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Abstract

In two-dimensional space a subtle point that for the case of both space–space and momentum–momentum non-co
different from the case of only space–space non-commuting, the deformed Heisenberg–Weyl algebra in non-commuta
is not completely equivalent to the undeformed Heisenberg–Weyl algebra in commutative space is clarified. It follows t
is no well-defined procedure to construct the deformed position–position coherent state or the deformed momentum–m
coherent state from the undeformed position–momentum coherent state. Identifications of the deformed position–po
deformed momentum–momentum coherent states with the lowest energy states of a cold Rydberg atom in special
and a free particle, respectively, are demonstrated.
 2005 Elsevier B.V. Open access under CC BY license.
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In recent hinting at new physics, motivated by stu
ies of the low energy effective theory of D-brane w
a non-zero Neveu–SchwarzB field background, it
shows that physics in non-commutative space[1–7] is
a possible candidate. Based on the incomplete de
pling mechanism one expects that quantum mech
ics in non-commutative space (NCQM) may clar
some low energy phenomenological consequen
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and may lead to deeper understanding of effect
spatial non-commutativity. In literature NCQM ha
been studied in detail[8–29]. Many interesting topics
of NC quantum theories have been extensively inve
gated, from the Aharonov–Bohm effect to the quant
Hall effect [30–36]. Recent investigation of the non
perturbation aspect of the deformed Heisenberg–W
algebra (the NCQM algebra)[27] in non-commutative
space explored that when the state vector spac
identical bosons is constructed by generalizing o
particle quantum mechanics, in order to maint
Bose–Einstein statistics at the non-perturbation le
described by deformed annihilation–creation ope
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tors, the consistent ansatz of commutation relation
the phase space variables should include both sp
space non-commutativity and momentum–momen
non-commutativity. This explores some new featu
of spatial non-commutativity: The spectrum of t
angular momentum of a two-dimensional system p
sesses fractional eigenvalues and fractional inter
[27]; for a cold Rydberg atom arranged in approp
ate external electric and magnetic fields, in the lim
of vanishing kinetic energy and diminishing ma
netic field the unusual value of the lowest orbi
angular momentum shows a clear signal of spa
non-commutativity[28]; variances of a two-photo
squeezed state in different degrees of freedom co
lates each other[29].

In this Letter we clarify a subtle point related
the equivalency between the NCQM algebra in n
commutative space and the undeformed Heisenb
Weyl algebra in commutative space. For the case
only space–space non-commuting, the phase s
variables of the NCQM algebra is related to t
ones of the undeformed Heisenberg–Weyl alge
by a singular-free linear transformation, i.e., two
gebras are equivalent. By a well-defined proced
the deformed position–position coherent state in n
commutative space can be obtained from the un
formed position–momentum coherent state in co
mutative space[19]. But for the case of both space
space and momentum–momentum non-commu
the situation is different. The point is that there
no singular-free linear transformation to relate ph
space variables between two algebras, i.e., two a
bras are not equivalent. As is well known, in this ca
three minimal uncertainties, respectively, correspo
ing to the position–momentum, position–position a
momentum–momentum commutation relations
saturated by corresponding coherent states. It o
relates to the NCQM algebra and has nothing to
with dynamics. Because of the non-equivalency
tween two algebras, there is no well-defined proced
to construct the deformed position–position coher
state or the deformed momentum–momentum co
ent state from the undeformed position–moment
coherent state. We show an example of the deform
position–position coherent state: A cold Rydberg at
arranged in appropriate electric and magnetic field
the limit of vanishing kinetic energy possesses n
trivial dynamics; its lowest energy state saturates
deformed position–position uncertainty relation. A
example of the deformed momentum–momentum
herent state realized by the lowest energy state
free particle is briefly demonstrated.

In order to develop the NCQM formulation w
need to specify the phase space and the Hilbert s
on which operators act. The Hilbert space is con
tently taken to be exactly the same as the Hilb
space of the corresponding commutative system[8].
As for the phase space we consider both space–s
non-commutativity (space–time non-commutativ
is not considered) and momentum–momentum n
commutativity[10,27,37]. In this case the consiste
NCQM algebra is as follows:

[x̂i , x̂j ] = iξ2θεij , [x̂i , p̂j ] = ih̄δij ,

(1)[p̂i , p̂j ] = iξ2ηεij (i, j = 1,2),

whereθ andη are the constant, frame-independent
rameters;εij is an antisymmetric unit tensor,ε12 =
−ε21 = 1, ε11 = ε22 = 0; ξ = (1 + θη/4h̄2)−1/2 is
the scaling factor. Whenη = 0, we haveξ = 1. The
NCQM algebra(1) reduces to the one of only spac
space non-commuting.

We consider a Rydberg atom with massµ in the
following electric and magnetic fields[28,38,39]: The
electric field �E acts radially in thex–y plane,Ei =
−E x̂i (i = 1,2), whereE is a constant, and the con
stant magnetic field�B aligns thez axis. The motion is
constrained in thex–y plane and has rotational sym
metry. The Rydberg atom is treated as a structure
dipole moment. In reality it has the internal atom
structure. For the following discussions effects of
internal structure are extremely small and hence ca
forgotten. The Hamiltonian of such a Rydberg atom
(henceforth, summation convention is used):

ĤRyd = 1

2µ

(
p̂i + 1

2
gεij x̂j

)2

+ 1

2
κx̂2

i

(2)= 1

2µ
p̂2

i + 1

2µ
gεij p̂i x̂j + 1

2
µω2x̂2

i ,

where the co-ordinateŝxi refer to the laboratory
frame of the Rydberg atom. The constant parame
g = 2qB/c and κ = 2qE , q(> 0) is dipole’s elec-
tric charge. The termgεij p̂i x̂j /2µ takes the Chern–
Simons interaction. The frequencyω = [g2/4µ2 +
κ/µ]1/2, where the dispersive “mass” termg/2µ

comes from the presence of the Chern–Simons ter
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The NCQM algebra(1) changes the boson algeb
of deformed annihilation–creation operators (âi , â

†
j )

which are related to deformed phase space varia
(x̂i , p̂j ). For the Rydberg system(2) the deformed an
nihilation operator̂ai is defined as:

(3)âi =
√

µω

2h̄

(
x̂i + i

µω
p̂i

)
.

When the state vector space of identical boson
constructed by generalizing one-particle quantum
chanics, the maintenance of Bose–Einstein statistic
the deformed level of̂ai ([âi , âj ] ≡ 0) leads to a con
sistency condition[27]

(4)η = µ2ω2θ,

and the deformed Boson algebra ofâi andâ
†
j reads

[
â1, â

†
1

] = [
â2, â

†
2

] = 1, [â1, â2] = 0;
(5)

[
â1, â

†
2

] = iξ2µωθ/h̄.

The first three equations in(5) are the same boson a
gebra as the one in commutative space. Thus Eq.(3) is
a correct definition of the deformed annihilation op
ator.

The last equation in(5) is a new one which corre
latesâi and â

†
j in deferent degrees of freedom, cod

effects of spatial non-commutativity and has some
fluence on dynamics[27–29]. It is worth noting that it
is consistent withall principles of quantum mechanic
and Bose–Einstein statistics.

If momentum–momentum is commuting,η = 0, we
could not obtain[âi , âj ] = 0. It is clear that in or-
der to maintain Bose–Einstein statistics for identi
bosons at the deformed level described byâi and â

†
i

we should consider both space–space and momen
momentum non-commutativities.

The NCQM algebra(1) has different possible pe
turbation realizations[10]. Here we consider the fol
lowing consistent ansatz of the perturbation exp
sions ofx̂i andp̂i

x̂i = ξ

(
xi − 1

2h̄
θεijpj

)
,

(6)p̂i = ξ

(
pi + 1

2h̄
ηεij xj

)
,

wherexi andpi satisfy the undeformed Heisenber
Weyl algebra[x , x ] = [p ,p ] = 0, [x ,p ] = ihδ .
i j i j i j ¯ ij
It is worth noting that the determinantRs of the
transformation matrixRs between (x̂1, x̂2, p̂1, p̂2)

and(x1, x2,p1,p2) is Rs = ξ4(1 − θη/4h̄2)2. When
θη = 4h̄2, the matrixRs is singular. Thus the NCQM
algebra(1) and the undeformed Heisenberg–Weyl
gebra are not completely equivalent.1 Eq. (6) should
be correctly explained as perturbation expansion
x̂i andp̂i .

The perturbation expansions ofâi andâ
†
i are as fol-

lows

âi = ξ

(
ai + i

2h̄
µωθεij aj

)
,

(7)â
†
i = ξ

(
a

†
i − i

2h̄
µωθεij a

†
j

)
,

where ai and a
†
j satisfy the undeformed boson a

gebra[ai, a
†
j ] = δij , [ai, aj ] = 0. Eq. (7) are consis-

tent with the NCQM algebra(1) and (6). The deter-
minantR′

s of the transformation matrixR′
s between

(â1, â2, â
†
1, â

†
2) and (a1, a2, a

†
1, a

†
2) is also singular a

θη = 4h̄2. Eq.(7) should be correctly explained as pe
turbation expansions of̂ai andâ

†
j .

In the following we study dynamics of a cold Ry
berg atom described by Eq.(2). This system is exactly
solvable. But here we are interested in the limiti
case of vanishing kinetic energy. In this limit th
Hamiltonian(2) shows non-trivial dynamics. First w
identify the limit of vanishing kinetic energy in th
Hamiltonian formulation with the limit of the mas
µ → 0 in the Lagrangian formulation. In the lim
of vanishing kinetic energy,1

2µ
(p̂i + 1

2gεij x̂j )
2 =

1
2µ ˙̂xi

˙̂xi → 0, the Hamiltonian(2) reduces toH0 =
1
2κx̂i x̂i . The Lagrangian corresponding to the Ham

tonian(2) is LRyd = 1
2µ ˙̂xi

˙̂xi − 1
2gεij

˙̂xi x̂j − 1
2κx̂i x̂i .

In the limit of µ → 0 this Lagrangian reduces
L0 = 1

2gεij x̂i
˙̂xj − 1

2κx̂i x̂i . FromL0 the corresponding

canonical momentum iŝp0i = ∂L0/∂ ˙̂xi = 1
2gεji x̂j ,

and the corresponding Hamiltonian isH ′
0 = p0i

˙̂xi −
L0 = 1

2κx̂i x̂i = H0. Thus we identify the two limiting

1 For the case of only space–space non-commuting,η = 0, the
situation is different. The determinantRuns of the transforma-
tion matrix Runs between(x̂1, x̂2, p̂1, p̂2) and (x1, x2,p1,p2) is
Runs≡ 1 which is singular-free. Thus for the case of only spa
space non-commuting the NCQM algebra(1) with η = 0 and the
undeformed Heisenberg–Weyl algebra are equivalent.
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processes. It is worth noting that when the poten
is velocity dependent, the limit of vanishing kinet
energy in the Hamiltonian does not corresponds to
limit of vanishing velocity in the Lagrangian. If the ve
locity approached zero in the Lagrangian there wo
be no dynamics. The Hamiltonian(2) and its massles
limit have been studied by Dunne, Jackiw and Trug
berger[40].

The first equation of(2) shows that in the limit
Ek → 0 there are constraints2

(8)Ci = p̂i + 1

2
gεij x̂j = 0,

which should be carefully considered[42]. Poisson
brackets of these constraints are{Ci,Cj }P = gεij �= 0,
so that the corresponding Dirac brackets of canon
variablesx̂i and p̂j can be determined,{x̂1, p̂1}D =
{x̂2, p̂2}D = 1/2, {x̂1, x̂2}D = −1/g, {p̂1, p̂2}D =
−g/4. The Dirac brackets ofCi with any variables
x̂i or p̂j are zero, so that the constraints(8) are strong
conditions and can be used to eliminate the dep
dent variables. For example, if we choosex̂1 and
p̂1 as the independent variables, from(8) we obtain
x̂2 = −2p̂1/g, p̂2 = gx̂1/2. But for our purpose in
the following we choosêx1 and x̂2 as the indepen
dent variables. From the perturbation expansion(6) it
follows that

H0 = 1

2
κx̂i x̂i

(9)= 1

2µ∗ pipi + 1

2
µ∗ω∗2xixi + ω∗εijpixj ,

where the effective massµ∗ ≡ 4h̄2/ξ2κθ2, and the ef-
fective frequencyω∗ ≡ ξ2κ|θ |/2h̄. The termω∗εijpixj
is the induced Chern–Simons interaction.

In order to solve Eq.(9) we define the “coordinate
and the “momentum”(X,P ) and the annihilation–
creation operators(A,A†) as follows[38,39]

X = 1

2

√
µ∗x1 − 1

2ω∗

√
1

µ∗ p2,

(10)P =
√

1

µ∗ p1 + ω∗√µ∗x2,

2 In this example the symplectic method[41] leads to the same
results as the Dirac method for constrained quantization, and
representation of the symplectic method is much streamlined.
A = i

2

√
1

ω∗ P + √
ω∗X,

(11)A† = − i

2

√
1

ω∗ P + √
ω∗X.

WhereX andP satisfy [X,P ] = ih̄, andA andA†

satisfy [A,A†] = 1. The number operatorN = A†A

has eigenvaluesn = 0,1,2, . . . . The Hamiltonian(9)
is rewritten in the form of a harmonic oscillator of th
unit mass and the frequency 2ω∗, H0 = 2ω∗h̄(A†A +
1
2). The zero-point energy

(12)E0 = ω∗h̄ = 1

2
ξ2κ|θ |.

This zero-point energy can be understood on the
sis of the position–position non-commutativity(1)
and the corresponding deformedx̂–x̂ minimum un-
certainty relation. From Eq.(1) it follows that the
deformedx̂–x̂ uncertainty relation reads	x̂1	x̂2 �
1
2ξ2|θ |. Here for any normalized stateψ , 	F̂ ≡
[(ψ, (F̂ − ¯̂

F)2ψ)]1/2, ¯̂
F ≡ (ψ, F̂ψ). Taking

(	x̂1)min = (	x̂2)min = (1
2ξ2|θ |)1/2 it follows that the

minimal energy(	E)min corresponding to(	x̂i)min
is (	E)min = 1

2κ[(	x̂1)
2
min + (	x̂2)

2
min] = 1

2ξ2κ|θ |.
This shows(	E)min = E0. From this result we con
clude that the deformed̂x–x̂ coherent state is realize
by the lowest energy state of the cold Rydberg at
described by Eq.(2) in the limiting case of vanishing
kinetic energy.

According to Eq.(6) the perturbation expansion o
the kinetic energy term1

2µ
p̂2

i leads to a perturbatio
induced Chern–Simons interaction, i.e., a term l
εijpixj . The existence of this term is a general ch
acteristics of the NCQM algebra(1). This term plays
essential role in dynamics.3 From this observation w
show that the deformed̂p–p̂ coherent state is rea
ized, as an example, by the lowest energy state
free particle. From Eq.(6) it follows that the pertur-
bation expansion of the Hamiltonian of a free parti
Ĥfree(x̂, p̂) = 1

2µ
p̂ip̂i readsĤfree(x̂, p̂) = 1

2µ̃
pipi +

3 Physical systems confined to a space–time of less than
dimensions show a variety of interesting properties. There are w
known examples, such as the quantum Hall effect, highTc super-
conductivity, cosmic string in planar gravity, etc. In many of the
cases the Chern–Simons interaction, which exists in 2+ 1 dimen-
sions and is associated with the topologically massive gauge fi
plays a crucial role.
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3,
1
2µ̃ω̃2xixi + ω̃εijpixj , where the effective mass̃µ ≡
ξ−2µ and the effective frequencỹω ≡ ξ2|η|/2µh̄. In
the above equation there are an effective harmo
potential 1

2µ̃ω̃2xixi and an effective Chern–Simon
interactionω̃εijpixj . This means that a “free” part
cle in non-commutative space is not free; it moves
the above effective potentials. Based on this result
may guess that the non-commutativity of space or
nates from someintrinsic background fields. By a sim
ilar procedure of solving Eq.(9) we obtainĤfree =
2ω̃h̄(Ã†Ã+ 1

2), whereÃ andÃ† are defined by a sim
ilar equation(11), in which (X, P ) and (µ∗, ω∗) are
replaced, respectively, by (X̃, P̃ ) and (µ̃, ω̃). Here
X̃ and P̃ are defined by a similar equation(10), in
which µ∗ and ω∗ are replaced, respectively, bỹµ
and ω̃. It is interesting to notice that the spectrum
Ĥfree is not continuous, the interval of the spectrum
2ω̃. For the caseθ → 0 we haveω̃ → 0, 2ω̃Ã†Ã →
1

2µ
pipi . The Hamiltonian of a free particle in com

mutative space is recovered. The zero-point ene
Ẽ0 = ω̃h̄ = 1

2µ
ξ2|η|, which can also be understoo

on the basis of the deformed momentum–momen
non-commutativity. From Eq.(1) it follows that the
deformedp̂–p̂ uncertainty relation reads	p̂1	p̂2 �
1
2ξ2|η|. Taking (	p̂1)min = (	p̂2)min = (1

2ξ2|η|)1/2,
it follows that the minimal energy(	Ẽ)min corre-
sponding to(	p̂i)min is (	Ẽ)min = 1

2µ
[(	p̂1)

2
min +

(	p̂2)
2
min] = 1

2µ
ξ2|η|. This shows that(	Ẽ)min = Ẽ0.

We conclude that the deformed̂p − p̂ coherent state i
realized by the lowest energy state of a free particl

In summary, in this Letter first we clarify a sub
tle point related to the equivalency between the
formed Heisenberg–Weyl algebra in non-commuta
space and the undeformed Heisenberg–Weyl alg
in commutative space. For the case of both spa
space and momentum–momentum non-commut
different from the case of only space–space n
commuting, there is no singular-free linear transf
mation to relate phase space variables between
algebras, i.e., two algebras are not completely equ
lent. It follows that there is no well-defined procedu
to construct the deformed position–position coher
state or the deformed momentum–momentum co
ent state from the undeformed position–moment
coherent state. Then we demonstrate the identifi
tion of the deformed position–position coherent st
with the lowest energy state of a cold Rydberg at
arranged in appropriate electric and magnetic fie
in the limit of vanishing kinetic energy, and briefl
show that the deformed momentum–momentum
herent state is realized by the lowest energy state
free particle.
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