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Abstract

In two-dimensional space a subtle point that for the case of both space—space and momentum—-momentum non-commuting,
different from the case of only space—space non-commuting, the deformed Heisenberg—\Weyl algebra in non-commutative space
is not completely equivalent to the undeformed Heisenberg—Weyl algebra in commutative space is clarified. It follows that there
is no well-defined procedure to construct the deformed position—position coherent state or the deformed momentum—momentum
coherent state from the undeformed position—momentum coherent state. ldentifications of the deformed position—position and
deformed momentum-momentum coherent states with the lowest energy states of a cold Rydberg atom in special conditions
and a free patrticle, respectively, are demonstrated.

0 2005 Elsevier B.V. Open access under CC BY license,

In recent hinting at new physics, motivated by stud- and may lead to deeper understanding of effects of
ies of the low energy effective theory of D-brane with spatial non-commutativity. In literature NCQM have
a non-zero Neveu-Schwar field background, it been studied in detaiB8—29]. Many interesting topics
shows that physics in non-commutative spHcer] is of NC quantum theories have been extensively investi-
a possible candidate. Based on the incomplete decou-gated, from the Aharonov—Bohm effect to the quantum
pling mechanism one expects that quantum mechan-Hall effect[30-36] Recent investigation of the non-
ics in non-commutative space (NCQM) may clarify perturbation aspect of the deformed Heisenberg—Weyl
some low energy phenomenological consequences,algebra (the NCQM algebr§d7] in non-commutative

space explored that when the state vector space of
identical bosons is constructed by generalizing one-
B, _ particle quantum mechanics, in order to maintain
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tors, the consistent ansatz of commutation relations of deformed position—position uncertainty relation. An
the phase space variables should include both space-example of the deformed momentum—-momentum co-
space non-commutativity and momentum—momentum herent state realized by the lowest energy state of a
non-commutativity. This explores some new features free particle is briefly demonstrated.
of spatial non-commutativity: The spectrum of the In order to develop the NCQM formulation we
angular momentum of a two-dimensional system pos- need to specify the phase space and the Hilbert space
sesses fractional eigenvalues and fractional intervals on which operators act. The Hilbert space is consis-
[27]; for a cold Rydberg atom arranged in appropri- tently taken to be exactly the same as the Hilbert
ate external electric and magnetic fields, in the limits space of the corresponding commutative sysf8n
of vanishing kinetic energy and diminishing mag- As for the phase space we consider both space—space
netic field the unusual value of the lowest orbital non-commutativity (space—time non-commutativity
angular momentum shows a clear signal of spatial is not considered) and momentum—momentum non-
non-commutativity[28]; variances of a two-photon commutativity[10,27,37] In this case the consistent
squeezed state in different degrees of freedom corre-NCQM algebra is as follows:
lates each othdR9]. o .2 o )

In this Letter we clarify a subtle point related to [X;, X1 = i§"0¢ij, [Xi, pjl=ihdij,
the equivalency between the NCQM algebra in non- [p;, p;] =i§-‘2neij i,j=1,2), Q)
commutative space and the undeformed Heisenberg— .
Weyl algebra in commutative space. For the case of wherep a.ndn.are the cpnstant, frame?mdependent pa-
only space-space non-commuting, the phase spacerameters’e"-/ IS an annsymmetnc unit tegs‘}‘i}g n
variables of the NCQM algebra is related to the t_heez;;I:iLr,\ 6#;;0(;22\/\/7,2’ E—?) (\}v::;v/:éh—)l Tflfe
ones of the undeformed Heisenberg—Weyl algebra NCOM Ig b 1' d V’_t ,th f_l ' .
by a singular-free linear transformation, i.e., two al- QM algebra )r(_a uces to the one of only space
gebras are equivalent. By a well-defined procedure, spzxe non-(_:gmmugng.b ith in th
the deformed position—position coherent state in non- folloxi:oglséc(tarricaang mzr?\;?g??e}lc\l{lés r??;ﬁéz;];hg
commutative space can be obtained from the unde- Ing elec’ agne T
formed position—-momentum coherent state in com- elecitrlc. field £ acts radlqlly in thev—y plane, E; =
mutative spacé19]. But for the case of both space— i ( =1.2), where£ is a constant, and the con-

space and momentum—momentum non-commuting i;in;tgﬁqger:je?: tfr'f‘;(B a“g;?giz dari(:ixss. Egggg?g ';_
the situation is different. The point is that there is P y

no singular-free linear transformation to relate phase g?etrly - The Rydberg atcl).m IS Lreatehd asa strlIJcturelg SS
space variables between two algebras, i.e., two alge- Ipole moment. In rea |'ty It nas t < Internal atomic
bras are not equivalent. As is well known, in this case §tructure. For the following discussions effects of the
three minimal uncertainties, respectively, correspond- internal structure are ext_remely smalland hence can_be
ing to the position—momentum, position—position and forgotten. The Hamiltonian of such a Rydberg atom is

momentum—momentum commutation relations are (henceforth, summation convention is used):

saturated by corresponding coherent states. It only 1/. \? 1 "
relates to the NCQM algebra and has nothing to do rRyd= Z<Pi + Egeijx/) TSk
with dynamics. Because of the non-equivalency be- 1 1 1
. . 2 An 2.2
tween two algebras, there is no_v_vell—deﬁngd procedure = Zpl. + deijpixj + SHOET (2)
to construct the deformed position—position coherent

state or the deformed momentum—momentum coher- where the co-ordinates; refer to the laboratory
ent state from the undeformed position—-momentum frame of the Rydberg atom. The constant parameters
coherent state. We show an example of the deformedg = 2¢B/c and x = 2¢&, g(> 0) is dipole’s elec-
position—position coherent state: A cold Rydberg atom tric charge. The ternge;; p;x;/2u takes the Chern—
arranged in appropriate electric and magnetic fields in Simons interaction. The frequeney = [g2/4u? +

the limit of vanishing kinetic energy possesses non- «/u]Y?, where the dispersive “mass” term/2u
trivial dynamics; its lowest energy state saturates the comes from the presence of the Chern—Simons term.



Q.-J. Yin, J-Z. Zhang / Physics Letters B 613 (2005) 91-96

The NCQM algebrgl1) changes the boson algebra
of deformed annihilation—creation operatofs, @ )

which are related to deformed phase space varlablesand(X1,X2, P1, p2) IS Ry

(%;, pj). For the Rydberg syste(@) the deformed an-
nihilation operatog; is defined as:

. [po i,
4= 2h<l+ o’ )

®)

When the state vector space of identical bosons is
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It is worth noting that the determinarm®, of the
transformation matrixR; between (X1, X2, p1, p2)
= £%(1 — 0n/4h%)2. When
6n = 4h?, the matrixR; is singular. Thus the NCQM
algebra(1) and the undeformed Heisenberg—\Wey! al-
gebra are not completely equivalénEq. (6) should
be correctly explained as perturbation expansions of
X; andp;.

The perturbation expansronsagfanda are as fol-

constructed by generalizing one-particle quantum me- 10ws

chanics, the maintenance of Bose—Einstein statistics at _

the deformed level of; ([4;,a;]=0) leads to a con-
sistency conditiofi27]

n = u?w?, (4)
and the deformed Boson algebraarpfand reads
[a1,a]]=[az.a)] =1, la1, 421 =0;

[a1,a)] = i&2uwb/h. (5)

The first three equations i) are the same boson al-
gebra as the one in commutative space. ThugBds

a correct definition of the deformed annihilation oper-
ator.

The last equation if5) is a new one which corre-
latesag; anda' in deferent degrees of freedom, codes
effects of spatial non-commutativity and has some in-
fluence on dynamicR7-29] It is worth noting that it
is consistent witlall principles of quantum mechanics
and Bose—-Einstein statistics.

If momentum—momentum is commuting= 0, we
could not obtain[a;,a;] = 0. It is clear that in or-
der to maintain Bose—Einstein statistics for identical
bosons at the deformed level describedaipy:mdéfr

we should consider both space—-space and momentum-tonijan (2) is Lryd = 2/” £ -

momentum non-commutativities.

The NCQM algebrgql) has different possible per-
turbation realization§10]. Here we consider the fol-
lowing consistent ansatz of the perturbation expan-
sions ofx; and p;

R 1
X =§(Xi - 5961‘]'1?/‘),

. 1

pi =E<Pi + Enéijx/),
wherex; and p; satisfy the undeformed Heisenberg—
Weyl algebrdx;, x;]1 = [pi, pj1=0, [xi, pj]1 = ihd;j.

(6)

i
a; =§<a,- + E,uw@eijaj)

—é(a — %,uwé)e,] T)

where q; and a; satisfy the undeformed boson al-
gebra[ai,a}] = 6;j,lai,a;] = 0. Eq.(7) are consis-
tent with the NCQM algebrél) and (6). The deter-
minant R, of the transformation matrixR; between
(az, a, &I, &;) and (az, a2, aI, a;) is also singular at
6n = 4h?. EqQ.(7) should be correctly explained as per-
turbation expansions @ anda’.

In the following we study dynamics of a cold Ryd-
berg atom described by E(R). This system is exactly
solvable. But here we are interested in the limiting
case of vanishing kinetic energy. In this limit the
Hamiltonian(2) shows non-trivial dynamics. First we
identify the limit of vanishing kinetic energy in the
Hamiltonian formulation with the limit of the mass
u — 0 in the Lagrangian formulation. In the limit
of vanishing kinetic energy,ﬁ(ﬁi + 3geiji))? =
Iux;x; — 0, the Hamiltonian(2) reduces toHo =
%xi,i, The Lagrangian corresponding to the Hamil-
%ge,-jii)?j — %K)?,‘)?i.

In the limit of 4 — O this Lagrangian reduces to
Lo = 3geij%ixj — 5k % %;. FromLo the corresponding
canonical momentum i$gy; = 8Lo/832,~ = %geﬂ)?j,
and the corresponding Hamiltonian % = po,-fc,- -

= Hp. Thus we identify the two limiting

@)

Lo= %‘K)?,’)ei

1 For the case of only space—space non-commutjng,0, the
situation is different. The determinarRyns of the transforma-
tion matrix Ryns between(x1, X2, p1, p2) and (x1, x2, p1, p2) is
Runs= 1 which is singular-free. Thus for the case of only space—
space non-commuting the NCQM algelffig with » = 0 and the
undeformed Heisenberg—\Weyl algebra are equivalent.
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processes. It is worth noting that when the potential
is velocity dependent, the limit of vanishing kinetic
energy in the Hamiltonian does not corresponds to the
limit of vanishing velocity in the Lagrangian. If the ve-
locity approached zero in the Lagrangian there would
be no dynamics. The HamiltonigR) and its massless
limit have been studied by Dunne, Jackiw and Trugen-
berger{40].

The first equation of2) shows that in the limit
Ex — 0 there are constrairfts

®)

which should be carefully considerdd?2]. Poisson
brackets of these constraints #&, C;}p = ge;; # 0,

so that the corresponding Dirac brackets of canonical
variablesx; and p; can be determinedii, p1}p =

{X2, p2}p = 1/2, {%1,%2}p = —1/g, {p1, P2ip
—g/4. The Dirac brackets of’; with any variables

X; or p; are zero, so that the constrai(8 are strong
conditions and can be used to eliminate the depen-
dent variables. For example, if we choogge and

p1 as the independent variables, frdB8) we obtain

X2 = —2p1/g, p2 = gx1/2. But for our purpose in
the following we chooset; and x2 as the indepen-
dent variables. From the perturbation expang@it
follows that

1

L1
Ci=pi+ 58€ij¥; =0,

Ho = E’Oeifi
1 1
= PP + éﬂ*w*zxixi +w*€ijpixj, ()]

where the effective mags* = 412/£2x62, and the ef-
fective frequency* = £ |9|/2h. The termw*e;; p;x;
is the induced Chern—Simons interaction.

In order to solve E¢(9) we define the “coordinate”
and the “momentum”X, P) and the annihilation—
creation operatorgA, A" as follows[38,39]

1

1 /1
NI — p2,
PVHIL = 5o P2
P= = pit ot i
= M*Pl W™/ X2,

2 In this example the symplectic meth@4ll] leads to the same
results as the Dirac method for constrained quantization, and the
representation of the symplectic method is much streamlined.

(10)
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i /1
=P+ VorX,
2V w*

1
A=
A —

Where X and P satisfy[X, P] = ih, andA and AT
satisfy[A, AT] = 1. The number operatav = ATA
has eigenvalues =0, 1, 2, .... The Hamiltonian(9)

is rewritten in the form of a harmonic oscillator of the
unit mass and the frequency?, Ho = 20*h(ATA +
$). The zero-point energy

(11)

1
Eo=ow'h= E52,c|9|. (12)

This zero-point energy can be understood on the ba-
sis of the position—position non-commutativiit)
and the corresponding deforméd-x minimum un-
certainty relation. From Eq(1) it follows that the
deformedx—x uncertainty relation readax;Axy >
1£219]. Here for any normalized stat¢, AF =

(V. (F — PY2)1Y2, F = (y,Fy). Taking
(A%D)min = (A%2)min = (36210 Y2 it follows that the
minimal energy(A E)min corresponding tdAx;)min
iS (AE)min = 3x[(ARD)Z, + (Af2)Z ] = 3&%¢10).
This shows(A E)min = Eg. From this result we con-
clude that the deformed-x coherent state is realized
by the lowest energy state of the cold Rydberg atom
described by Eq(2) in the limiting case of vanishing
kinetic energy.

According to Eq(6) the perturbation expansion of
the kinetic energy ternalﬁ 131'2 leads to a perturbation
induced Chern—Simons interaction, i.e., a term like
€;jpixj. The existence of this term is a general char-
acteristics of the NCQM algebi@). This term plays
essential role in dynamicsFrom this observation we
show that the deformeg@—p coherent state is real-
ized, as an example, by the lowest energy state of a
free particle. From Eq(6) it follows that the pertur-
bation expansion of the Hamiltonian of a free particle

Hiree(X, p) = iﬁiﬁi reads{:]free()%a p) = %Pil’i +

3 Physical systems confined to a space-time of less than four
dimensions show a variety of interesting properties. There are well-
known examples, such as the quantum Hall effect, Higisuper-
conductivity, cosmic string in planar gravity, etc. In many of these
cases the Chern-Simons interaction, which exists-in12dimen-
sions and is associated with the topologically massive gauge fields,
plays a crucial role.
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$d%x;x; + de;; pixj, where the effective mags =
£~2, and the effective frequenay = £2||/2uk. In
the above equation there are an effective harmonic
potential Zﬁd)zx,xl and an effective Chern—Simons
interactionae;; p;x;. This means that a “free” parti-
cle in non-commutative space is not free; it moves in
the above effective potentials. Based on this result we
may guess that the non-commutativity of space origi-
nates from sommntrinsic background fields. By a sim-
ilar procedure of solving E¢(9) we obtain Hiee =
20h(ATA+ 3), whereA andAT are defined by a sim-
ilar equation(11), in which (X, P) and *, »*) are
replaced, respectively, byX( P) and (&, @). Here
X and P are defined by a similar equatiqf0), in
which pu* and o* are replaced, respectively, hy
and®. It is interesting to notice that the spectrum of
Hiree is N0t continuous, the interval of the spectrum is
2&) For the cas® — 0 we haved — 0, 2»ATA —
2 pi pi- The Hamiltonian of a free particle in com-
mutative space is recovered. The zero-point energy
Eo = &h = e L £2|5|, which can also be understood
on the basis of the deformed momentum-momentum
non-commutativity. From Eq(1) it follows that the
deformedp—p uncertainty relation read& p1Ap> >
3&2n1. Taking (A p1)min = (Ap2)min = (3621DY2,
it follows that the minimal energy(AE)m.n corre-
sponding to(A p;)min is (AE)min = ZM[(Apl)mln
(Apz)mm] = zué [n|. This shows thatA E)min = Eo.
We conclude that the deformgd— p coherent state is
realized by the lowest energy state of a free particle.
In summary, in this Letter first we clarify a sub-
tle point related to the equivalency between the de-
formed Heisenberg—\Weyl algebra in non-commutative

space and the undeformed Heisenberg—\Weyl algebra

in commutative space. For the case of both space—
space and momentum-—momentum non-commuting,
different from the case of only space-space non-
commuting, there is no singular-free linear transfor-

mation to relate phase space variables between two

algebras, i.e., two algebras are not completely equiva-
lent. It follows that there is no well-defined procedure

to construct the deformed position—position coherent
state or the deformed momentum—momentum coher-
ent state from the undeformed position—momentum
coherent state. Then we demonstrate the identifica-
tion of the deformed position—position coherent state
with the lowest energy state of a cold Rydberg atom
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arranged in appropriate electric and magnetic fields
in the limit of vanishing kinetic energy, and briefly
show that the deformed momentum-momentum co-
herent state is realized by the lowest energy state of a
free particle.
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