6.6, p , 0.001), in particular
among men (RR 5.9, 95% CI, 2.8 to 12.5, p , 0.001).
Results were similar among the subjects with autopsy-
documented sudden cardiac death (Table 2). Short-term
exponent also predicted nonsudden cardiac mortality but
not cerebrovascular mortality (Table 2).

Baseline characteristics of survivors and subjects who
had died have been reported in details previously (9). The
clinical variables associated with overall mortality in
univariate analyses were age, gender, history of congestive
heart failure, angina pectoris, prior myocardial infarction
or history of cerebrovascular disease, functional class, use
of cardiac medication, smoking as well as lipid and
glucose values. Among all analyzed variables, the short-
term scaling exponent was the most powerful predictor of
cardiac mortality and a particularly strong predictor of
sudden cardiac death. Figure 1 shows Kaplan-Meier
survival curves and different modes of mortality predicted
by the exponent.

Table 2. Unadjusted and Adjusted Association of Heart Rate Variability Variables With All-Cause Mortality, Cardiac Mortality,
Sudden Cardiac Mortality, Sudden Cardiac Autopsy-Verified Mortality, Sudden Cardiac Mortality for Both Genders, Nonsudden
Cardiac Mortality and Nonsudden Cardiac Mortality With Cerebrovascular Mortality

Unadjusted Association Association Adjusted for All Risk Variables

Relative
Risk 95% CI

p
Value

Relative
Risk 95% CI

p
Value

All-cause mortality
Short-term fractal exponent (a1 , 1.0) 1.7 (1.4–1.9) , 0.001 1.4 (1.1–1.7) , 0.01
SDNN (,120 ms) 1.3 (1.1–1.6) , 0.01 1.1 (0.9–1.3) NS
Power-law (b , 21.5) 1.8 (1.4–1.9) , 0.001 1.6 (1.3–1.9) , 0.001

Cardiac death
Short-term fractal exponent (a1 , 1.0) 2.5 (1.9–3.2) , 0.001 2.1 (1.5–2.9) , 0.001
SDNN (,120 ms) 1.4 (1.1–1.8) , 0.05 0.9 (0.6–1.2) NS
Power-law (b , 21.5) 2.3 (1.7–3.1) , 0.001 1.7 (1.3–2.5) , 0.001

Sudden cardiac death
Short-term fractal exponent (a1 , 1.0) 4.1 (2.5–6.6) , 0.001 4.3 (2.0–9.2) , 0.001
SDNN (,120 ms) 1.6 (1.1–2.4) , 0.05 1.1 (0.6–2.1) NS
Power-law (b , 21.5) 2.2 (1.5–3.1) , 0.001 1.9 (0.9–4.0) NS

Autopsy-verified sudden cardiac death
Short-term fractal exponent (a1 , 1.0) 4.5 (2.4–8.4) , 0.001 4.9 (1.8–13.4) , 0.01
SDNN (,120 ms) 1.6 (0.9–2.7) NS 1.3 (0.5–3.2) NS
Power-law (b , 21.5) 2.8 (1.7–4.4) , 0.001 2.8 (1.2–6.7) , 0.05

Sudden cardiac death in men
Short-term fractal exponent (a1 , 1.0) 5.9 (2.8–12.5) , 0.001 5.3 (1.4–20.8) , 0.05
SDNN (,120 ms) 2.2 (1.2–4.1) , 0.01 1.0 (0.3–3.2) NS
Power-law (b , 21.5) 2.0 (1.2–3.5) , 0.05 2.2 (0.6–8.1) NS

Sudden cardiac death in women
Short-term fractal exponent (a1 , 1.0) 3.1 (1.7–5.8) , 0.001 2.4 (1.0–5.9) , 0.05
SDNN (,120 ms) 1.2 (0.6–2.2) NS 0.7 (0.2–2.0) NS
Power-law (b , 21.5) 2.5 (1.5–4.3) , 0.001 1.6 (0.7–4.0) NS

Nonsudden cardiac death
Short-term fractal exponent (a1 , 1.0) 2.2 (1.6–3.0) , 0.001 1.7 (1.1–2.8) , 0.05
SDNN (,120 ms) 1.4 (1.0–1.9) , 0.05 0.8 (0.5–1.3) NS
Power-law (b , 21.5) 2.3 (1.7–3.4) , 0.001 1.7 (1.1–2.5) , 0.05

Cerebrovascular mortality
Short-term fractal exponent (a1 , 1.0) 1.5 (0.9–2.4) NS 1.2 (0.7–2.2) NS
SDNN (,120 ms) 1.7 (1.1–2.4) , 0.05 1.6 (1.0–2.5) NS
Power-law (b , 21.5) 2.0 (1.4–3.0) , 0.001 2.8 (1.7–4.8) , 0.001

Noncardiovascular mortality
Short-term fractal exponent (a1 , 1.0) 1.4 (1.1–1.9) , 0.01 1.1 (0.8–1.5) NS
SDNN (,120 ms) 1.2 (0.9–1.6) NS 1.1 (0.9–1.6) NS
Power-law (b , 21.5) 1.8 (1.3–2.5) , 0.001 1.6 (1.2–2.5) , 0.001

p values determined in univariate and multivariate Cox regression analysis.
a 5 short-term fractal exponent; b 5 power-law slope of RR intervals; CI 5 confidence intervals; SDNN 5 standard deviation of all N-N intervals.
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Associations between short-term exponent and other risk
factors. The short-term exponent showed a weak negative
correlation with age (r 5 20.19, p , 0.001). Table 3 shows
the association of dichotomized exponent value with various
demographic and clinical risk variables. A reduced exponent
was more often observed in subjects with a history of heart
failure, angina pectoris, previous myocardial infarction,
functional class III or IV and in those who used cardiac
medication. It was also weakly associated with the frequency
of premature ventricular beats (Table 3).
Multivariate predictors of mortality. Table 2 shows the
multivariate relative risks for HR variability measures ad-
justed for other risk variables, such as age, gender, heart
failure, angina pectoris, functional class, previous myocar-
dial infarction, cardiac medication and ventricular prema-
ture beats. Although the short-term exponent had weak
associations to various clinical parameters (Table 3), it
remained as a strong independent predictor of sudden
cardiac death after adjustment for other variables in multi-
variate analysis. Long-term power-law exponent also inde-
pendently predicted cardiac and cerebrovascular mortality,
but the standard deviation of R-R intervals had no inde-
pendent prognostic power after adjustment for other risk
factors.

A subgroup analysis was performed for subjects without
known or suspected heart disease at the time of entry by
excluding subjects with angina pectoris, previous myocardial
infarction, heart failure, impaired functional class and sub-
jects taking any cardiac medication. Among this apparently

healthy subgroup (n 5 167), short-term exponent also
provided significant unadjusted and adjusted prognostic
power for predicting cardiac mortality (RR 4.0, 95% CI 1.9
to 8.9, p , 0.001 and RR 6.7, 95% CI 1.7 to 25.5, p ,
0.001, respectively). Although only four cases of sudden
cardiac death occurred in this subgroup, a number too small
to analyze, they all had an exponent value ,1.0.
Accuracy of HR variability predictors of mortality.
Among different R-R interval variability measures, the
reduced short-term exponent had the best sensitivity in all
specificity levels in predicting cardiac mortality and
sudden cardiac death. The area under the curve repre-
senting discrimination with short-term fractal exponent
was significantly higher than are area under the curve of
standard deviation of R-R intervals in predicting cardiac
mortality and sudden cardiac death (p , 0.05 for both)
(Fig. 2).

DISCUSSION

The main finding of this study is that altered short-term
fractal scaling exponent of HR dynamics is a powerful
predictor of cardiac death and, particularly, of sudden
cardiac death in an unselected elderly population. All other
HR variability measures were surpassed by this variable in
the prediction of cardiac mortality.
Prognostic power of HR variability in general popula-
tion. Previous studies have shown that altered long-term
variability measurements predict mortality both in the

Figure 1. Kaplan-Meier survival curves for the all-cause mortality, cardiac mortality, sudden cardiac deaths, as well as cerebrovascular mortality with the
short-term fractal exponent of heart rate dynamics ,1.0 or $1.0. Short-term fractal exponent was a particularly powerful predictor of sudden cardiac death
with very high negative predictive accuracy (upper panel, right). Short-term fractal exponent did not predict cerebrovascular mortality as seen in the lower
right panel.
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patients with documented heart disease, as well as in
random general populations (6–9). In addition to being a
marker of cardiac mortality, reduced variability has been
associated with various noncardiac causes of death (6,9). In
this study, altered short-term fluctuations were found to
yield more powerful prognostic information on the risk of
cardiac death than any long-term index or clinical variable.
Unlike the long-term HR variability indexes, it failed to
predict cerebrovascular death. This suggests that altered

short-term dynamics of HR may specifically reflect abnor-
malities in cardiac neural regulation, but reduction in overall
long-term variability seems to be related to an increased risk
for various other events and progression of atherosclerosis
(6–9,22,23).
Association of short-term fractal scaling exponent to
life-threatening arrhythmia. The finding that the short-
term scaling exponent predicted sudden cardiac death spe-
cifically is in accordance with studies that included patients

Figure 2. Receiver operating characteristic curves for the short-term fractal exponent, long-term scaling exponent and for SDNN in predicting cardiac death
and sudden cardiac death. Short-term fractal exponent had higher sensitivity than SDNN or long-term scaling exponent in all specificity levels. AUC 5
area under the curve; SDNN 5 standard deviation of all N-N intervals.

Table 3. The Number of Subjects With Short-Term Fractal Cut-Off Point Value ,1 and $1 in
Different Mortality and Clinical Variable Categories

Exponent
a1 < 1 (n 5 107)

Exponent
a1 > 1 (n 5 218)

p
Value

Mortality Categories
Survivors (n 5 161) 27 (25.2%) 134 (61.5%)
All-cause mortality (n 5 164) 80 (74.8%) 84 (38.5%) ‡
Cardiac mortality (n 5 71) 48 (44.9%) 23 (10.6%) ‡
Sudden cardiac death (n 5 29) 24 (22.4%) 5 (2.3%) ‡
Nonsudden cardiac mortality (n 5 42) 24 (22.4%) 18 (8.3%) ‡
Cerebrovascular mortality (n 5 25) 9 (8.4%) 16 (7.3%)
Noncardiovascular mortality (n 5 68) 23 (21.5%) 45 (20.6%) †

Clinical Variables
Age: #75 yrs (n 5 216) 62 (57.9%) 154 (70.6%)
Age: .75 yrs (n 5 109) 45 (42.1%) 64 (29.4%) †
Men (n 5 173) 52 (48.6%) 121 (55.5%)
Women (n 5 152) 55 (51.4%) 97 (44.5%)
Current or ex-smoker (n 5 145) 51 (47.7%) 94 (43.1%)
Diabetes (n 5 35) 12 (11.2%) 23 (10.6%)
Hypertension (n 5 48) 20 (18.7%) 28 (12.8%)
Heart failure (n 5 35) 20 (18.7%) 15 (6.9%) ‡
Angina pectoris (n 5 56) 25 (23.4%) 31 (14.2%) *
PVCs . 10/h (n 5 47) 22 (20.6%) 25 (11.5%) *
NYHA class III–IV (n 5 85) 44 (41.1%) 41 (18.8%) ‡
Prior MI (n 5 23) 12 (11.2%) 11 (5.0%) *
Cardiac medication (n 5 95) 46 (43.0%) 49 (22.5%) ‡
Subjects free of AP, CHF, prior MI,

NYHA III–IV class and cardiac medication
41 (38.3%) 126 (57.8%) ‡

*p , 0.05; †p , 0.01; ‡p , 0.001 are significance levels for differences.
AP 5 angina pectoris; a1 5 short-term fractal exponent; CHF 5 congestive heart failure; MI 5 myocardial infarction;

NYHA 5 New York Heart Association; PVC 5 premature ventricular complex.
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with a prior myocardial infarction and have documented an
association with altered short-term exponent and life-
threatening arrhythmias (11,12). In addition, it has also
been shown to provide powerful prognostic information on
the risk of death among the patients with depressed left
ventricular function (13,14). These findings generalize the
application of short-term scaling exponent as a risk stratifier of
sudden cardiac death beyond the patient populations consid-
ered at increased risk of fatal arrhythmias (10 –15)
to the general elderly population. The accuracy of the short-
term fractal exponent as a single risk marker in sudden cardiac
death prediction outweighed the general risk markers of
cardiac death. It performed better as a predictor of sudden
cardiac death among the men than it did among the women,
which may be partially explained by a recent study showing
gender difference in scaling exponents (24).
Possible mechanisms of altered short-term fractal prop-
erties of HR as a risk factor for cardiac mortality.
Normal values of traditional HR variability indexes vary
interindividually to a great extent. However, fractal indexes
have quite a small interindividual variation in their normal
values, so that short-term exponent values below 1.0 are
rarely seen among healthy middle-aged subjects (11,24).
Even small alterations from this normal “fractal-like” HR
dynamic seem to reflect specific perturbation in the cardio-
vascular regulation system, leading to a higher cardiac
mortality rate. The value of 1.0 turned out to be the best
discriminator of mortality in this general elderly population.
Notably, this particular exponent value corresponding to 1/f
noise is a well-characterized physical phenomenon. In this
study, subjects with less temporally correlated short-term
R-R intervals had the worst prognosis, indicating that the
alterations of short-term “memory properties” between in-
terbeat intervals are deleterious.

The physiological background of abnormal fractal corre-
lation properties associated with increased risk of dying for
cardiac cause is not clear. However, increasing evidence
supports the role of the sympathetic activation behind this
impairment. High norepinephrine levels, indicating sympa-
thoexcitation, have been observed to be related to random
R-R interval dynamics in heart failure patients (25). Inter-
estingly, in young healthy adults, an intravenous infusion of
physiologic doses of norepinephrine has been shown to lead
to altered fractality, demonstrated by sudden abrupt changes
in short-term HR dynamics (26).
Study limitations. The relatively small study cohort is a
limitation of this study. However, only elderly subjects
were included, and the uniform 10-year follow-up period, with
a larger number of deaths than in previous studies (7,8,27,28),
allowed the evaluation of different causes of mortality among a
general elderly population. Nonetheless, autopsy data were
available in two-thirds of the sudden death cases, reducing the
uncertainty regarding the exact mode of death, which can cause
end point bias in observational follow-up studies. We also note
that we selected only one time domain index of HR variability
and fractal scaling indexes for this study. However, we also
analyzed the data using frequency domain indexes (18) and
complexity measures of approximate entropy (29,30). The
former showed a weaker prognostic power than the fractal
scaling measures, and the latter showed no prognostic power
(data not presented).
Conclusions. The data of this observational study in a
random elderly cohort suggest that analysis of short-term
behavior of HR dynamics provide a specific risk marker of
cardiac death, particularly sudden cardiac death. If these
data are confirmed in other larger prospective studies,
analysis of scaling features of short-term HR dynamics may
become a useful clinical tool for risk stratification.

Figure 3. Examples of power spectra and different fractal scaling exponent values. High exponent values are seen when predominant low frequency
fluctuation is present and high frequency fluctuation is reduced (left panel). Low exponent values are seen in cases with reduced low and very low frequency
fluctuations and either reduced or preserved high frequency fluctuations (right panel). “Normal” fractal scaling value near 1.0 is seen when both low and
high frequency power are relatively preserved with more power in the very low and low frequency areas than in the high frequency area (middle panel).
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APPENDIX

DFA analysis. Details of detrended fluctuation analysis
have been described previously elsewhere (20). Briefly,
scaling exponent obtained by detrended fluctuation analysis
quantifies the relations of heart rate (HR) fluctuations at
different scales. Low exponent values correspond to dynam-
ics where magnitude of beat-to-beat HR variability is close
to magnitude of longer-term variability. On the contrary,
high exponent values correspond to dynamics where the
magnitude of long-term variability is substantially higher
than beat-to-beat variability. Different scaling exponent
values can also be understood via spectral properties of data.
Exponent values correlate with normalized spectral mea-
sures in controlled situations, and, for example, low to high
frequency spectral ratio is closely related to the short-term
fractal scaling exponent in controlled external situations
with fixed respiratory rate. However, this is not the case
during “free-running” ambulatory conditions (31) because
fractal analysis by the DFA technique provides precise
information on the scaling properties of HR fluctuations
over highly segmented time windows, while conventionally
computed spectral measures vaguely describe HR fluctua-
tions in predetermined time windows. Thus, fractal analysis
can be considered to be a modification of spectral analysis,
but, unlike the spectral analysis, it is not polluted by changes
in the external environment, such as respiration and physical
activity. Therefore, fractal scaling exponents are not surro-
gates of spectral components when analyzed from the
ambulatory Holter recordings. Figure 3 describes examples
of power spectra in cases with various scaling exponent
values.

Reprint requests and correspondence: Dr. Timo H. Mäkikallio,
University of Miami, School of Medicine, Division of Cardiology
(D-39), P.O. Box 016960, Miami, Florida 33101. E-mail:
Tmakikia@med.miami.edu.
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26. Tulppo MP, Mäkikallio TH, Seppänen T, Airaksinen KEJ, Huikuri
HV. Heart rate dynamics during accentuated sympathovagal interac-
tion. Am J Physiol 1998;274:H810–6.

27. LaRovere MT, Bigger JT Jr, Marcus FI, Mortara A, Schwartz PJ, for
the ATRAMI Investigators. Baroreflex sensitivity and heart rate
variability in prediction of total cardiac mortality after myocardial
infarction. Lancet 1998;351:478–84.

1401JACC Vol. 37, No. 5, 2001 Mäkikallio et al.
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