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1. Introduction

Virtual knot theory is a recent generalization of knot theory. One motivation for studying
virtual knots comes from the methods of describing knots through the use of chord
diagrams. In Section 2 we give the basic definitions for this point of view. In particular, we
define oriented chord diagrams and arrow diagrams. The definition for a virtual knot is also
given, although we recommend [15] as an introduction for the reader who is not already
familiar with virtual knot theory. Flat virtual diagrams and their equivalence classes are
introduced in Section 3.

In Section 4 we define a filamentation on a Gauss chord diagram. Filamentations
were first introduced by Scott Carter as a tool for detecting when an immersed curve
can be bounded by a disk [3]. Following a suggestion of Carter [5], we show that
filamentations can also detect when virtual knots are non-trivial. In [6] virtual and flat
virtual knots are shown to be non-trivial by using a combination of techniques from [3]
and a formulation of the classification of virtual knots in terms of stabilized embeddings
in thickened surfaces. Here, we use the notion of filamentation directly in the context
of the combinatorial definition of virtual knots and links. We prove that the existence
of a filamentation is preserved under generalized Reidemeister moves for virtual knots,
thereby obtaining a combinatorial version of results that can also be obtained using
stabilized surfaces. The result is Theorem 4.10. In fact, we prove that whenever there is
no filamentation on a chord diagram, then any associated flat virtual diagram cannot be
reduced to a classical diagram. There are many open problems in the classification of flat
virtual knots.

One interesting result of Theorem 4.10 is that we have found an infinite class of
chord diagrams for which no filamentation exists. Section 5 explores this infinite class
of virtual knots () related to the chord diagrams. The generalizations of both the Jones
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polynomial and the fundamental group to virtual knots cannot detect any of Kese
Using filamentations, we are able to show that ekglis non-trivial, although this method
cannot distinguish between tl&, . In Section 6, we prove that thi€, are an infinite class
of mutually distinct knots.

2. Definitions

We define a knoK in the combinatorial sense, as a class of diagrams which represent
a generic projection of an embeddisd — $2 or st u ... u ST — $3. Each circle
represented in such a diagram is called a component, and if there is more than one
component, the diagram (or related class) is sometimes referred to as a link. A strand
in a knot diagram is the projection of a connected interval in the embedded curve. In a knot
diagram, certain arcs of the projection of the curve embedded in space are eliminated to
form a knot diagram, creating broken strands that indicate the over and under crossings. At
each crossing in the diagram there is an indicated over strand and a broken under strand.
In this sense, there are two local strands at any crossing in a diagram. Any time we refer to
a strand of a crossing, we mean one of these two local strands.

Definition 2.1. Two knot diagramsk and K’ are said to beequivalentwhen there is a
finite sequence of the following (Reidemeister) moves which transforimio K’

(R1) \9\/ - — (R2) D/ - ><

\ U
(R3) -\/ = TN/
AN
A knotis an equivalence class of knot diagrams under the Reidemeister moves.

A knot can have an orientation. This is indicated on a knot diagram by drawing an
arrowhead on one or more strands in such a way that each component has a consistent
labelling. The Reidemeister moves for an oriented knot are the same as for unoriented
knots. We are free to apply the moves without paying attention to the particular orientations
of the strands involved.

There is also the notion of more than one kind of Reidemeister equivalRegelar
isotopyis equivalence under only the R2 and R3 movasbient isotopys equivalence
under all three moves. It is useful to distinguish between the two because there are
invariants which only cover regular isotopy. For a more general treatise on knot theory,
see [14,18].

In the study of Vassiliev (or finite type) knot invariants, chord diagrams and weight
systems have been used as a calculational tool [1,10,21]. We will examine chord diagrams
further and investigate their usefulness in the general theory of knots. Briefly, a chord
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diagram is a circle (or set of disjoint circlésyith pairs of points on it, where each pair

of points is connected by a line segmentchord, in the interior of the circle. Abstractly,

a chord diagram is a trivalent graph with a subgraph homeomorphic to a circle such that
all remaining edges in the graph connect pairs of nodes on that circle. We will assume the
convention that the circle in a chord diagram is oriented in a counterclockwise direction.
One way of thinking of a chord diagram is to view the outer circle(s) as the pre-image of
the projection of a knot.

Definition 2.2. The universe(or shadow) [15] of a knot is a generic projection of the
embedding without specified over or under crossings. We sometimes refer to this as a flat-
tened knot diagram.

The circle(s) in a chord diagram can be interpreted as the domain of a knot projection. Each
circle corresponds to a component in an associated embedding. Hence we will sometimes
refer to each circle as a component of the chord diagram. Each chord connects the double
points corresponding to a particular crossing. This does not encode the types of crossings
involved. Additional structure is needed in order to describe a knot diagram completely.

One solution to the problem of encoding the knot diagram is to add a sign and a direction
to each chord [10,20,21].

Definition 2.3. A signed arrow diagramis a chord diagram in which each chord is
decorated with an arrow and given a sign. The sign determines the crossing orientation
and the arrow points to the chord endpoint which lies on the undercrossing strand in a
related knot diagram.

Definition 2.4. Dropping the arrow directions from a signed arrow diagram leaves a chord
diagram with a single sign on each chord. We call thiggmed chord diagram

There is a slight problem with developing a theory using signed arrow diagrams. We would
like to have a chord diagram version of universes (oriented flattened knot diagrams) that
generalizes signed arrow diagrams. However, for a signed arrow diagram, the arrow and
sign information are interdependent. Furthermore, signed chord diagrams do not store the
same kind of information that universes do. It turns out that the Jones polynomial depends
solely on the underlying signed chord diagram of a knot, and this certainly cannot be
said for knot universes. Each universe covers multiple knot classes, many of which have
different Jones polynomials.

If we drop the arrows, leaving a single sign on each chord, we do not have enough
information to encode an oriented universe. We will take care of this problem by assigning
two signs to each chord.

Our enhancements will modify signed arrow diagrams in a way that allows us to handle
oriented knot universes. We start by defininga@aiented chord diagranand then give

1 For links, we use a circle to represent each component. Each crossing involving a single component is
represented by a chord contained in the interior of that component’s circle. All crossings between two different
components are represented by chords between each circles’ exterior.
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a new definition of amarrow diagramwhich builds on the underlying structure of an
oriented chord diagram.

2.1. Oriented chord diagrams

Definition 2.5. An oriented chord diagramer OCD, is a chord diagram with a labelling
of ‘4’ or * —" on each chord endpoint, so that each chord connects points of opposite sign.

An OCD encodes the universe of a knot diagram. A neighborhood of a chord endpoint
(restricted to the circle) corresponds to one strand of a crossing in a universe, and the sign
on each chord endpoint determines the local orientation relative to that strand. In order to
label a chord endpoint, start with its corresponding strand in the universe and view that
strand in the direction induced by the counter-clockwise orientation of the circle. Now
look at the other strand of the crossing. If it passes from right to left, label the current
chord endpoint with a+’. Otherwise label it ='. (See Fig. 1). In other words, we view
the two strands as vectors in the plane of projection. The orientation comes from a standard
right handed convention relating the first vector to the second. Switching the point of view
from one chord endpoint to the other reverses the local orientation.

Suppose we wish to recapture the universe from a single component OCD. Choose
a point on the circle that is not a chord endpoint. Starting at this point, follow around the
circle in a counterclockwise direction. While traversing the circle, draw a curve forming
a diagram as follows:

e Each time the first endpoint of a new chord is encountered, draw a crossing obeying
the sign convention and continue drawing the curve.

e When the second endpoint of a chord is encountered, connect the curve through the
previously drawn crossing in the direction indicated by the sign.

e If the curve is forced to cross itself at any point, circle the forced crossings to
distinguish them from those associated with chords.

e Whenever possible, draw the curve so that the only crossings that occur correspond to
chords in the diagram.

e Connect the endpoints of the curve when all the chords are accounted for.

Fig. 2 shows a knot universe along with the OCD which represents it. If there are multiple
components in the OCD, proceed in the same fashion for each one.

In the resulting universe, any crossing indicated by a chord in the OCD is called a real
(or classical) crossing. The remaining crossings—those forced by the planar configuration
of real crossings—are called virtual. Virtual crossings are like edge crossings in a drawing

e e e

Fig. 1. Crossing conventions for oriented chord diagrams.
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Fig. 2. An oriented chord diagram and related knot universe.

of a non-planar graph; they do not exist in the original chord diagram, but are artifacts of
drawing the associated planar universe.

Definition 2.6. When we refer to crossintype we mean the distinction between real and
virtual.

In addition to diagrammatic representation, an OCD can be encoded in terms of the
chord endpoints and how they are ordered while traversing the circle(s). Suppss®
OCD withn chords{x1, x2, ..., x,}. For each chord;, label the positive endpoirjctl.+ and
the negativéendpoinv(i‘. In this paper, we will stick to the convention of using lowercase
letters when referring to chords and the corresponding uppercase letters when referring
to endpoints. Ifc is a chord inD, thenC*™ and C~ are the positively and negatively
(respectively) oriented endpoints af

To encode an oriented chord diagrdmbegin at any edge between nodes on the circle.
Traverse the circl® in a counterclockwise direction and write down the appropriate label
for each chord endpoint as you pass it, until you return to your original location on the
circle. Multiple components generate multiple codes: one for each component. Consider
the OCD in Fig. 2. An example of a code associated withA1sB+*C~A~C*TB~. These
codes are unique up to cyclic permutation (to account for where you start on the circle),
along with any permutation of the chord labels.

Thatis,

AYBYCTA™CTB~, C A C"B A*BY, and ATCTB A B*C~

are all codes for the same OCD.
2.2. Arrow diagrams

So far, we have described OCDs and their relationship with knot universes. We define
an arrow diagram within this framework.

Definition 2.7. An arrow diagramor AD, is an oriented chord diagram in which the chords
are replaced with arrows. The direction of each arrow gives the extra structure on a crossing
in the related knot universe by the convention that the arrow points from the overcrossing
to the undercrossing strand.

2 We also use the negative superscript as an orientation reversing opefator: = A1,
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Fig. 3. Crossing conventions for arrow diagrams.

(ADy) (AD1)
- m
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(AD2) (AD2)
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Fig. 4. The arrow diagram moves.

Note that the local orientation on the base endpoint of an arrow (corresponding to the
overcrossing strand) matches the classical knot theoretical convention of crossing sign for
an oriented knot (see Fig. 3). The local orientation of one chord endpoint is always opposite
to the other endpoint, so we will only label the base endpoint of each arrow in an AD. In
our new definition, an arrow diagram looks just like a signed arrow diagram, except that
by convention, the sign refers to the base of the arrow. The sign on an arrow in an arrow
diagram refers specifically to the local orientation of the arrow basepoint, and the missing
local orientation sign for the tip of the arrow is implicitly the opposite sign.

For the purposes of this paper, the code associated with an arrow diagram will be the
same as the code associated with the underlying OCD. If more information is needed, we
can use the subscripte’‘and ‘u’ to denote arrow basepoints and endpoints (respectively).
For example A} B;f C;; A, C,f B, encodes an arrow diagram with the same underlying
code as the OCD in Fig. 2. We emphasize again that this is not the same as the convention
for signed arrow diagrams where only one sign is associated with each arrow.

We can take the set of all arrow diagrams and define an equivalence relation under the
Reidemeister moves translated into AD form (see [10]). Fig. 4 lists these moves.cfhe
the arrows is meant to be eitheror —. Each arc represents a portion of a circle in an arrow
diagram, but it is not necessary to assume that the relative arc placements must be as shown.
In the A D> move, the two arcs might lie on separate circles of a multiple component AD.
Further, in theAd D3 move, we allow flexibility in the ordering of the arcs, even within a
single component diagram. Simply put, the arc placements in a single application of an AD
move can differ from Fig. 4, provided that arc ordering does not change across the move.
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Consider the lower left version of theD3 move. One application of D3 might change
an associated code’s subcode from

A B, ---CfA}...C,;B} to B A;---AfCl...BicC,
under the move. Another example 4D3 might change the subcode from
CrfAf.--A B, ---C,/Bf to AfCI..-B A,---BiC,

in an arrow diagram. With this in mind, these moves completely describe the reformulation
of Reidemeister moves into diagrammatic form and translate the combinatorics of knot
equivalence into arrow equivalence.

3. Virtual knots

It turns out that this new class of objects generalizes the classical knots. Given an
abstract arrow diagrard, we find that it is not always possible to realiz¢ as a
knot projection on a sphere or plane. Such a non-planar AD is a virtual knot. A more
diagrammatic definition follows:

Definition 3.1. A virtual knot diagramis a generic immersios§! L - 1 §* — R? such

that each double point is labelled with either a real (over or under) or a virtual (circled)
crossing. Thus &irtual knotis a class of equivalent virtual diagrams, where two virtual
knot diagrams are said to be equivalent when one can be transformed into the other by a
finite sequence of real Reidemeister moves (R1), (R2) and (R3), along with the following
virtual moves:

(Vl)\/&/ - (V2) -

O R

As in the classical case, a virtual knot with multiple components is sometimes called
a virtual link. For this paper, we will use the term ‘virtual knot’ to refer to both virtual
knots and links. When we do not wish to consider virtual crossings, we will use the term
‘classical knot’ to mean knots and links without virtual crossings.

An alternate definition to virtual Reidemeister equivalence is to allow the classical
Reidemeister moves with the addition of a more general “detour move” (see [15,16]):

k j ZK \ 1)
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In the detour move, any number of strands may emanate from the top and bottom of the
tangle (represented by a box). The idea is that in a virtual diagram, if we have an arc with
any number of consecutive virtual crossings, then we can cut that arc out and replace it
with another arc connecting the same points, provided that any crossings on the new arc
are also virtual. It is easily seen that this yields the same equivalence.

Definition 3.2. If K is a knot diagram, theA D(K) is the arrow diagramelated toK .

Notice that there are some mixed moves which are not allowed. Consider the following
moves:

These are forbidden as knot diagrammatical analogues to the AD moves. They change
the related arrow diagram in a manner which is not equivalent under the AD moves; they
permute two adjacent arrow endpoints. However, inclusion of the above left (overstrand)
version of this move has been studied in the form of welded braids [7,9], a generalization
of braid theory preceding virtual knot theory.

From the definition, we note that a virtual knot or link can also be classical. This happens
when it can be represented by a diagram in which all of the crossings are real. Further, since
the virtual moves (V1)—(V4) leave the related arrow diagram unchanged, they also preserve
the classical knot type. However, it is possible to apply an arrow diagram move to a chord
diagram for a classical knot in such a way that the resulting knot diagram is no longer
classical.

There has been progress in applying well-known knot invariants to the virtual theory.
In [15] Kauffman extended the fundamental group, the Jones polynomial and classes of
quantum link invariants to virtual knots and gave examples of non-trivial virtual knots with
trivial Jones Polynomial and trividifundamental group. We will cover the fundamental
group and the Jones polynomial in Section 5.

One of the results we will assume is the following, proved by Kauffman and by
Goussarov, Polyak and Viro:

Lemma 3.3. If K and K’ are classical knots which are equivalent under virtual Reide-
meister equivalence, then they are also equivalent under classical Reidemeister equiva-
lence.

We will also use the following result from [10]:

Theorem 3.4. Virtual equivalence and AD equivalence are the same thing. That is, if two
arrow diagrams are equivalent under AD moves, then any virtual knots related to those
two diagrams will be virtually equivalent. Likewise Kf~ K’, thenAD(K) ~ AD(K").

3 By trivial fundamental group, we mean a group isomorphic to the integers.
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Proof. Thisis a direct result of the definitions.O

An immediate question that arises is how to determine when a virtual knot is classical.
In [15], Kauffman introduces flat Reidemeister equivalence as one approach to this
problem.

Definition 3.5. A flat Reidemeister movis a classical or virtual Reidemeister move in
which the over/under information at each real crossing is suppressed, so that all that is
important is the distinction between crossing types (real and virtual). Two univerdsgt are
(Reidemeistgrequivalenif there is a finite sequence of flat Reidemeister moves taking the
one universe to the other. An equivalence class of knot universes under flat equivalence is
called aflat knot.

In Fig. 5, we illustrate the (flat) Reidemeister moves for flat virtual diagrams. Note that
a sequence of virtual crossings can be detoured across flat crossings (using the mixed move
given by IV), but not vice versa. The virtual detour move given in (1) applies for flat knots
as well, and can be thought of as equivalent to move IV in the presence of the other moves.
The remarkable fact about flat virtual diagrams is that while they are often non-trivial
(and hence non-classical), we have very few invariants at the present time which detect and
classify them. For example, consider the following flat diagram:

0

At the time of this writing, we do not have a proof using our methods that the flat diagram
E given above is a non-trivial flat virtual diagram.

o~ B 0
Q- g-i .
fr=S A,
Ladhie's

Fig. 5. The flat Reidemeister moves.
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A simple example of a non-trivial flat virtual link is the positive virtual Hopf link,
VHopf:

VHopf=

Definition 3.6. The parity of a link is the parity of the total number of crossings between
distinct components. The parity is an invariant of flat virtual links, because it is preserved
under the flat Reidemeister moves.

For the virtual Hopf link, the parity is odd and hen¢kelopf is non-trivial.

Theorem 3.7. If a virtual knot is classical, then its related universe is flat equivalent to the
unknot.

Proof. It is well known that every classical knot diagram can be unknotted by choosing
and switching a certain number of crossings. The original knot along with this unknotted
diagram both share the same universe. As a result, we can always find a sequence of flat
moves taking a classical universe to the unknot diagram.

Note that a flat virtual diagram is the same as a knot universe, with the additional
property that it may also have virtual crossings. For any oriented flat virtual diagram,
there is an OCD associated with it in the same way that a chord diagram is associated
with an oriented universe. Recall that the chords in an OCD have no arrows and are
labelled with signs at their ends corresponding to the crossing orientations of their
corresponding curves. Each flat Reidemeister move induces a related OCD move. These
OCD moves are the same as the arrow diagram moves in Fig. 4 with the arrow endpoints
removed® This OCD approach will become useful in the discussion of filamentation
invariance.

4. Filamentationson chord diagrams

The notion of a filamentatiohwas first introduced in the early 1990s by Scott Carter
in [2—4] while looking at generic immersions of disks in 3-space. In the particular case
where the boundary of the disk is mapped to the boundary of the manifold, he noted that
the intersection curves would necessarily have a total net intersection of zero. In 1999,

4 To get an oriented chord back from an arrow, we drop the arrow tip and place a sign on that endpoint that is
opposite to the one on the basepoint.
5 Also known as bifilarations.
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he suggested [5] that filamentations could be used to answer a conjecture of Kauffman’s
in [15] that the following flat knot was non-trivial under flat virtual equivalence:

A knot diagram with the above universe was the first example of a non-trivial virtual knot
with trivial Jones polynomial and trivial fundamental group [15, p. 683]. This example is
equivalent tok, in Table 1.

Roughly speaking, a filamentation can describe the intersection curves on an immersed
disk, much in the same way that a chord diagram describes the double points in an
immersed circle. Consider an immersed disk which bounds a flat knot diagram. Wherever
the diagram has a flat crossing, the immersed disk will have intersection curves emanating
from the crossing. These intersection curves will begin and end at crossings. A filament is
a curve from the pre-image of such an intersection curve. Thus, a filament begins at one
chord endpoint and ends at another (not necessarily the same) chord endpoint.

Our method will generalize this description so that there is no dependence on immersed
curves in space. We describe filamentations in the purely combinatorial context of flat
virtual knots so that the existence of a filamentation can be used to determine when a flat
knot is non-trivial.

For the remainder of the paper, when we say chord diagram, we are referring generally
to OCDs and ADs.

Definition 4.1. A pairing P on a chord diagrar® is a collection of chord pairs such that
each chord irD occurs in exactly one pair in the collection. A chord is allowed to be paired
with itself.

For example, the OCD in Fig. 2 has the following possible pairings:
{(@ a), (b, 0},
{®.b). @ o),
[(c.0), (a.b)}.
{(a,a), (b,b), (c,c)}.

)

Definition 4.2. Let x and y be chords in a chord diagram whose endpoints are on one
circle. A filamenta associated with the chord pdit, y) is a generic curve between an
endpointX? of x and the corresponding endpoint?® of y (wheree € {+, —}). Between
endpoints, the curve must lie completely in the interior region of the circle containing the
endpoints ofc andy and may contain a finite number of transverse self-intersections. We
orient the filament from the negative endpoint to the positive one.

In general, there are an infinite number of filaments associated with a given pair. For this
paper, we will treat a filament associated with a pair as a single class, taken up to planar
isotopy of immersed curves with fixed endpoints.
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Definition 4.3. Thedualof a filamentx : X~ — Y+, denoted/, is a filament/’: Y~ — X T
between the two corresponding chord endpolfitsand X+ of opposite sign.

Definition 4.4. If x andy are distinct chords, then the two filaments associated with the
pair (x, y), namelya: Y~ — X+ and its duabk’: X~ — Y, are calledbifilaments.

Definition 4.5. A monofilaments a filamentx : X~ — X associated with a symmetric
pair (x, x). In this caseq = o’.

We will refer to distinct pairs(x, y) as bifilament pairs and self-pairs, x) as
monofilament pairs.

Definition 4.6. When two distinct filaments and g intersect transversally, they have
anoriented intersection numbeﬁﬁ. It is calculated by looking at the local orientation
(using a right-handed convention) of the crossings between each filament: looking in the
direction ofa, if g is directed from right to left (left to right), them g = +1 (= —1). If

there are no intersectiomﬁﬁ =0.

Note that the above assumes that the filaments are drawn in such a manner that they
cross exactly once, if at all. If two filaments have more than one transverse intersection, add
up all intersection numbers betweerand 8. This more general description is consistent
with the above definition.

Consider any pair ifP, and suppose thatis a filament associated with that pair.

Definition 4.7. Theintersection number of the filamedmts

() = Z aﬁy.

y oo’}

If x andy are distinct, and and its duak’ are bifilaments associated with, y), then
theintersection number of the bifilament pasr

()=t +() = Y afy+dfiy.
y o)

Similarly, if « is the monofilament associated with the pairx), then theintersection
number of the monofilament pag

((c,0)=(@ = ) afy.
y oo’}
Note that this can be expressed as a single formula:

Definition 4.8. Theintersection numbeof a pair(x, y), is
(cw)= > > #fy
Bela,a'}t y¢{a.a'}
whereq is a filament associated withy, y).
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We may need to consider multiple pairings at the same time. If this is the case, we will
use a subscript )p to specify which pairing we are using to calculate the intersection
numbers.

Definition 4.9. A filamentationZ on a Chord Diagrar®, is a pairing for which the related
filaments contain only transverse intersections, and the intersection number of each pair is
Zero.

For example, the OCD in Fig. 2 has a filamentation:
c- Bt

{(a,a),(b,c)}: AT A

ct B~
Now, we proceed with the first result.

Theorem 4.10. If D is a chord diagram which admits a filamentati®n then for any chord
diagramD’ equivalen{by Reidemeister move® D, there is an induced filamentatiof
onD'. Thus, the existence of a filamentation is an invariant of chord diagrams.

Proof. SupposeD is an chord diagram anf’ is equivalent toD. Then there is a finite
sequence of chord diagrani® = Dy, D1, ..., D, = D'}, such thatD; 1 andD; differ
by a single chord move. All we need to show is that under any of the chord moves, a
filamentation can always be preserved. This will give us a filamentafianm D; induced
by each move in the sequence.

In each of the following cases, we will describe how to use the existing filament&tion
to create the induced filamentatigfi which results from applying a Reidemeister move:

(R1) We first consider the simplest Type | cases.
—(Rl.a)—>
At AT
TN <—(BL)— N
If we are adding a chord, as in (R1.a), then the induced filamentation comes from taking
the old filamentation and adding the péir, a). We define’ = F U {(a, a)}. This gives
us a monofilamert associated with the pafu, a). Itis clear thata) = ((a, a)) = 0 since
there are no chord endpoints on the circular arc betweeandA~. Thus, all intersection
numbers in the new filamentation are still zero.
If we remove a self-paired chord as in (R1.b), we again note that the monofilament
associated withia, a) intersects trivially with all other filaments associated with Thus
we defineF’ = F — {(a, a)}, and it is clear that we still have a filamentation.
Finally, suppose that the chasdhat is removed via a type | move is paired with another
chord, sayx.

-t
j/qu\ —{Rle)> Ay
o i I3
x—— U x+ X X~
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In the case of (R1.c), the induced filamentation comes from altering the previous pairing
by replacing the paitx, a) with (x, x). That is, setF’' = (F — {(x,a)}) U {(x, x)}. This
works because we can construct a new monofilament associate@withwhich carries
the same intersections as the old bifilaments associated with. Consider for example,
the curve starting aX — and following the path of an old filameatto A+, then following
along the outer circle to the adjacent endpaint and finally following the path of the
dual filamente’ to X*. If we adjust this curve slightly so that the circular portions of
the path are pushed to within the interior of the circle (as in the above picture), we get
a monofilamenp associated witlix, x). The new curved contains the old intersections
from botha anda’.

Clearly, 8 intersects the other filaments ¢ only where they coincide with the
previous filament& andco’. In addition, any old self-intersections betweemanda’ will
be picked up, but we recall that intersections between dual filaments as well as any self-
intersections do not contribute to intersection numbers. Thus, the intersection number of
the new pair is

((,0)) 5 = (B) = (@) + (&) =((x,@)) = 0.

Since all the intersections fronk are preserved under the new pairing and no new
intersections are introduced is still a filamentation.
(R2) We now consider the Type Il moves, starting with the simplest cases.

AT B~
/\ N
(R2.a)
-
(R2.b) o
N
A~ BT

Whenever we add chords via a Type Il move as in (R2.a), the induced filamentation comes
from adding a bifilament paii, b) of the newly created chords. We s&t= FU{(a, b)}.
The precise configuration of the chord endpoints does not affect the resulting filamentation,
because in every Type Il chord move, an endpoint of one chord must be adjacent to the
endpoint of opposing sign from the other chord. This forces the two filaments associated
with (a, b) to be curves between neighboring chord endpoints along the circle. Just as
in (R1.a), each new filament will trivially intersect all other filamentsAh No other
intersections are altered from the old pairing,Sds a filamentation.

Similarly, when a type Il move removes a bifilament pair, as in (R2.b), the induced
filamentation isF' = F — {(a, b)}.

The remaining cases for type Il chord removal cover the other possible ways that the
removed chords andb can be paired.

AT _B™
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Suppose andb are self-paired as in (R2.c). Note that the possible configurations of a type
Il move forces the filaments to be oriented in opposing directions, as in the picture above.
As a result, for any bifilaments anda’ associated withia, a) we have:

This also means that the net effectoofinda’ on any other filament iF cancels when
computing the intersection number. That is, for any filamegt «, o', we have:

(yy= > yns
S¢ly.v'}

= ( Z yﬁS) +yNa +yNd’
S¢ly.y a0}
= Z yﬁ&.
S¢ly.y' a0’}

Thus, the induced filamentation for (R2.c)& = F — {(a, a), (b, b)}.
Now, suppose that either or b are paired with a third chordg. Without loss of
generality we assumeis self-paired and is paired withx.

At B~
, /\
o
i
A7 B+ \_/

In (R2.d), the induced filamentation &' = (F — {(a, a), (b, x)}) U {(x, x)}. As before

in (R1.c), the filament associated with the new pairx) can be defined to be a curve
which follows the old filaments and arcs between chord endpoints so that the locations of
all intersections are preserved under the chang€ tdhe new monofilament can start

at X~ and follow the old pathg to « to B’ (as in the picture above). To calculate the
intersection number of the new filament, we simply add the intersection numbers of the
filaments associated with the old pairs:

((x,X))p =(y)
= (@) + (B) + (B")
=((@, @)z +(b. 1)z
=0.
Finally, suppose andb are both paired with other chords.

B~ AT
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For (R2.e), we defing”’ = (F —{(a, x), (b, y)}) U{(x, y)}. Then, we define the bifilaments
associated withix, y) so thaty travels fromY~ to X* alongg anda’, and the duaj’
travels fromX ™~ to Y alonga andg’. Thus,

"
a/
a/

(
(

() =F+F
(BYr+ (@) r)+ (@) F + (B)F)
() F + (@) F)+ (B F + (B F)
=((@ )z +{. »)x

=0.

=(( )
=(( )

(R3) Suppose we have a Type Il move takiRgo D’. For any possible configuration
of such a move, we define the induced filamentation to be unchafged:F.

There is essentially only oné€D3 move to consider from Fig. 4. This is due to the fact
that the diagrams in both versions 4Dz in Fig. 4 share the same underlying OCD. As a
result, the code associated with each move is the same (as are all of the local orientations on
each arrow endpoinf Further, we do not need to consider each possible arc permutation
as described in the discussion of Fig. 4 in Section 2. As we shall see, this is because we can
position the new filaments in such a way that they only differ from the previous ones within
a small neighborhood of each arc involved in the move. Hence, the intersection numbers
in the new filamentation will depend only on the local filament changes near these arcs.

To do this, position the filaments di so that none of the intersections occur within
a small neighborhood of the circle. On the new diagrRm configure the filaments as
before except within that neighborhood. Inside this neighborhood, complete the filament
curves by crossing the two filaments which emanate from each arc. Note that since the
A D3 move switches the chord endpoints on each arc, these new filament crossings account
for this. We show a simple example in Fig. 6. On the left, the filaments leaving each arc do
not cross until they pass outside a heighborhood (depicted by the dotted interior circle) of
the arcs. On the right, the filaments cross as they emanate from each arc to the dotted circle.
Within the interior circle, the filament curves on both diagrams are essentially the same.

Now, we consider the effect of adding this configuration of three filament crossings
to the original filamentation. The general case is shown in Fig. 7. First, suppose that the
chordsa, b, andc are paired with other chords, y, andz, respectively. The new crossings
contribute as follows:

((@.0)r =@ )z +afp+a'Ty’

=0+1-1=0,

(B 9) = (B ) g+ BT + BTy
=0-1+1=0,

((c.2)p =((c. D) +yTB + ¥ Ne
=0-1+1=0.

6 This should not come as a surprise to the reader since a filamentation only depends on the underlying OCDs
code, which means that it can be thought of as being associated with the universe of the related knot diagram.
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c- Bt A~ At
A~ At R3 c- Bt
e
chords
B~ ct

Fig. 6. An example of induced filament changes under an R3 chord move.

AT Bt Cc™ A~ ct B~ R Bt AT A” C™ B~ C*
o B A o Ic4 @ B o B’

Fig. 7. The general case of filament changes after an R3 chord move.

The new pairing is a filamentation whenever the old pairing is.

In fact, it does not matter how the chords are paired. For example, suppose we pair
with . Thenx = b, y = a, and from the above case, the filaments consolidatet’ and
a’ = B. To compute((a, b)) 7, we combine the calculations ¢fa, x)) = and{(b, y)) =
above. First note

(@, )z = (b, ) =0.

Althougha e’ anda’Tia do not contribute td(a, b)) 7, they do sum to zero, so we will
include them below to demonstrate the similarity @, x)) = + (b, ¥)) 5

((a, b))}-, =((a, b)>]_- +afd +o' Ty + o' Na +afly
=0+a 0y +afiy
=-1+1
=0.
Proceed in the same fashion for all other pair choices.
This completes the proof.O

Theorem 4.11. If D is a Gauss diagram which does not admit a filamentation, then the flat
knot represented b is non-trivial.

Proof. Supposé is trivial. Then there is a sequence of flat moves takkin the unknot.
Since the unknot admits a trivial filamentation, Theorem 4.10 tells us that we can find
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afilamentation orD by reversing the sequence of flat moves and applying the filamentation
induced by that sequence. Thus, if a Gauss diagram does not admit a filamentation, it
cannot represent a trivial knot.0

5. Aninfinitefamily of virtual knots

Theorem 5.1. Letn > 2. Consider the following OCD

3

Any flat virtual knot associated with,, is non-trivial.

Proof. Fix n > 2 Label the vertical chord, and label the horizontal chordsz, .. ., y,}.
Consider the vertical chord, We claim that for any pairing o®,,, the pair includinge
will always have a non-trivial intersection number.

First suppose is self-paired. We see immediately th@t, x)) = n # 0, since all of
the other filaments in such a pairing must pass from left to right across the monofilament
associated withix, x).

Supposex is paired with any of the horizontal chords, say. Consider Fig. 8.
There are exactlys — i positive chord endpoints on the arc betwelél.ﬁ and X~.
Regardless of how we choose to pair the remaining chords, these positive endpoints
will have filaments ending at them. Further, such filaments must come from the other
side of theX™ — Y;r filament, contributing precisely — 1 to the intersection number
of (x,y;). In addition, there are exactly — 1 negative chord endpoints on the arc
betweenY;” and X*. Again, there must be a filament emanating from each of these
negative endpoints, and each resulting filament must crossthe> X* filament.

This addsi — 1 to the intersection number af, y;). Since we have covered all of

n — ¢ positive
X~  chord endpoints

Y™ Y. "

2 (2

1 — 1 negative X+
chord endpoints

Fig. 8. A bifilament associated with the p&ir, y;) in D,,.
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the intersection numbers which contribute to the bifilaments associated.with), we
get:

(e, y))=(—i)+ (-1 =n—1>0.

This means that there are no filamentations onBpywhenn > 2, so by Theorem 4.11,
any flat knot associated with,, must be non-trivial. O

Theorem 5.1 gives us an infinite set of OCDs for which any flat representative must
be non-trivial. We do not yet have a proof that they give rise to distinct flat knots, but we
believe this to be the case.

Conjecture 5.2. The flat knotdJ,, related to theD,’s in Eq. (3) from Theorenb.1 are
distinct for alln > 1.

One interesting result we have found is a related infinite class of virtual knot diagrams,
depicted in Table 1. The first column in the table shows the ODp$or n =0, 1, 2, 3.
The second column shows the related flat kndts The third and fourth columns in
Table 1 show arrow diagramd,, and related virtual knot«,,. Each knotK, has an
underlying universd/,. As we shall see, the virtual kno#s, are all distinct. What is
even more interesting about this class is that each knot has trivial Jones polynomial and
trivial fundamental group. This gives the first example of an infinite class of virtual knots
with trivial Jones polynomial and trivial fundamental group.

5.1. The Jones polynomial via the Kauffman bracket

Many of the results stated in this section are from [15,16]. Another nice reference
containing the known properties of the (normalized) Kauffman bracket and the Jones
polynomial is [18].

To compute the bracket polynomial in the case of classical knots, we start with the skein
relation:

D)) )=

Using (4), expand each crossing in a knot diagram until we are left with a sum of collections
of simple closed curves, callestates To evaluate the bracket on a state, we apply the
following:

<QK>=8(K) =(—A%2- A72)(K) (5)
()

The bracket extends naturally to the virtual category. As above, a state of a virtual knot
diagram is the result of smoothing all real crossings. A closed curve in such a state might
still contain virtual crossings. Ignore the virtual crossings and count the number of closed
curves| S| in the state. Assign the value 8f51-1 to each state. Since the bracket is a
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Table 1
The class of virtual knots arising from,,

n Dy

@ O

AT
o

o 5 ) 6 |
36D 6 b

regular isotopy invariant, we need to normalize it to get an invariant of virtual knots under
ambient isotopy.

Definition 5.3. Let K be a virtual knot diagram. Therithe of K is the sum
wK)= Y &),
xeC(K)

whereC(K) denotes the set of all real crossingskinande (x) is the sign of a crossing.

Definition 5.4. If K is a virtual knot, then the normalized bracket is given by

—wr(K)

fx(A) = (=A%) (K).

For example, we compute the bracket of the positive virtual Hopf link:
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o)~ )
AR

=A+A7"
and the normalized bracket is then
Fomtopt, (A) = (=A%) P (VHopf, ) = —A3(A+ A =—A2 -4,

If K is a knot diagram an&* is the diagram obtained by switching all the crossings
in K, we have the well-known propertgk+(A) = fx (A~1). This gives us the normalized
bracket on the negative virtual Hopf:

Futopt_(A) = furopt, (A7) = —A% — A%,

An immediate result is thatHopf, andVHopf_ are distinct.
Another well-known result is the connection between the normalized bracket and the
Jones polynomial:

Theorem 5.5. Let K be a knot and/k (¢) be the Jones polynomial &f. Then
Vk (1) = fx (t77%).

In the case of classical knots (of one component), the Jones polynomial is always an
element ofR[z, 1], and hence the normalized bracket gives rise to polynomials in
R[A*, A—*]. However, when generalized to include virtual knots, the Jones and normalized
bracket polynomials on single component virtual knots turn out to B{if'2, r—1/2] and

R[A2, A—2], respectively. This means that some virtual knots can be detected by looking
for non-integral powers of in the evaluation of the Jones polynomial (or odd powers of
A2 in the normalized bracket).

5.2. Virtual knots related tod,, have trivial Jones polynomial

Theorem 5.6 (Kauffman [15]).The bracket is invariant under the following moves

(0 - DO
(0 - OOO0)

Translating the above to arrow diagrams, we have:

0 -(6) ®

(@)
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Eq. (8) implies that other than the general configuration of the chords, the bracket
depends only on the local orientations of the arrow basepoints in an arrow diagram. The
direction of an arrow can change, provided that the local orientations of the endpoints
change with it. Thus the relevant signs stay the same, as does the writhe. This brings us back
to what we stated in Section 2. The normalized bracket (and hence the Jones polynomial)
is an invariant of signed chord diagrams. This will be the subject of another paper.

Definition 5.7. If V andV’ are two virtual knots for whichfy (A) = fy/(A), thenV and
V'’ are said to bdones equivalenThe same expression can refer to chord diagrams.

There are many examples of virtual knots which are Jones equivalent. Considebthe
move. Changing one arrow direction results in

(&= - ) - () 0

It is easy to construct infinite families of Jones equivalent virtual knots. Take any arrow
diagram.A. Then choose two empty arcs within it, and apply (9) an arbitrary number of
times. Each of th&,, in Table 1 is an example of this.

Theorem 5.8. If K, is a virtual knot associated withl,,, then fx, (A) = 1.

Proof. The first two ADs,Ag andA; are representatives of the trivial knot clads.is a
direct result of applyingt D1 to the unknot diagram, andl; is the result of applyingt D,
to the unknot diagram. The rest of thg, are also Jones equivalent to the unknot, because

o for evenn, the A, are Jones equivalent idg, and
e for oddn, the A4,, are Jones equivalent 4.

This is because eachi, in Table 1 is Jones equivalent 1, » by a single application of
(9) on the horizontal arrows. As a result, eakh is Jones equivalent to the unknot and
hence the normalized bracket will be trivial on all of thenm

We should point out that Jones equivalence does not necessarily come only from
transformations of the form in (7) and (8). There are also classical knots such as mutants,
for example, which are Jones equivalent to each other. We doubt that mutants can be
obtained through (7) alone.

A well-known open question is the following: are there non-trivial classical knots which
are Jones equivalent to the unknot? In other words, does the Jones polynomial detect
knottedness for classical knots?

Conjectureb5.9. If K is a non-trivial classical knot, theiix (A) # 1.
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5.3. The fundamental group and the quandle

We are about to define an algebraic system with two non-associative binary operations,
a x b anda xb. In order to simplify the book-keeping of this system, we will use a special
notation,

ayl:a*b and aw:aib.

The notation is useful because it allows us to write expressions in a non-associative
setting without requiring lots of parentheses. The operators assume a left associative
convention, and when an expression is associated differently, the over and under bars serve
as parentheses by extending over or under the entire sub-expression acted upon.

The two basic associations are:

(axb)xc=ab|c,

a*(b*c):aﬁ'.

Here are some mixed expressions:

(axb)xb=alb b],

a*(bi(c*d)):aﬁ'.

See [17] for more on the formalism of the operator notati¢mnd| .

Definition 5.10. A quandle[15] Q is a non-associative algebraic system with two binary
operations represented through the symb_c}Iandr which satisfy the following axioms:

(1) Foreverya € Q,afa =a anda a] =a.
(2) Foreverya,be Q,alb b|=aanda b][b =a.
(3) Foreverys, b e Q, thereis anx € Q such thatr = a b| anda = x|b .
The left/right variant of this statement must also be true:
For everya, b € Q, thereis anx € Q such thatx = a[b anda = x b|.
(4) Foreverya, b, c € Q, the following two equations hold:

aBlel=ad b,
able|=ac|bd]

The axioms of a quandle make it possible to associate quandles with knots and links in
such a way that the algebraic structure is invariant under the Reidemeister moves.

A bridge arcin a virtual diagram is a strand between the undercrossings of two (possibly
the same) classical crossings. In the same sensarcan a diagram is a strand directly
between any two classical crossings. This means that a bridge arc is interpreted on an
arrow diagram as an arc directly between terminating endpoints of arrows. An arc is a
portion of the circle directly between any two arrow endpoints. For example, in Table 1
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there are two arcs ifKg and the related arrow diagramfly, whereas there is only one
bridge arc.

We define a quandl@(K) associated with a kn& as follows. Start with an oriented
diagram. Assign one generator to each bridge arc. For each classical crossing, depending
on crossing orientation, assign an equivalence according to the following rule:

c=ba] a b c:aﬁ

AN /
AN /

a b a b

(10)

We say a quandle rather than the quandle, because we refer to any quandle satisfying these
properties. There is a universal construction [13] for a quandle associated with a knot, but
we will not discuss that construction here.

Setting b a| = bab™* and alb = a~*ba in the universal construction gives the
fundamental group of the complement of a classical knot. We will dengt& ) to be
the fundamental group of a virtual kn&t obtained via the quandle.

5.4. Virtual knots related tod,, have trivial quandles

Lemma 5.11. If we evaluate a quandle on

a—] —b
a — — C

where the box is replaced by a sum of the following elemertaangles

Ko e X

thena = b = ¢. The tangle introduces no further equations.

Proof. We leave this proof as an exercisex

Theorem 5.12. If K, is a virtual knot associated witi,,, thenz1(K,,) =0

Proof. Inthe right column of Table 1, we have representative virtual kkgttor eachA,, .

By Theorem 3.4, if we prove1 = 0 on each of these, we are done. We will prove this via
the quandle. First note that ea&h) in Table 1 are of the general form:

a (11

where the box is replaced by a horizontal sum of elementary 4-tangles.
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In (11), we have labeled the bridge arc emanating from the lower left side of the tangle
by the generatat. Note that this bridge arc both enters and exits the left side of the tangle.
Both strands entering the left of the box are labeled with the generaBy 5.11, we see
that the strands emanating from the right of the box can also be labefexh result, every
bridge arc in the knot diagram can be labeled with the same generator, and the quandle is
trivial. O

6. The Alexander biquandle

In the construction of a quandle, we can think of each crossing as an input/output
diagram with the labels on the strands that go into the crossing as inputs to a function,
and labels on the strands that go out of the crossing as outputs of that function. This idea
leads to the biquandle [8,17,11]. With the quandle, the overcrossing strand carries a label
unchanged across the diagram, while the undercrossing strand changesits label in a manner
which depends on both input labels.

In a biquandle, the overcrossing strand may also change its label. This requires the
definition of four separate functions for the output strand labels, as illustrated in Fig. 9. We
indicate these functions by the symbolism

a BI a |Z (lﬂ (l|£

and view both the inputs and outputs from left to righta@ =a anda|£ =a for all
a and b, the formalism is identical to what was previously defined for the quandle. In
general, the biguandle is a complex algebraic generalization of the quandle, with its own
set of axioms. Here, we give a specific example of a biquandle, the Alexander biquandle,
and use it for the purposes of calculation.

Note that each of the symbolg, |,| and[ , can be regarded as a binary operation
on the underlying set of the biquandle. Using this symbolism, the functions for the left and
right crossings are

BRI AR

In order for these functions to define a biquandle, they must exhibit invariance under
the Reidemeister moves. We omit the details here.

The Alexander biquandle is an example of a biquandle, and we will only deal with its
specific properties.

c:ba d:aﬂ c:bm d:a|7b
KX
a \b a/ b

Fig. 9. The biquandle operations.
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c=tb+(1—st)a d = sa
b

A X

Fig. 10. The Alexander biquandle operations.

Consider any module/ over the ringR = Z[s,s 1, r,+~1]. Defining the binary
operations with the following equations provides us with a biquandle structusé:on

ayl:ta—i—(l—st)b, aﬂ =sa, (12)
1 1 1
I 1— = =_q. 1
a|5 ta—i—( st)b’ a|£ 4 (13)

If M is a free module, we call thisfeee Alexander biquandle

We associate a specific biquandle to a virtual knot diagram by taking the free module
obtained by assigning one generator for each arc and factoring out by the submodule
generated by the relations given in (12). We call the resulting modWB& (K) the
Alexander biquandle of the knét.

Note that

«[;1-[,] s

B |:tb—|— (l—st)a] (15)

sa

(o)L o

is a linear map, and&k can be represented by the matrxgiven in Table 2. Similarly,

the functionL can be represented by the matfxin the table. Since we are dealing with

linear functions, we need not restrict our inputs and outputs according to the direction of
the strands. Instead, we can choose any two adjacent strands as inputs, and compute the
resulting function by inverting or changing the basis of the original matricasd B. To

maintain a input/output convention which is consistent with before, we will order inputs in

a counter-clockwise direction and outputs in a clockwise direction.

Note that we have inserted a matrik in Table 2, which permutes the inputs. This
matrix represents the virtual crossing, where labels are passed along the strands without
any changes.

The set of relations for a presentation 4B Q(K) contains a generalization of the
Alexander polynomial (see [12,17,22,23]).

Definition 6.1. The Generalized Alexander Polynomial &f, Gk (s, t) is the dete'rminant
of the relation matrix from a presentation afBQ(K). Up to multiples of+s'z/ for
i, j €Z,itis an invariant ofk .
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Table 2
Matrices for the Alexander biquandle

1—st t
=(0)

o
Il
N e)
[N
[N
|~
\—/

o
Il
o)
Il

-]
©
[
=i
~~——
1=}
v |
=l
O =k
~—~—

AKAAX
HKAXA

<
I
N
— o
o P
N——

This polynomial is a zeroth order polynomial. It vanishes on classical knots and links.
Recall that in the previous section, the flat kndts are non-trivial. The generalized
Alexander polynomial provides us with the tools to show that the related collection of

knotsK,, are all distinct.
Theorem 6.2. The virtual knotsK,, are all distinct forn > 0.

Proof. We use the following model as our general form for fe

17)

X,
K, =

Y

The arrows show the direction we will use for the matrix insertions. The simplified relations

- XHZCJ y[b]zu (18)

Using the matrices from Table 2 to calculate the Generalized Alexander polynonkal,on
we have

(t 1—st>
Y=AV = .
0 s
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Now setX = (11! 112), so thatG, (s. 1) is the following determinant:

l1—-st ¢+ -1 O
s 0 0 -1
-1 x11 x12 O |°
0 x21 x22 —1

The general form foX,, depends on whetheris odd or even.

Gk, (s, 1) =

v(cvEV) =v(cd)=ver,  ifn=2k k>0, 19)
VvDV(CVCV) =c(cd) =c", ifn=2k+1 k>0
With a little help from Maple,
(=0)"+tsA=m —(=0)"+s7"
n st+1 st+1
= . 2
¢ ( t(=s(=0)"+s3)  ts(=t)" 457" ) (20)
st+1 st+1
Forn even
1—st t -1 0
s 0 0 -1
Gk, (s, t) = B T e o) W T e 0
st+1 st+1
(—t)”—H (1-n) —(—l)”-l— —n
0 st—Q—i st—i—ls -1
S+ DA -0 522 — 1+ (L — 52
- st+1
and forn odd,
1—st t -1 0
s 0 0 -1
GKn (S, Z‘) = (=1)"+1: (1-n) —(=1)"4s"
-1 st—Q—Yl st—i—lY 0
(= (—l‘)"-‘r‘ (lfn)) I (—l‘)"-ﬁ—‘ —n
0 - st—&-lY - st+1Y -1
s —12) 4522 — 14 (1 — s
- st+1 ’

The polynomialss” (st + 1)(1 — ¢) and s+t (1 — ¢2) are distinct for any: > 0. This
proves the theorem.O

7. Open problems

There are many unanswered questions in flat virtual knot theory. In addition to the
difficulty of determining when a flat knot is trivial, it is also hard to distinguish between
two flat virtual knots. In this paper, we have given methods to determine the non-triviality
of some flat virtual knots. We have investigated the fandily of flat virtual knots that
are shadows of the knofs,,. We showed that eack,, is distinct from the others. It is
conjectured that th&,, are all distinct as flat virtual knots.
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Fig. 11. A non-trivial virtual knot (Kishino’'s example).

a

Fig. 12. An example of how to compute the flat biquandle on a knot.

An intriguing example of a flat knot conjectured to be non-trivial is the flat Kishino knot,
shown in Fig. 11. This diagram is not detected by filamentation techniques. In addition, the
Kishino virtual knot shown in the same figure is undetectable by biquandles and the Jones
polynomial. It has been shown to be detected by the 3-stranded Jones polynomial [19].

We do have a simple biquandle invariant that can detect flat links. It is a specialization
of the Alexander biquandle that is described by the labellings:

s71b sa b a

a b a b

These labellings give a module structure associated with a flat diagram in a similar way as
with the Alexander biquandle. Fig. 12 illustrates an example linkhose flat biquandle

is generated by elementsandb and has relations?a = a ands—2b = b. The unlink

of two components is a module with generatarand b and no relations. This shows
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that L is linked (where direct parity counts fail). Clearly, much more work remains to be
accomplished in this field.

At this writing, it is not known how to extend the filamentation invariant to links. More
generally, we would like to have more powerful combinatorial tools to distinguish flat
virtual knots and links.
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