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1. Introduction

Virtual knot theory is a recent generalization of knot theory. One motivation for stud
virtual knots comes from the methods of describing knots through the use of
diagrams. In Section 2 we give the basic definitions for this point of view. In particula
define oriented chord diagrams and arrow diagrams. The definition for a virtual knot i
given, although we recommend [15] as an introduction for the reader who is not a
familiar with virtual knot theory. Flat virtual diagrams and their equivalence classe
introduced in Section 3.

In Section 4 we define a filamentation on a Gauss chord diagram. Filament
were first introduced by Scott Carter as a tool for detecting when an immersed
can be bounded by a disk [3]. Following a suggestion of Carter [5], we show
filamentations can also detect when virtual knots are non-trivial. In [6] virtual and
virtual knots are shown to be non-trivial by using a combination of techniques from
and a formulation of the classification of virtual knots in terms of stabilized embed
in thickened surfaces. Here, we use the notion of filamentation directly in the co
of the combinatorial definition of virtual knots and links. We prove that the exist
of a filamentation is preserved under generalized Reidemeister moves for virtual
thereby obtaining a combinatorial version of results that can also be obtained
stabilized surfaces. The result is Theorem 4.10. In fact, we prove that whenever t
no filamentation on a chord diagram, then any associated flat virtual diagram can
reduced to a classical diagram. There are many open problems in the classification
virtual knots.

One interesting result of Theorem 4.10 is that we have found an infinite cla
chord diagrams for which no filamentation exists. Section 5 explores this infinite
of virtual knots (Kn) related to the chord diagrams. The generalizations of both the J
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polynomial and the fundamental group to virtual knots cannot detect any of theseKn.
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Using filamentations, we are able to show that eachKn is non-trivial, although this metho
cannot distinguish between theKn. In Section 6, we prove that theKn are an infinite class
of mutually distinct knots.

2. Definitions

We define a knotK in the combinatorial sense, as a class of diagrams which repr
a generic projection of an embeddingS1 → S3 or S1 � · · · � S1 → S3. Each circle
represented in such a diagram is called a component, and if there is more tha
component, the diagram (or related class) is sometimes referred to as a link. A
in a knot diagram is the projection of a connected interval in the embedded curve. In
diagram, certain arcs of the projection of the curve embedded in space are elimin
form a knot diagram, creating broken strands that indicate the over and under crossi
each crossing in the diagram there is an indicated over strand and a broken under
In this sense, there are two local strands at any crossing in a diagram. Any time we r
a strand of a crossing, we mean one of these two local strands.

Definition 2.1. Two knot diagramsK andK ′ are said to beequivalentwhen there is a
finite sequence of the following (Reidemeister) moves which transformK intoK ′:

A knot is an equivalence class of knot diagrams under the Reidemeister moves.

A knot can have an orientation. This is indicated on a knot diagram by drawin
arrowhead on one or more strands in such a way that each component has a co
labelling. The Reidemeister moves for an oriented knot are the same as for uno
knots. We are free to apply the moves without paying attention to the particular orient
of the strands involved.

There is also the notion of more than one kind of Reidemeister equivalence.Regular
isotopyis equivalence under only the R2 and R3 moves.Ambient isotopyis equivalence
under all three moves. It is useful to distinguish between the two because the
invariants which only cover regular isotopy. For a more general treatise on knot th
see [14,18].

In the study of Vassiliev (or finite type) knot invariants, chord diagrams and we
systems have been used as a calculational tool [1,10,21]. We will examine chord dia
further and investigate their usefulness in the general theory of knots. Briefly, a
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diagram is a circle (or set of disjoint circles)1 with pairs of points on it, where each pair
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of points is connected by a line segment, orchord, in the interior of the circle. Abstractly
a chord diagram is a trivalent graph with a subgraph homeomorphic to a circle suc
all remaining edges in the graph connect pairs of nodes on that circle. We will assum
convention that the circle in a chord diagram is oriented in a counterclockwise dire
One way of thinking of a chord diagram is to view the outer circle(s) as the pre-ima
the projection of a knot.

Definition 2.2. The universe(or shadow) [15] of a knot is a generic projection of t
embedding without specified over or under crossings. We sometimes refer to this as
tened knot diagram.

The circle(s) in a chord diagram can be interpreted as the domain of a knot projection
circle corresponds to a component in an associated embedding. Hence we will som
refer to each circle as a component of the chord diagram. Each chord connects the
points corresponding to a particular crossing. This does not encode the types of cro
involved. Additional structure is needed in order to describe a knot diagram complet

One solution to the problem of encoding the knot diagram is to add a sign and a dir
to each chord [10,20,21].

Definition 2.3. A signed arrow diagramis a chord diagram in which each chord
decorated with an arrow and given a sign. The sign determines the crossing orie
and the arrow points to the chord endpoint which lies on the undercrossing stran
related knot diagram.

Definition 2.4. Dropping the arrow directions from a signed arrow diagram leaves a c
diagram with a single sign on each chord. We call this asigned chord diagram.

There is a slight problem with developing a theory using signed arrow diagrams. We
like to have a chord diagram version of universes (oriented flattened knot diagram
generalizes signed arrow diagrams. However, for a signed arrow diagram, the arro
sign information are interdependent. Furthermore, signed chord diagrams do not st
same kind of information that universes do. It turns out that the Jones polynomial de
solely on the underlying signed chord diagram of a knot, and this certainly cann
said for knot universes. Each universe covers multiple knot classes, many of whic
different Jones polynomials.

If we drop the arrows, leaving a single sign on each chord, we do not have e
information to encode an oriented universe. We will take care of this problem by ass
two signs to each chord.

Our enhancements will modify signed arrow diagrams in a way that allows us to h
oriented knot universes. We start by defining anoriented chord diagramand then give

1 For links, we use a circle to represent each component. Each crossing involving a single compo
represented by a chord contained in the interior of that component’s circle. All crossings between two d
components are represented by chords between each circles’ exterior.
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oriented chord diagram.

2.1. Oriented chord diagrams

Definition 2.5. An oriented chord diagram,or OCD, is a chord diagram with a labellin
of ‘+’ or ‘ −’ on each chord endpoint, so that each chord connects points of opposite

An OCD encodes the universe of a knot diagram. A neighborhood of a chord end
(restricted to the circle) corresponds to one strand of a crossing in a universe, and t
on each chord endpoint determines the local orientation relative to that strand. In o
label a chord endpoint, start with its corresponding strand in the universe and vie
strand in the direction induced by the counter-clockwise orientation of the circle.
look at the other strand of the crossing. If it passes from right to left, label the cu
chord endpoint with a ‘+’. Otherwise label it ‘−’. (See Fig. 1). In other words, we vie
the two strands as vectors in the plane of projection. The orientation comes from a st
right handed convention relating the first vector to the second. Switching the point o
from one chord endpoint to the other reverses the local orientation.

Suppose we wish to recapture the universe from a single component OCD. C
a point on the circle that is not a chord endpoint. Starting at this point, follow aroun
circle in a counterclockwise direction. While traversing the circle, draw a curve for
a diagram as follows:

• Each time the first endpoint of a new chord is encountered, draw a crossing ob
the sign convention and continue drawing the curve.

• When the second endpoint of a chord is encountered, connect the curve throu
previously drawn crossing in the direction indicated by the sign.

• If the curve is forced to cross itself at any point, circle the forced crossing
distinguish them from those associated with chords.

• Whenever possible, draw the curve so that the only crossings that occur corresp
chords in the diagram.

• Connect the endpoints of the curve when all the chords are accounted for.

Fig. 2 shows a knot universe along with the OCD which represents it. If there are mu
components in the OCD, proceed in the same fashion for each one.

In the resulting universe, any crossing indicated by a chord in the OCD is called
(or classical) crossing. The remaining crossings—those forced by the planar configu
of real crossings—are called virtual. Virtual crossings are like edge crossings in a dr

Fig. 1. Crossing conventions for oriented chord diagrams.
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Fig. 2. An oriented chord diagram and related knot universe.

of a non-planar graph; they do not exist in the original chord diagram, but are artifa
drawing the associated planar universe.

Definition 2.6. When we refer to crossingtype, we mean the distinction between real a
virtual.

In addition to diagrammatic representation, an OCD can be encoded in terms
chord endpoints and how they are ordered while traversing the circle(s). SupposeD is an
OCD withn chords,{x1, x2, . . . , xn}. For each chordxi , label the positive endpointX+

i and
the negative2 endpointX−

i . In this paper, we will stick to the convention of using lowerc
letters when referring to chords and the corresponding uppercase letters when re
to endpoints. Ifc is a chord inD, thenC+ andC− are the positively and negative
(respectively) oriented endpoints ofc.

To encode an oriented chord diagramD, begin at any edge between nodes on the cir
Traverse the circleD in a counterclockwise direction and write down the appropriate l
for each chord endpoint as you pass it, until you return to your original location o
circle. Multiple components generate multiple codes: one for each component. Co
the OCD in Fig. 2. An example of a code associated with it isA+B+C−A−C+B−. These
codes are unique up to cyclic permutation (to account for where you start on the c
along with any permutation of the chord labels.

That is,

A+B+C−A−C+B−, C−A−C+B−A+B+, and A+C+B−A−B+C−

are all codes for the same OCD.

2.2. Arrow diagrams

So far, we have described OCDs and their relationship with knot universes. We
an arrow diagram within this framework.

Definition 2.7. An arrow diagram,or AD, is an oriented chord diagram in which the cho
are replaced with arrows. The direction of each arrow gives the extra structure on a cr
in the related knot universe by the convention that the arrow points from the overcro
to the undercrossing strand.

2 We also use the negative superscript as an orientation reversing operator:(A−)− =A+ .
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Fig. 3. Crossing conventions for arrow diagrams.

Fig. 4. The arrow diagram moves.

Note that the local orientation on the base endpoint of an arrow (corresponding
overcrossing strand) matches the classical knot theoretical convention of crossing s
an oriented knot (see Fig. 3). The local orientation of one chord endpoint is always op
to the other endpoint, so we will only label the base endpoint of each arrow in an A
our new definition, an arrow diagram looks just like a signed arrow diagram, excep
by convention, the sign refers to the base of the arrow. The sign on an arrow in an
diagram refers specifically to the local orientation of the arrow basepoint, and the m
local orientation sign for the tip of the arrow is implicitly the opposite sign.

For the purposes of this paper, the code associated with an arrow diagram will
same as the code associated with the underlying OCD. If more information is need
can use the subscripts ‘o’ and ‘u’ to denote arrow basepoints and endpoints (respectiv
For example,A+

o B
+
u C

−
u A

−
u C

+
o B

−
o encodes an arrow diagram with the same underly

code as the OCD in Fig. 2. We emphasize again that this is not the same as the con
for signed arrow diagrams where only one sign is associated with each arrow.

We can take the set of all arrow diagrams and define an equivalence relation un
Reidemeister moves translated into AD form (see [10]). Fig. 4 lists these moves. Thε on
the arrows is meant to be either+ or −. Each arc represents a portion of a circle in an ar
diagram, but it is not necessary to assume that the relative arc placements must be a
In theAD2 move, the two arcs might lie on separate circles of a multiple componen
Further, in theAD3 move, we allow flexibility in the ordering of the arcs, even within
single component diagram. Simply put, the arc placements in a single application of
move can differ from Fig. 4, provided that arc ordering does not change across the m
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A−
u B

−
u · · ·C+

o A
+
o · · ·C−

u B
+
o to B−

u A
−
u · · ·A+

o C
+
o · · ·B+

o C
−
u

under the move. Another example ofAD3 might change the subcode from

C+
o A

+
o · · ·A−

u B
−
u · · ·C−

u B
+
o to A+

o C
+
o · · ·B−

u A
−
u · · ·B+

o C
−
u

in an arrow diagram. With this in mind, these moves completely describe the reformu
of Reidemeister moves into diagrammatic form and translate the combinatorics o
equivalence into arrow equivalence.

3. Virtual knots

It turns out that this new class of objects generalizes the classical knots. Giv
abstract arrow diagramA, we find that it is not always possible to realizeA as a
knot projection on a sphere or plane. Such a non-planar AD is a virtual knot. A
diagrammatic definition follows:

Definition 3.1. A virtual knot diagramis a generic immersionS1 � · · · � S1 → R
2 such

that each double point is labelled with either a real (over or under) or a virtual (cir
crossing. Thus avirtual knot is a class of equivalent virtual diagrams, where two virt
knot diagrams are said to be equivalent when one can be transformed into the oth
finite sequence of real Reidemeister moves (R1), (R2) and (R3), along with the follo
virtual moves:

As in the classical case, a virtual knot with multiple components is sometimes c
a virtual link. For this paper, we will use the term ‘virtual knot’ to refer to both virt
knots and links. When we do not wish to consider virtual crossings, we will use the
‘classical knot’ to mean knots and links without virtual crossings.

An alternate definition to virtual Reidemeister equivalence is to allow the clas
Reidemeister moves with the addition of a more general “detour move” (see [15,16]

(1)
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tangle (represented by a box). The idea is that in a virtual diagram, if we have an ar
any number of consecutive virtual crossings, then we can cut that arc out and rep
with another arc connecting the same points, provided that any crossings on the n
are also virtual. It is easily seen that this yields the same equivalence.

Definition 3.2. If K is a knot diagram, thenAD(K) is the arrow diagramrelated toK.

Notice that there are some mixed moves which are not allowed. Consider the foll
moves:

and

These are forbidden as knot diagrammatical analogues to the AD moves. They c
the related arrow diagram in a manner which is not equivalent under the AD moves
permute two adjacent arrow endpoints. However, inclusion of the above left (overs
version of this move has been studied in the form of welded braids [7,9], a generali
of braid theory preceding virtual knot theory.

From the definition, we note that a virtual knot or link can also be classical. This ha
when it can be represented by a diagram in which all of the crossings are real. Furthe
the virtual moves (V1)–(V4) leave the related arrow diagram unchanged, they also pr
the classical knot type. However, it is possible to apply an arrow diagram move to a
diagram for a classical knot in such a way that the resulting knot diagram is no l
classical.

There has been progress in applying well-known knot invariants to the virtual th
In [15] Kauffman extended the fundamental group, the Jones polynomial and clas
quantum link invariants to virtual knots and gave examples of non-trivial virtual knots
trivial Jones Polynomial and trivial3 fundamental group. We will cover the fundamen
group and the Jones polynomial in Section 5.

One of the results we will assume is the following, proved by Kauffman and
Goussarov, Polyak and Viro:

Lemma 3.3. If K andK ′ are classical knots which are equivalent under virtual Rei
meister equivalence, then they are also equivalent under classical Reidemeister e
lence.

We will also use the following result from [10]:

Theorem 3.4. Virtual equivalence and AD equivalence are the same thing. That is, i
arrow diagrams are equivalent under AD moves, then any virtual knots related to
two diagrams will be virtually equivalent. Likewise, ifK �K ′, thenAD(K)�AD(K ′).

3 By trivial fundamental group, we mean a group isomorphic to the integers.
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An immediate question that arises is how to determine when a virtual knot is clas
In [15], Kauffman introduces flat Reidemeister equivalence as one approach t
problem.

Definition 3.5. A flat Reidemeister moveis a classical or virtual Reidemeister move
which the over/under information at each real crossing is suppressed, so that all
important is the distinction between crossing types (real and virtual). Two universes aflat
(Reidemeister) equivalentif there is a finite sequence of flat Reidemeister moves taking
one universe to the other. An equivalence class of knot universes under flat equival
called aflat knot.

In Fig. 5, we illustrate the (flat) Reidemeister moves for flat virtual diagrams. Note
a sequence of virtual crossings can be detoured across flat crossings (using the mixe
given by IV), but not vice versa. The virtual detour move given in (1) applies for flat k
as well, and can be thought of as equivalent to move IV in the presence of the other m

The remarkable fact about flat virtual diagrams is that while they are often non-t
(and hence non-classical), we have very few invariants at the present time which det
classify them. For example, consider the following flat diagram:

E =

At the time of this writing, we do not have a proof using our methods that the flat dia
E given above is a non-trivial flat virtual diagram.

(I)

(II)

(III)

(IV)

Fig. 5. The flat Reidemeister moves.
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Definition 3.6. Theparity of a link is the parity of the total number of crossings betwe
distinct components. The parity is an invariant of flat virtual links, because it is pres
under the flat Reidemeister moves.

For the virtual Hopf link, the parity is odd and henceVHopf is non-trivial.

Theorem 3.7. If a virtual knot is classical, then its related universe is flat equivalent to
unknot.

Proof. It is well known that every classical knot diagram can be unknotted by choo
and switching a certain number of crossings. The original knot along with this unkn
diagram both share the same universe. As a result, we can always find a sequenc
moves taking a classical universe to the unknot diagram.✷

Note that a flat virtual diagram is the same as a knot universe, with the addi
property that it may also have virtual crossings. For any oriented flat virtual diag
there is an OCD associated with it in the same way that a chord diagram is asso
with an oriented universe. Recall that the chords in an OCD have no arrows an
labelled with signs at their ends corresponding to the crossing orientations of
corresponding curves. Each flat Reidemeister move induces a related OCD move
OCD moves are the same as the arrow diagram moves in Fig. 4 with the arrow end
removed.4 This OCD approach will become useful in the discussion of filamenta
invariance.

4. Filamentations on chord diagrams

The notion of a filamentation5 was first introduced in the early 1990s by Scott Ca
in [2–4] while looking at generic immersions of disks in 3-space. In the particular
where the boundary of the disk is mapped to the boundary of the manifold, he note
the intersection curves would necessarily have a total net intersection of zero. In

4 To get an oriented chord back from an arrow, we drop the arrow tip and place a sign on that endpoin
opposite to the one on the basepoint.

5 Also known as bifilarations.



D. Hrencecin, L.H. Kauffman / Topology and its Applications 134 (2003) 23–52 33

he suggested [5] that filamentations could be used to answer a conjecture of Kauffman’s

knot
le is

ersed
in an

erever
nating
ent is
at one

ersed
of flat
n a flat

nerally

at
ired

one
n

g the
. We

or this
planar
in [15] that the following flat knot was non-trivial under flat virtual equivalence:

A knot diagram with the above universe was the first example of a non-trivial virtual
with trivial Jones polynomial and trivial fundamental group [15, p. 683]. This examp
equivalent toK2 in Table 1.

Roughly speaking, a filamentation can describe the intersection curves on an imm
disk, much in the same way that a chord diagram describes the double points
immersed circle. Consider an immersed disk which bounds a flat knot diagram. Wh
the diagram has a flat crossing, the immersed disk will have intersection curves ema
from the crossing. These intersection curves will begin and end at crossings. A filam
a curve from the pre-image of such an intersection curve. Thus, a filament begins
chord endpoint and ends at another (not necessarily the same) chord endpoint.

Our method will generalize this description so that there is no dependence on imm
curves in space. We describe filamentations in the purely combinatorial context
virtual knots so that the existence of a filamentation can be used to determine whe
knot is non-trivial.

For the remainder of the paper, when we say chord diagram, we are referring ge
to OCDs and ADs.

Definition 4.1. A pairing P on a chord diagramD is a collection of chord pairs such th
each chord inD occurs in exactly one pair in the collection. A chord is allowed to be pa
with itself.

For example, the OCD in Fig. 2 has the following possible pairings:{
(a, a), (b, c)

}
,{

(b, b), (a, c)
}
,{

(c, c), (a, b)
}
,{

(a, a), (b, b), (c, c)
}
.

(2)

Definition 4.2. Let x andy be chords in a chord diagram whose endpoints are on
circle. A filamentα associated with the chord pair(x, y) is a generic curve between a
endpointXε of x and the corresponding endpointY−ε of y (whereε ∈ {+,−}). Between
endpoints, the curve must lie completely in the interior region of the circle containin
endpoints ofx andy and may contain a finite number of transverse self-intersections
orient the filament from the negative endpoint to the positive one.

In general, there are an infinite number of filaments associated with a given pair. F
paper, we will treat a filament associated with a pair as a single class, taken up to
isotopy of immersed curves with fixed endpoints.
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Definition 4.3. Thedualof a filamentα :X− → Y+, denotedα′, is a filamentα′ :Y− →X+
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between the two corresponding chord endpointsY− andX+ of opposite sign.

Definition 4.4. If x andy are distinct chords, then the two filaments associated with
pair (x, y), namelyα :Y− →X+ and its dualα′ :X− → Y+, are calledbifilaments.

Definition 4.5. A monofilamentis a filamentα :X− → X+ associated with a symmetr
pair (x, x). In this case,α = α′.

We will refer to distinct pairs(x, y) as bifilament pairs and self-pairs(x, x) as
monofilament pairs.

Definition 4.6. When two distinct filamentsα and β intersect transversally, they ha
anoriented intersection numberα

−→∩β . It is calculated by looking at the local orientatio
(using a right-handed convention) of the crossings between each filament: looking
direction ofα, if β is directed from right to left (left to right), thenα

−→∩β = +1 (= −1). If
there are no intersectionsα

−→∩β = 0.

Note that the above assumes that the filaments are drawn in such a manner th
cross exactly once, if at all. If two filaments have more than one transverse intersectio
up all intersection numbers betweenα andβ . This more general description is consist
with the above definition.

Consider any pair inP , and suppose thatα is a filament associated with that pair.

Definition 4.7. Theintersection number of the filamentα is

〈α〉 =
∑

γ /∈{α,α′}
α

−→∩γ.

If x andy are distinct, andα and its dualα′ are bifilaments associated with(x, y), then
the intersection number of the bifilament pairis〈

(x, y)
〉= 〈α〉 + 〈α′〉 =

∑
γ /∈{α,α′}

α
−→∩γ + α′−→∩γ.

Similarly, if α is the monofilament associated with the pair(x, x), then theintersection
number of the monofilament pairis〈

(x, x)
〉= 〈α〉 =

∑
γ /∈{α,α′}

α
−→∩γ.

Note that this can be expressed as a single formula:

Definition 4.8. Theintersection numberof a pair(x, y), is〈
(x, y)

〉= ∑
β∈{α,α′}

∑
γ /∈{α,α′}

β
−→∩γ

whereα is a filament associated with(x, y).
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use a subscript〈 〉P to specify which pairing we are using to calculate the intersec
numbers.

Definition 4.9. A filamentationF on a Chord DiagramD, is a pairing for which the relate
filaments contain only transverse intersections, and the intersection number of each
zero.

For example, the OCD in Fig. 2 has a filamentation:

{
(a, a), (b, c)

} :

Now, we proceed with the first result.

Theorem 4.10. If D is a chord diagram which admits a filamentationF , then for any chord
diagramD′ equivalent(by Reidemeister moves) toD, there is an induced filamentationF ′
onD′. Thus, the existence of a filamentation is an invariant of chord diagrams.

Proof. SupposeD is an chord diagram andD′ is equivalent toD. Then there is a finite
sequence of chord diagrams{D = D0,D1, . . . ,Dn = D′}, such thatDi+1 andDi differ
by a single chord move. All we need to show is that under any of the chord mov
filamentation can always be preserved. This will give us a filamentationFi onDi induced
by each move in the sequence.

In each of the following cases, we will describe how to use the existing filamentatiF
to create the induced filamentationF ′ which results from applying a Reidemeister mov

(R1) We first consider the simplest Type I cases.

If we are adding a chord, as in (R1.a), then the induced filamentation comes from
the old filamentation and adding the pair(a, a). We defineF ′ = F ∪ {(a, a)}. This gives
us a monofilamentα associated with the pair(a, a). It is clear that〈α〉 = 〈(a, a)〉 = 0 since
there are no chord endpoints on the circular arc betweenA+ andA−. Thus, all intersection
numbers in the new filamentation are still zero.

If we remove a self-paired chord as in (R1.b), we again note that the monofilamα
associated with(a, a) intersects trivially with all other filaments associated withF . Thus
we defineF ′ =F − {(a, a)}, and it is clear that we still have a filamentation.

Finally, suppose that the chorda that is removed via a type I move is paired with anot
chord, sayx.
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In the case of (R1.c), the induced filamentation comes from altering the previous pairing
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by replacing the pair(x, a) with (x, x). That is, setF ′ = (F − {(x, a)}) ∪ {(x, x)}. This
works because we can construct a new monofilament associated with(x, x) which carries
the same intersections as the old bifilaments associated with(x, a). Consider for example
the curve starting atX− and following the path of an old filamentα toA+, then following
along the outer circle to the adjacent endpointA− and finally following the path of the
dual filamentα′ to X+. If we adjust this curve slightly so that the circular portions
the path are pushed to within the interior of the circle (as in the above picture), w
a monofilamentβ associated with(x, x). The new curveβ contains the old intersection
from bothα andα′.

Clearly, β intersects the other filaments ofF ′ only where they coincide with th
previous filamentsα andα′. In addition, any old self-intersections betweenα andα′ will
be picked up, but we recall that intersections between dual filaments as well as an
intersections do not contribute to intersection numbers. Thus, the intersection num
the new pair is〈

(x, x)
〉
F ′ = 〈β〉 = 〈α〉 + 〈α′〉 = 〈

(x, a)
〉
F = 0.

Since all the intersections fromF are preserved under the new pairing and no n
intersections are introduced,F ′ is still a filamentation.

(R2) We now consider the Type II moves, starting with the simplest cases.

Whenever we add chords via a Type II move as in (R2.a), the induced filamentation
from adding a bifilament pair(a, b) of the newly created chords. We setF ′ =F ∪{(a, b)}.
The precise configuration of the chord endpoints does not affect the resulting filamen
because in every Type II chord move, an endpoint of one chord must be adjacent
endpoint of opposing sign from the other chord. This forces the two filaments asso
with (a, b) to be curves between neighboring chord endpoints along the circle. J
in (R1.a), each new filament will trivially intersect all other filaments inF ′. No other
intersections are altered from the old pairing, soF ′ is a filamentation.

Similarly, when a type II move removes a bifilament pair, as in (R2.b), the ind
filamentation isF ′ =F − {(a, b)}.

The remaining cases for type II chord removal cover the other possible ways th
removed chordsa andb can be paired.
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Supposea andb are self-paired as in (R2.c). Note that the possible configurations of a type
bove.

e
ons of

he
of the
II move forces the filaments to be oriented in opposing directions, as in the picture a
As a result, for any bifilamentsα andα′ associated with(a, a) we have:

〈α〉 = −〈α′〉.
This also means that the net effect ofα andα′ on any other filament inF cancels when
computing the intersection number. That is, for any filamentγ �= α,α′, we have:

〈γ 〉 =
∑

δ /∈{γ,γ ′}
γ

−→∩δ

=
( ∑
δ /∈{γ,γ ′,α,α′}

γ
−→∩δ
)

+ γ−→∩α + γ−→∩α′

=
∑

δ /∈{γ,γ ′,α,α′}
γ

−→∩δ.

Thus, the induced filamentation for (R2.c) isF ′ =F − {(a, a), (b, b)}.
Now, suppose that eithera or b are paired with a third chord,x. Without loss of

generality we assumea is self-paired andb is paired withx.

In (R2.d), the induced filamentation isF ′ = (F − {(a, a), (b, x)}) ∪ {(x, x)}. As before
in (R1.c), the filament associated with the new pair(x, x) can be defined to be a curv
which follows the old filaments and arcs between chord endpoints so that the locati
all intersections are preserved under the change toF ′. The new monofilamentγ can start
at X− and follow the old pathsβ to α to β ′ (as in the picture above). To calculate t
intersection number of the new filament, we simply add the intersection numbers
filaments associated with the old pairs:〈

(x, x)
〉
F ′ = 〈γ 〉

= 〈α〉 + 〈β〉 + 〈β ′〉
= 〈
(a, a)

〉
F + 〈

(b, x)
〉
F

= 0.

Finally, supposea andb are both paired with other chords.
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For (R2.e), we defineF ′ = (F−{(a, x), (b, y)})∪{(x, y)}. Then, we define the bifilaments
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associated with(x, y) so thatγ travels fromY− to X+ alongβ andα′, and the dualγ ′
travels fromX− to Y+ alongα andβ ′. Thus,〈

(x, y)
〉
F ′ = 〈γ 〉F ′ + 〈γ ′〉F ′

= (〈β〉F + 〈α′〉F
)+ (〈α〉F + 〈β ′〉F

)
= (〈α〉F + 〈α′〉F

)+ (〈β〉F + 〈β ′〉F
)

= 〈
(a, x)

〉
F + 〈

(b, y)
〉
F

= 0.

(R3) Suppose we have a Type III move takingD to D′. For any possible configuratio
of such a move, we define the induced filamentation to be unchanged:F ′ =F .

There is essentially only oneAD3 move to consider from Fig. 4. This is due to the fa
that the diagrams in both versions ofAD3 in Fig. 4 share the same underlying OCD. A
result, the code associated with each move is the same (as are all of the local orienta
each arrow endpoint).6 Further, we do not need to consider each possible arc permu
as described in the discussion of Fig. 4 in Section 2. As we shall see, this is because
position the new filaments in such a way that they only differ from the previous ones w
a small neighborhood of each arc involved in the move. Hence, the intersection nu
in the new filamentation will depend only on the local filament changes near these a

To do this, position the filaments onD so that none of the intersections occur with
a small neighborhood of the circle. On the new diagramD′, configure the filaments a
before except within that neighborhood. Inside this neighborhood, complete the fila
curves by crossing the two filaments which emanate from each arc. Note that sin
AD3 move switches the chord endpoints on each arc, these new filament crossings a
for this. We show a simple example in Fig. 6. On the left, the filaments leaving each a
not cross until they pass outside a neighborhood (depicted by the dotted interior cir
the arcs. On the right, the filaments cross as they emanate from each arc to the dotte
Within the interior circle, the filament curves on both diagrams are essentially the sa

Now, we consider the effect of adding this configuration of three filament cros
to the original filamentation. The general case is shown in Fig. 7. First, suppose th
chordsa, b, andc are paired with other chords,x, y, andz, respectively. The new crossing
contribute as follows:〈

(a, x)
〉
F ′ = 〈

(a, x)
〉
F + α−→∩β + α′−→∩γ ′

= 0+ 1− 1= 0,〈
(b, y)

〉
F ′ = 〈

(b, y)
〉
F + β−→∩α + β ′−→∩γ

= 0− 1+ 1= 0,〈
(c, z)

〉
F ′ = 〈

(c, z)
〉
F + γ−→∩β ′ + γ ′−→∩α

= 0− 1+ 1= 0.

6 This should not come as a surprise to the reader since a filamentation only depends on the underlyin
code, which means that it can be thought of as being associated with the universe of the related knot dia
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Fig. 6. An example of induced filament changes under an R3 chord move.

Fig. 7. The general case of filament changes after an R3 chord move.

The new pairing is a filamentation whenever the old pairing is.
In fact, it does not matter how the chords are paired. For example, suppose wea

with b. Thenx = b, y = a, and from the above case, the filaments consolidate toα = β ′ and
α′ = β . To compute〈(a, b)〉F ′ , we combine the calculations of〈(a, x)〉F ′ and〈(b, y)〉F ′
above. First note〈

(a, x)
〉
F = 〈

(b, y)
〉
F = 0.

Althoughα
−→∩α′ andα′−→∩α do not contribute to〈(a, b)〉F ′ , they do sum to zero, so we wi

include them below to demonstrate the similarity to〈(a, x)〉F ′ + 〈(b, y)〉F ′ :〈
(a, b)

〉
F ′ = 〈

(a, b)
〉
F + α−→∩α′ + α′−→∩γ ′ + α′−→∩α + α−→∩γ

= 0+ α′−→∩γ ′ + α−→∩γ
= −1+ 1

= 0.

Proceed in the same fashion for all other pair choices.

This completes the proof.✷
Theorem 4.11. If D is a Gauss diagram which does not admit a filamentation, then th
knot represented byD is non-trivial.

Proof. SupposeD is trivial. Then there is a sequence of flat moves takingD to the unknot.
Since the unknot admits a trivial filamentation, Theorem 4.10 tells us that we ca
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a filamentation onD by reversing the sequence of flat moves and applying the filamentation
tion, it

ament

.

points
other
r
rc
ese

f

induced by that sequence. Thus, if a Gauss diagram does not admit a filamenta
cannot represent a trivial knot.✷

5. An infinite family of virtual knots

Theorem 5.1. Letn� 2. Consider the following OCD:

Dn = (3)

Any flat virtual knot associated withDn is non-trivial.

Proof. Fix n� 2 Label the vertical chordx, and label the horizontal chords{y1, . . . , yn}.
Consider the vertical chord,x. We claim that for any pairing onDn, the pair includingx
will always have a non-trivial intersection number.

First supposex is self-paired. We see immediately that〈(x, x)〉 = n �= 0, since all of
the other filaments in such a pairing must pass from left to right across the monofil
associated with(x, x).

Supposex is paired with any of the horizontal chords, sayyi . Consider Fig. 8
There are exactlyn − i positive chord endpoints on the arc betweenY+

i and X−.
Regardless of how we choose to pair the remaining chords, these positive end
will have filaments ending at them. Further, such filaments must come from the
side of theX− → Y+

i filament, contributing preciselyn − 1 to the intersection numbe
of (x, yi). In addition, there are exactlyi − 1 negative chord endpoints on the a
betweenY−

i andX+. Again, there must be a filament emanating from each of th
negative endpoints, and each resulting filament must cross theY−

i → X+ filament.
This addsi − 1 to the intersection number of(x, yi). Since we have covered all o

Fig. 8. A bifilament associated with the pair(x, yi ) in Dn.
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the intersection numbers which contribute to the bifilaments associated with(x, yi), we
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(x, yi)

〉= (n− i)+ (i − 1)= n− 1> 0.

This means that there are no filamentations on anyDn whenn� 2, so by Theorem 4.11
any flat knot associated withDn must be non-trivial. ✷

Theorem 5.1 gives us an infinite set of OCDs for which any flat representative
be non-trivial. We do not yet have a proof that they give rise to distinct flat knots, bu
believe this to be the case.

Conjecture 5.2. The flat knotsUn related to theDn ’s in Eq. (3) from Theorem5.1 are
distinct for alln� 1.

One interesting result we have found is a related infinite class of virtual knot diag
depicted in Table 1. The first column in the table shows the OCDsDn for n = 0,1,2,3.
The second column shows the related flat knotsUn. The third and fourth columns i
Table 1 show arrow diagramsAn and related virtual knotsKn. Each knotKn has an
underlying universeUn. As we shall see, the virtual knotsKn are all distinct. What is
even more interesting about this class is that each knot has trivial Jones polynom
trivial fundamental group. This gives the first example of an infinite class of virtual k
with trivial Jones polynomial and trivial fundamental group.

5.1. The Jones polynomial via the Kauffman bracket

Many of the results stated in this section are from [15,16]. Another nice refe
containing the known properties of the (normalized) Kauffman bracket and the
polynomial is [18].

To compute the bracket polynomial in the case of classical knots, we start with the
relation:〈 〉

=A
〈 〉

+A−1
〈 〉

(4)

Using (4), expand each crossing in a knot diagram until we are left with a sum of colle
of simple closed curves, calledstates. To evaluate the bracket on a state, we apply
following:〈

K

〉
= δ〈K〉 = (−A2 −A−2

)〈K〉 (5)〈 〉
= 1 (6)

The bracket extends naturally to the virtual category. As above, a state of a virtua
diagram is the result of smoothing all real crossings. A closed curve in such a state
still contain virtual crossings. Ignore the virtual crossings and count the number of c
curves‖S‖ in the state. Assign the value ofδ‖S‖−1 to each state. Since the bracket i
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Table 1

nder
The class of virtual knots arising fromDn

n Dn Un An Kn

0

1

2

3

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

regular isotopy invariant, we need to normalize it to get an invariant of virtual knots u
ambient isotopy.

Definition 5.3. LetK be a virtual knot diagram. Thewrithe of K is the sum

w(K)=
∑

x∈C(K)
ε(x),

whereC(K) denotes the set of all real crossings inK, andε(x) is the sign of a crossingx.

Definition 5.4. If K is a virtual knot, then the normalized bracket is given by

fK(A)=
(−A3)−wr(K)〈K〉.

For example, we compute the bracket of the positive virtual Hopf link:
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〈VHopf+〉 =

=A
〈 〉

+A−1

〈 〉
=A+A−1

and the normalized bracket is then

fVHopf+(A)=
(−A3)−(+1)〈VHopf+〉 = −A−3(A+A−1)= −A−2 −A−4.

If K is a knot diagram andK∗ is the diagram obtained by switching all the crossin
in K, we have the well-known propertyfK∗(A)= fK(A−1). This gives us the normalize
bracket on the negative virtual Hopf:

fVHopf−(A)= fVHopf+
(
A−1)= −A2 −A4.

An immediate result is thatVHopf+ andVHopf− are distinct.
Another well-known result is the connection between the normalized bracket an

Jones polynomial:

Theorem 5.5. LetK be a knot andVK(t) be the Jones polynomial ofK. Then

VK(t)= fK
(
t−1/4).

In the case of classical knots (of one component), the Jones polynomial is alwa
element ofR[t, t−1], and hence the normalized bracket gives rise to polynomia
R[A4,A−4]. However, when generalized to include virtual knots, the Jones and norm
bracket polynomials on single component virtual knots turn out to be inR[t1/2, t−1/2] and
R[A2,A−2], respectively. This means that some virtual knots can be detected by lo
for non-integral powers oft in the evaluation of the Jones polynomial (or odd power
A2 in the normalized bracket).

5.2. Virtual knots related toAn have trivial Jones polynomial

Theorem 5.6 (Kauffman [15]).The bracket is invariant under the following moves

(7)

Translating the above to arrow diagrams, we have:

(8)
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Eq. (8) implies that other than the general configuration of the chords, the bracket
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depends only on the local orientations of the arrow basepoints in an arrow diagram
direction of an arrow can change, provided that the local orientations of the end
change with it. Thus the relevant signs stay the same, as does the writhe. This brings
to what we stated in Section 2. The normalized bracket (and hence the Jones polyn
is an invariant of signed chord diagrams. This will be the subject of another paper.

Definition 5.7. If V andV ′ are two virtual knots for whichfV (A)= fV ′(A), thenV and
V ′ are said to beJones equivalent. The same expression can refer to chord diagrams.

There are many examples of virtual knots which are Jones equivalent. Consider thAD2

move. Changing one arrow direction results in

(9)

It is easy to construct infinite families of Jones equivalent virtual knots. Take any a
diagramA. Then choose two empty arcs within it, and apply (9) an arbitrary numb
times. Each of theKn in Table 1 is an example of this.

Theorem 5.8. If Kn is a virtual knot associated withAn, thenfKn(A)= 1.

Proof. The first two ADs,A0 andA1 are representatives of the trivial knot class.A0 is a
direct result of applyingAD1 to the unknot diagram, andA1 is the result of applyingAD2

to the unknot diagram. The rest of theAn are also Jones equivalent to the unknot, beca

• for evenn, theAn are Jones equivalent toA0, and
• for oddn, theAn are Jones equivalent toA1.

This is because eachAn in Table 1 is Jones equivalent toAn+2 by a single application o
(9) on the horizontal arrows. As a result, eachKn is Jones equivalent to the unknot a
hence the normalized bracket will be trivial on all of them.✷

We should point out that Jones equivalence does not necessarily come only
transformations of the form in (7) and (8). There are also classical knots such as m
for example, which are Jones equivalent to each other. We doubt that mutants
obtained through (7) alone.

A well-known open question is the following: are there non-trivial classical knots w
are Jones equivalent to the unknot? In other words, does the Jones polynomial
knottedness for classical knots?

Conjecture 5.9. If K is a non-trivial classical knot, thenfK(A) �= 1.
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5.3. The fundamental group and the quandle
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We are about to define an algebraic system with two non-associative binary oper
a ∗ b anda ∗̄b. In order to simplify the book-keeping of this system, we will use a spe
notation,

a b = a ∗ b and a b = a ∗̄b.
The notation is useful because it allows us to write expressions in a non-asso
setting without requiring lots of parentheses. The operators assume a left asso
convention, and when an expression is associated differently, the over and under ba
as parentheses by extending over or under the entire sub-expression acted upon.

The two basic associations are:

(a ∗ b) ∗ c= a b c ,
a ∗ (b ∗ c)= a b c .

Here are some mixed expressions:

(a ∗̄b) ∗ b = a b b ,
a ∗ (b ∗̄ (c ∗ d))= a b c d .

See [17] for more on the formalism of the operator notationand .

Definition 5.10. A quandle[15] Q is a non-associative algebraic system with two bin
operations represented through the symbolsand which satisfy the following axioms

(1) For everya ∈Q, a a = a anda a = a.

(2) For everya, b ∈Q, a b b = a anda b b = a.

(3) For everya, b ∈Q, there is anx ∈Q such thatx = a b anda = x b .
The left/right variant of this statement must also be true:
For everya, b ∈Q, there is anx ∈Q such thatx = a b anda = x b .

(4) For everya, b, c ∈Q, the following two equations hold:

a b c = a c b c ,
a b c = a c b c

The axioms of a quandle make it possible to associate quandles with knots and l
such a way that the algebraic structure is invariant under the Reidemeister moves.

A bridge arcin a virtual diagram is a strand between the undercrossings of two (pos
the same) classical crossings. In the same sense, anarc in a diagram is a strand direct
between any two classical crossings. This means that a bridge arc is interpreted
arrow diagram as an arc directly between terminating endpoints of arrows. An ar
portion of the circle directly between any two arrow endpoints. For example, in Ta
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there are two arcs inK0 and the related arrow diagramA0, whereas there is only one
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We define a quandleQ(K) associated with a knotK as follows. Start with an oriente

diagram. Assign one generator to each bridge arc. For each classical crossing, de
on crossing orientation, assign an equivalence according to the following rule:

(10)

We say a quandle rather than the quandle, because we refer to any quandle satisfyi
properties. There is a universal construction [13] for a quandle associated with a kn
we will not discuss that construction here.

Setting b a = bab−1 and a b = a−1ba in the universal construction gives th
fundamental group of the complement of a classical knot. We will denoteπ1(K) to be
the fundamental group of a virtual knotK obtained via the quandle.

5.4. Virtual knots related toAn have trivial quandles

Lemma 5.11. If we evaluate a quandle on

where the box is replaced by a sum of the following elementary4-tangles

, and

thena = b = c. The tangle introduces no further equations.

Proof. We leave this proof as an exercise.✷
Theorem 5.12. If Kn is a virtual knot associated withAn, thenπ1(Kn)= 0.

Proof. In the right column of Table 1, we have representative virtual knotsKn for eachAn.
By Theorem 3.4, if we proveπ1 = 0 on each of these, we are done. We will prove this
the quandle. First note that eachKn in Table 1 are of the general form:

(11)

where the box is replaced by a horizontal sum of elementary 4-tangles.
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In (11), we have labeled the bridge arc emanating from the lower left side of the tangle
ngle.
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by the generatora. Note that this bridge arc both enters and exits the left side of the ta
Both strands entering the left of the box are labeled with the generatora. By 5.11, we see
that the strands emanating from the right of the box can also be labeleda. As a result, every
bridge arc in the knot diagram can be labeled with the same generator, and the qua
trivial. ✷

6. The Alexander biquandle

In the construction of a quandle, we can think of each crossing as an input/o
diagram with the labels on the strands that go into the crossing as inputs to a fun
and labels on the strands that go out of the crossing as outputs of that function. Th
leads to the biquandle [8,17,11]. With the quandle, the overcrossing strand carries
unchanged across the diagram, while the undercrossing strand changes its label in a
which depends on both input labels.

In a biquandle, the overcrossing strand may also change its label. This requir
definition of four separate functions for the output strand labels, as illustrated in Fig.
indicate these functions by the symbolism

a b a b a b a b

and view both the inputs and outputs from left to right. Ifa b = a anda b = a for all
a and b, the formalism is identical to what was previously defined for the quandl
general, the biquandle is a complex algebraic generalization of the quandle, with it
set of axioms. Here, we give a specific example of a biquandle, the Alexander biqu
and use it for the purposes of calculation.

Note that each of the symbols , , and , can be regarded as a binary operat
on the underlying set of the biquandle. Using this symbolism, the functions for the le
right crossings are

R

[
a

b

]
=
[
b a

a b

]
, L

[
a

b

]
=
[
b a

a b

]
.

In order for these functions to define a biquandle, they must exhibit invariance
the Reidemeister moves. We omit the details here.

The Alexander biquandle is an example of a biquandle, and we will only deal wi
specific properties.

Fig. 9. The biquandle operations.
.
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Fig. 10. The Alexander biquandle operations.

Consider any moduleM over the ringR = Z[s, s−1, t, t−1]. Defining the binary
operations with the following equations provides us with a biquandle structure onM:

a b = ta + (1− st)b, a b = sa, (12)

a b = 1

t
a +

(
1− 1

st

)
b, a b = 1

s
a. (13)

If M is a free module, we call this afree Alexander biquandle.
We associate a specific biquandle to a virtual knot diagram by taking the free m

obtained by assigning one generator for each arc and factoring out by the subm
generated by the relations given in (12). We call the resulting moduleABQ(K) the
Alexander biquandle of the knotK.

Note that

R

[
a

b

]
=
[
b a

a b

]
(14)

=
[
tb+ (1− st)a

sa

]
(15)

=
(

1− st t

s 0

)[
a

b

]
(16)

is a linear map, andR can be represented by the matrixA given in Table 2. Similarly,
the functionL can be represented by the matrixB in the table. Since we are dealing wi
linear functions, we need not restrict our inputs and outputs according to the direct
the strands. Instead, we can choose any two adjacent strands as inputs, and com
resulting function by inverting or changing the basis of the original matricesA andB. To
maintain a input/output convention which is consistent with before, we will order inpu
a counter-clockwise direction and outputs in a clockwise direction.

Note that we have inserted a matrixV in Table 2, which permutes the inputs. Th
matrix represents the virtual crossing, where labels are passed along the strands
any changes.

The set of relations for a presentation ofABQ(K) contains a generalization of th
Alexander polynomial (see [12,17,22,23]).

Definition 6.1. TheGeneralized Alexander Polynomial ofK, GK(s, t) is the determinan
of the relation matrix from a presentation ofABQ(K). Up to multiples of±si tj for
i, j ∈ Z, it is an invariant ofK.
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Table 2

nks.
d
n of

tions

n

Matrices for the Alexander biquandle

: A=
(

1− st t

s 0

)
: Â=

(
0 s

t 1− st
)

: B =
(

0 1
s

1
t 1− 1

st

)
: B̂ =

(
1− 1

st
1
t

1
s 0

)

: C =
(

0 1
s

t 1
s − t

)
: Ĉ =

( 1
s − t t

1
s 0

)

: D =
(

0 s

1
t s − 1

t

)
: D̂ =

(
s − 1

t
1
t

s 0

)

: V =
(

0 1

1 0

)

This polynomial is a zeroth order polynomial. It vanishes on classical knots and li
Recall that in the previous section, the flat knotsUn are non-trivial. The generalize

Alexander polynomial provides us with the tools to show that the related collectio
knotsKn are all distinct.

Theorem 6.2. The virtual knotsKn are all distinct forn > 0.

Proof. We use the following model as our general form for theKn:

Kn = (17)

The arrows show the direction we will use for the matrix insertions. The simplified rela
are:

Xn ·
[
b

c

]
=
[
a

d

]
, Y ·

[
b

a

]
=
[
c

d

]
. (18)

Using the matrices from Table 2 to calculate the Generalized Alexander polynomial oKn,
we have

Y =AV =
(
t 1− st
0 s

)
.
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Now setX = (
x11 x12
x x

)
, so thatGKn(s, t) is the following determinant:

o the
een
iality

s

21 22

GKn(s, t)=

∣∣∣∣∣∣∣
1− st t −1 0
s 0 0 −1

−1 x11 x12 0
0 x21 x22 −1

∣∣∣∣∣∣∣ .
The general form forXn depends on whethern is odd or even.

Xn =
{
V
(
CV ĈV

)k = V (C2
)k = VCn, if n= 2k, k � 0,

V D̂V
(
CV ĈV

)k = C(C2
)k = Cn, if n= 2k+ 1, k � 0.

(19)

With a little help from Maple,

Cn =
(

(−t )n+t s(1−n)
st+1

−(−t )n+s−n
st+1

t (−s(−t )n+s(1−n))
st+1

t s(−t )n+s−n
st+1

)
. (20)

Forn even

GKn(s, t)=

∣∣∣∣∣∣∣∣∣∣

1− st t −1 0

s 0 0 −1

−1 t (−s(−t )n+s(1−n))
st+1

t s(−t )n+s−n
st+1 0

0 (−t )n+t s(1−n)
st+1

−(−t )n+s−n
st+1 −1

∣∣∣∣∣∣∣∣∣∣
= sn(s2t + 1)(1− t)+ s2t2 − 1+ (1− s2)t(1−n)

st + 1

and forn odd,

GKn(s, t)=

∣∣∣∣∣∣∣∣∣
1− st t −1 0

s 0 0 −1

−1 (−t )n+t s(1−n)
st+1

−(−t )n+s−n
st+1 0

0 t (−s(−t )n+s(1−n))
st+1

t s(−t )n+s−n
st+1 −1

∣∣∣∣∣∣∣∣∣
= s(n+1)(1− t2)+ s2t2 − 1+ (1− s2)t(1−n)

st + 1
.

The polynomialssn(s2t + 1)(1 − t) and s(n+1)(1 − t2) are distinct for anyn � 0. This
proves the theorem.✷

7. Open problems

There are many unanswered questions in flat virtual knot theory. In addition t
difficulty of determining when a flat knot is trivial, it is also hard to distinguish betw
two flat virtual knots. In this paper, we have given methods to determine the non-triv
of some flat virtual knots. We have investigated the familyUn of flat virtual knots that
are shadows of the knotsKn. We showed that eachKn is distinct from the others. It i
conjectured that theUn are all distinct as flat virtual knots.
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not,
n, the
Jones

19].
ation

ay as

s

Fig. 11. A non-trivial virtual knot (Kishino’s example).

Fig. 12. An example of how to compute the flat biquandle on a knot.

An intriguing example of a flat knot conjectured to be non-trivial is the flat Kishino k
shown in Fig. 11. This diagram is not detected by filamentation techniques. In additio
Kishino virtual knot shown in the same figure is undetectable by biquandles and the
polynomial. It has been shown to be detected by the 3-stranded Jones polynomial [

We do have a simple biquandle invariant that can detect flat links. It is a specializ
of the Alexander biquandle that is described by the labellings:

These labellings give a module structure associated with a flat diagram in a similar w
with the Alexander biquandle. Fig. 12 illustrates an example linkL whose flat biquandle
is generated by elementsa andb and has relationss2a = a and s−2b = b. The unlink
of two components is a module with generatorsa and b and no relations. This show
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thatL is linked (where direct parity counts fail). Clearly, much more work remains to be

ore
flat

ersa-

) (1991)

) 287–

s, Knots

heory

2000)

cago,

w

5.
1987.

ial for
tions,

mitted

(1994)

001)
accomplished in this field.
At this writing, it is not known how to extend the filamentation invariant to links. M

generally, we would like to have more powerful combinatorial tools to distinguish
virtual knots and links.
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