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As foundation of polynomial approximation, uniform convergence is replaced 
with basic nonstandard notions like S-continuity and standard part. In the real 
case, Weierstrass’ approximation theorem is generalized to G,-sets. In the complex 
case the standard compactness requirements also disappear. Standard applications 
include a direct proof of a generalized Bernstein theorem on analyticity of C” and 
of continuous functions. c 1992 Academic Press, Inc. 

0. (ABSOLUTE) MICROCONTINUITY OF NONSTANDARD POLYNOMIALS 

Nonstandard Analysis is used here in the superstructure approach, 
described, e.g., in [S]. The sets of natural, real, and complex numbers are 
denoted by N, R, and C, respectively, and their nonstandard extensions of 
hypernatural, hyperreal resp. hypercomplex numbers by *N, *R, and *C. 
The relation of being infinitely close is denoted by M, and the standard 
part of a finite number z by Oz. 

A fundamental interpretation of continuity of a function (standard or 
not) is that variations of the value, caused by infinitesimal fluctuations of 
the argument, are themselves infinitesimal. Hence the following definitions: 

an internal everywhere defined hyperreal function f is 
S-continuous at x0 E *R if and only if 

EE*R & E~O*~(X~+E)~:(.X,J (1) 

an internal everywhere defined hypercomplex function f is 
S-continuous at x0 E *C if and only if 

qE*c &IvflzO=-lf(x,+ Y/)-f(X”)l%O. (2) 

For a hyperreal polynomial 

P(x)= f a,xi (NE *N; a,, a,, . . . . a, E *R; x E *R) 
j=O 
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the complex continuity requirement (2) also makes sense if complex 
arguments are temporarily allowed. In that case the real form (1) is called 
microcontinuity at x0, and the stronger complex form (2) absolute 
microcontinuity at x0 E *R. For a hypercomplex polynomial “absolute 
microcontinuity,” “microcontinuity,” and “S-continuity” are to be con- 
sidered as synonyms. Properties concerning absolute microcontinuity of 
hyperreal polynomials also hold for S-continuity of hypercomplex ones. In 
general we refrain from mentioning both cases separately. (Absolute) 
microcontinuity at x0 # 0 can be expressed as (absolute) microcontinuity at 
0. It suffices to write 

P(x) = 2 a,xj= 5 ak(x,)(x -x,)~, 
j=O k=O 

(3) 

where ak(xg) = C,!=kj(j-l) ... (j-k+l)/k!~,x~~~. Then P(x) is 
(absolutely) microcontinuous at x0 if and only if I,“=, ak(Xg) xk is so at 0. 

Many equivalent definitions can be given of absolute microcontinuity 
(see [6]). The name “absolute” microcontinuity was suggested by the fact 
that P(x) = C,?!, ujxi is absolutely microcontinuous at 0 if and only if 
C,Y, Ia,1 xi is microcontinuous at 0. 

“Microcontinuity” and its stronger form “Absolute Microcontinuity” are 
very different. Nonabsolute microcontinuity is highly unstable, and may be 
confined to isolated monads. It is intrinsically impossible to characterize it 
by the sole magnitudes lujl of the coefficients. As shown in [7], it cannot 
be realized with standard power series, because a power series either has all 
its infinite partial sums absolutely microcontinuous at 0 (if the radius 
of convergence is nonzero) or has no partial sum at all that is 
microcontinuous at 0 (if the radius of convergence is 0). 

Absolute microcontinuity, on the other hand, is stable, and self- 
propagating over noninfinitesimal distances [7, Th. 3.21. Easy examples 
are obtained by truncating standard power series with nonzero radius of 
convergence. Finally, it can be characterized by the size of the coefficients, 
since [6, Th. 21 P(x) = C,!=, aixi is absolutely microcontinuous at x E *R 
if and only if la,(x)1 iii is finite for j= 1, 2, . . . . N, i.e., if and only if 

C(x)= max laj(x)l’l’ is finite. 
l<j<N 

(4) 

An interesting example of a polynomial that is microcontinuous at 0, but 
not absolutely, is T,,/o, where T,, is the Chebyshev polynomial of infinite 
order 2~. Since any Chebyshev polynomial is, in absolute value, bounded 
by 1 on the unit interval, the nonstandard polynomial Tzw/o is 
infinitesimal on the unit interval, hence in particular microcontinuous at 0. 
But the very first nonzero coefficients of T2<,,/w are infinite, so that there 
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cannot be absolute microcontinuity at 0. A generic way to construct 
nonabsolutely microcontinuous polynomials will be deduced in Section 2. 

Remark. Outside the origin, strange things may happen even with 
infinite partial sums of standard power series. If the radius of convergence 
is zero there may be infinite partial sums that are (though not micro- 
continuous at 0) microcontinuous on the S-interior of the whole interval 
10, l[. If the radius of convergence is nonzero there may be infinite partial 
sums that are absolutely microcontinuous outside the circle of convergence. 
We C71.1 

Nonabsolute microcontinuity of polynomials must be considered as a 
genuine nonstandard notion without standard analog. Absolute micro- 
continuity, on the contrary, has some analogy with convergence of power 
series. This similarity is easily accounted for. As (4) shows, absolute 
microcontinuity at 0 depends on the finiteness of the hyperreal number 
max Icj<,dajl . ‘li For power series the three properties of convergence, 
absolute convergence, and continuity (all three more or less equivalent) 
amount to a nonzero convergence radius, i.e., to the finiteness of 
lim sup lajl . ‘lj The similar role of similar numbers (one standard, one 
nonstandard) explains the occasional similarity between convergence and 
absolute microcontinuity. 

This analogy is far from consistent. Als already remarked, an infinite 
partial sum may be absolutely microcontinuous outside the circle of 
convergence and many other properties, either for absolute microcontinuity 
or for convergence, have no counterpart. (See [6, 71.) 

In Section 3 we return to absolute microcontinuity for hyperreal 
polynomials. First we deal with mere S-continuity, successively for the real 
and for the complex case. Given a nonstandard polynomial P, we define 
the standard S-continuity set of P, to be denoted YP, as the set of standard 
(real resp. complex) points at which P is both finite and S-continuous. The 
standard part f = “P is a standard function defined on S$. 

1. REAL POLYNOMIAL APPROXIMATION 

According to Weierstrass’ classical theorem, a continuous real function 
with a compact domain is a uniform limit of polynomials. In this uniform- 
limit formulation, it is impossible to go beyond compactness, the theorem 
cannot even be extended to bounded intervals of type ]a, 61. It is readily 
verified that, if every P, is continuous on [a, b], and lim, P, = f uniformly 
on ]a, b], then P, converges also in the endpoint a. In these circumstances, 
f has a right-hand limit at a, viz. lim, P,(a). Therefore, representing f as a 
uniform limit of polynomials on ]a, b] is impossible if f does not have a 
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finite right-hand limit at a. This is the case with such elementary functions 
as tan x (unbounded) on ] -n/2,0], or sin l/x (bounded) on 10, 11. 

From a purely practical point of view it is, however, easy enough to 
obtain a satisfactory polynomial approximation for a continuous function 
,f‘ on an interval ]a, b]. It suffices to consider a compact subinterval 
[a + E, h] (E a positive real number), and to approximatefon this compact 
interval. If F is small enough, the polynomial obtained will not be 
distinguishable from f on the interval ]a, b]. 

In the same way one might construct a polynomial approximation for 
a continuous function on an unbounded interval, say R, by applying 
Weierstrass’ Theorem to a compact interval C-M, M] (M positive and big 
enough). 

In standard analysis, formalizing these simple ideas would eventually 
result in sequences of uniformly convergent sequences. A nonstandard 
description is much simpler. First, a single infinitely small or infinitely big 
number does away with a whole sequence of shrinking F’S or expanding 
M’s, Secondly, being uniformly close can be directly expressed by means of 
the z relation, and does not require sequences at all. In the nonstandard 
framework the polynomial approximation problem is thereby reduced to 
finding a nonstandard polynomial P that is infinitely close to a given 
standard function f on a standard set A. Due to the continuity off, the 
polynomial P will be S-continuous and finite on A. In the notation of 
Section 0, a polynomial P is wanted such that A c CVP and f = “P on A. 
In fact, more than that is achieved. From [8] we quote 

THEOREM 1. Let P(x) be any hyperreal polynomial, and let scl, denote its 
standard S-continuity set. Then (i) YP is a G6 subset qf the real line; (ii) the 
real function f(x) = “P(x) is defined and continuous on Yr. 

Conversely, let A be a G8 subset qf the real line and let f(x) be a real 
function, defined and continuous in A. Then there is, in an enlargement, a 
hyperreal polynomial P(x) such that (i) YP = A; (ii) ,f = “P on A. 

This nonstandard approximation theorem represents a considerable 
upgrading of Weierstrass’ Theorem, from a sufficient condition on compact 
sets to a necessary and sufficient condition on G,-sets. For compact A it is 
equivalent to the standard requirement that f = lim, P, uniformly on A, 
and the examples concerning ]a, b] show that this equivalence does not 
hold for noncompact G,-sets. In the next few considerations, we want to 
make clear at what exact point compactness enters and allows to reduce 
the S-continuity version to the uniform-limit form. 

A sequence (P,),, N of real polynomials, converging uniformly to f on 
A c R, essentially leads to a nonstandard polynomial P for which 

*f(x)% P(x), for all x E *A. (5) 
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(Take P,,, for any infinite hypernatural v.) On the other hand, if f’is the 
standard part of the nonstandard polynomial P, we have 

P is finite and microcontinuous at x & f(x) = “P(x), for all x E A. 

(6) 

Both descriptions of the nonstandard polynomial P agree on A, where P 
is to be microcontinuous and to have finite values. But (5) requires that P 
remain infinitely close to *f even on *A \A. Therefore, a Weierstrass 
approximation reflects a stronger requirement, and can be achieved for a 
smaller class of functions, than the nonstandard approximation, described 
in (6). To see why (5) and (6) are nonetheless equivalent if A is compact, 
recall Robinson’s characterization of compactness: A c R is compact if and 
only if every point of *A is infinitely close to a point of A. If, then, we 
suppose A compact and take any a E *A, there is a standard point a’ in A 
with a’ zz a. The continuity off at a’ leads to *f(a) z f(a’), and the assump- 
tions of (6) to P(a) = P(a’) z,f(a’); hence it follows that *f(a) z P(a). 

For noncompact A there may be a big difference between A and *A. In 
particular, there is always at least one point a E *A that has no points of 
A infinitely close by. At such points the difference between (5) and (6) is 
essential. Let us reconsider a noncompact interval Z= ]a, 61 and on Z a 
continuous function f without right-hand limit at a. 

That no Weierstrass approximation exists for such function, is entirely 
due to the fact that no nonstandard polynomial can have the behaviour of 
f at the points of *Z infinitely close to a. Any nonstandard polynomial is 
*-continuous, and so P(x) must be close to P(a) if x is sufficiently close to 
a. This is in contradiction with the diverging or oscillating behaviour off 
near a. 

A nonstandard approximation in the sense of (6) does exist, however. Of 
course, this nonstandard polynomial P does not follow the behaviour off 
at a either. But P is not S-continuous at a, and so the behaviour of P on 
the monad of a (fatal for uniform convergence) has no other effect than to 
remove a from the domain of P’s standard part f: 

Remark. The coefficients of a polynomial P with a given standard part 
fare by no means unique, nor unique up to infinitesimals. The contrary is 
true. The same f is the standard part of other S-continuous polynomials 
whose coefficients differ infinitely from the coeflicients of P. On the unit 
interval, e.g., it suffices to add to P the infinitesimal polynomial TzW/o 
considered in Section 0. In that sense, absolute microcontinuity is most 
unstable: the infinitesimal bundle of polynomials around a given 
standard function invariably contains both nonabsolutely and absolutely 
S-continuous ones! 
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2. COMPLEX POLYNOMIAL APPROXIMATION 

In this section we deal with the interaction between holomorphic func- 
tions and complex S-continuity. A fundamental fact was already proved by 
Robinson, viz. that the standard part of an S-continuous *-holomorphic 
function is analytic. In a more precise form [9, Th. 6.2.31: Let B be an 
S-open subset of the hypercomplex plane which contains only finite points. 
Let f(z) be an internal function which is *-analytic and finite (hence 
S-continuous) in B. Then the standard part “f(z) off(z) is analytic in ‘B, the 
set of complex points z0 whose monad intersects B. We formulate Robinson’s 
Theorem pointwise and give it the following quantitative form for 
hypercomplex polynomials: 

PROPOSITION 1. Let the hypercomplex polynomial P be finite and 
S-continuous at the standard complex point zO. Then the standard part “P of 
P is defined and analytic at least in the standard open disc D, with center z0 
and radius l/“C(z,) (interpreted as an arbitrary standard radius tf 
C(q)) z 0). 

Proof As shown in [7, Th. 3.21, the absolute microcontinuity of P at 
any point z implies that P is also absolutely microcontinuous at all hyper- 
complex Z’ such that Iz’- ZI C(z) & 1. For any (standard) z in the disc D, 
we have “( Iz - zOI C(z,)) = /z -zOIO C(z,) < 1 and so P is absolutely 
microcontinuous at z. Due to the propagation of absolute microcontinuity, 
P is then absolutely microcontinuous on the whole hypercomplex disc D 
with center z0 and radius l/“C(z,). But the absolute microcontin:lity of P 
implies in particular that P’ is finite. From the mean value inequality and 
the finiteness of P(z,) we infer that P(z) is finite everywhere in the 
hypercomplex disc D. Applying Robinson’s Theorem with B = D, we find 
the result stated. 1 

Proposition 1 provides, among other things, an easy way to generate 
hyperreal polynomials that are microcontinuous, but not absolutely 
microcontinuous, at 0: 

COROLLARY. Let I be a compact interval with 0 in its interior. Let the 
standard function f be continuous on I, but not derivable at 0. The 
nonstandard version of Weierstrass’ Approximation Theorem generates 
nonstandard polynomials P that are infinitely close to f on I. All of these 
polynomials are microcontinuous on I (with f as standard part), but none is 
absolutely microcontinuous at 0. 

(If P were absolutely microcontinuous at 0, its standard part f would be 
analytic on a neighbourhood of 0.) 
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The main theorem in this section gives a two-way relationship between 
analytic functions and nonstandard continuity. An essential role is played 
by the condition that a set has a connected complement. Intuitively, this 
means that the set has no holes, and we shall use this informal way 
of speaking instead of its formal content. One should be aware, however, 
that complements are considered here with respect to the extended 
(compactilied) complex plane C, , and this relevant fact is not evident 
from the mere expression without holes. The complement of a set A with 
respect to the extended (hyper)plane will be denoted as CA. 

THEOREM 2. Let P(z) be any hypercomplex polynomial, and let 9” 
denote its standard S-continuity set. Then (i) 9, is an open subset, without 
holes, of the complex plane; (ii) the complex function f(z) = “P(z) is defined 
and analytic on 9$. 

Conversely, let Q be an open subset, without holes, of the complex plane, 
and let f(z) be a complex function, defined and analytic in Q. Then there is, 
in an enlargement, a hypercomplex polynomial P(z) such that (i) Yp = Q; 
(ii) f = “P on Sz. Moreover, the finite-order coefficients of P are uniquely 
determined up to infinitesimals. 

Proof: The openness of Yp and the analyticity of “P(z) are contained in 
Proposition 1. For the direct part of the theorem there only remains to be 
shown that 9, has no holes. 

If Yp had holes, the disconnected closed set C .$ would be the union of 
two nonempty disjoint closed sets H and K. Let H be the one that contains 
co, and K the other one, which is a compact, though not necessarily con- 
nected, subset of C. Now take a bounded open subset U of C with Kc U 
and U n H = a. The boundary aU has no points in common with H or K, 
and is therefore a subset of 9”. This means that P(z) is S-continuous and 
finite on the standard set aU. By Robinson’s characterization of compact- 
ness, every point of *aU is infinitely close to a point of au, and so P(z) is 
S-continuous and finite on *aU also. Equivalently, 1 P(j’(z)/j!( ‘li is finite for 
j= 0, 1, . ..( N and z E *au. Due to the Maximum Modulus Principle a 
complex-valued function cannot have a maximum at a point in whose 
neighbourhood it can be represented by a nonconstant power series. After 
*-transform we find that the maximum of IP”‘(z)l (j=O, 1, . . . . N) on the 
*-compact set *U must be located on the boundary, i.e., for every 
j=O, 1 3 ..., N there is a Z~E *aU such that IP( d IP”‘(z,)l for all 
hypercomplex z E *U. (Nothing prevents U from being disconnected, but 
the Maximum Modulus Principle as used here does not require connected- 
ness.) It follows that IP”‘(z)/j!l ‘lj (j= 0, 1, . . . . N) is finite on the whole 
of *U, which implies that P(z) is S-continuous and finite on U. This shows 
that U (hence also K) is a subset of Yp, and contradicts the assumption 
that K is a subset of C 9,. 
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For the converse, we use the enlargement to fix a hyperlinite set 
C’= {Zl, z 2, . . . . zw} (OE *N\N) with C c C’ c *C. If V, denotes the open 
square ] -0, + o[ x ] i o, + o[, the *-open set I’,, n *Q is the union of a 
hypersequence of mutually disjoint half-open intervals I,, each of which 
has the form Zk = {x + iv E *C : uk d x < b, & ck d y < d,} for some hyper- 
real ak, b,, ck, dk. Define A as the union of the Ik’s that contain at 
least one element of C’. Then A is an elementary figure (i.e., a hyperlinite 
union of intervals) for which A n C = 52. (Due to the openness of 52, 
all points of Q are even S-interior to A.) Decompose A in connected 
components, say A =A, u.4,... uA,. Each A, is a connected elementary 
figure, and two different A,‘s are separated, i.e., the closure of the one does 
not intersect the other. For the elementary figures A,, composed of 
halfopen intervals, separation reduces to disjoint closures. 

By assumption, *sZ has no holes, and we verify that the same holds for 
A c *Q. We have 

= 1 *Qu[ V,uA,,,+,uA,+,.... 

The last equality relies on the mutual separation of components, which 
implies that the line segments forming &\A, lie outside A, i.e., in c *Q. 
The union of the first two sets is readily seen to be *-connected, since 
each of the two is, and they intersect (cc is in the intersection). This - 
*-connectivity is preserved by adding x (k > M), because A, is - 
*-connected and &n C *Q # 0 (Ak\Ak is a subset of the intersection). 

In the same way it follows from 

,,,=,,,(,A,)=,,,(,,) 
and A, n CA # 0 that A, (k E *N) has no holes. 

So we have at our disposal A4 connected elementary figures A,, without 
holes, with mutually disjoint closures. Connect the boundary of A, with 
that of A, by means of a polygonal line rr whose sides are parallel to the 
axes, and which does not intersect the closure of any other Ak (1 < k d M). 
Repeat this procedure for the boundaries of A, and A,, whose polygonal 
connection Tz may intersect the first one. Due to the hypertiniteness of the 
number of sets involved, it is a trivial matter to interconnect in this way the 
boundaries of all M sets A, to form one single connected closed set 
aA,ur,u “. uaA,~,ur,-,uaA,. We connect this closed set with 
the boundary of V,, by means of one more polygonal line rM. This step 
too is trivial, because the number of figures considered is hyperlinite. It 
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suffices, e.g., to join vertically the lower left vertex of the lower left figure 
(whose lower and under sides cannot coincide with boundaries of I’,,,) to 
the lower side of V,,. 

Define r= c?A, v r1 v ... v ZA,,, u rM and C = V,\lY By construction, 
C is an open elementary figure, composed of the interiors of A, (1 6 k 6 M) 
and of an extra hyperlinite number, say L, of disjoint connected open 
figures B,, whose union we call B. Moreover, CC = Tu C V, is connected 
by construction. 

A compact subset K of C is defined in the following way. Inside every A, 
(1 d k<M) we construct a closed figure A; whose boundary is an 
infinitesimal distance away from the boundary of A,. Choosing this 
infinitesimal small enough, A; and A, are similar figures, in particular A; 
is connected. The same is done for the components B, (1 <k <L), and K 
is the union of the M+ L compact figures Ai and Bb thus constructed. In 
the L figures B;, a hyperlinite number of intervals is involved. Let 6 be an 
infinitesimal, smaller than the smallest horizontal dimension in these 
intervals, and set n = 2n/6. 

On C we define a *-analytic hypercomplex function g(z), which coincides 
with *f(z) on A and with sin(Az) on B. To C and g we can apply the 
*-transform of Runge’s theorem: If C is an open set in the plane, with 
connected complement C,\C in the compact$ed complex plane, and if g is 
analytic in C, then there is a sequence (Qk)k E N of polynomials such that 
Qk -+ g uniformly on compact subsets of C [ 10, p. 2901. 

Starting with a positive infinitesimal, Runge’s transferred theorem yields 
a hypercomplex polynomial P(z) that is infinitely close to g(z) on K. We 
verify that P(z) satisfies the requirements of the converse part of our 
theorem. 

To see that P(z) is S-continuous on 52, take any z0 E Q. This z0 belongs 
to an A, (1 d k < M) and, being S-interior to *sZ, it is an S-internal point 
of the compact subligure AL. Hence the monad of z0 lies entirely inside A;, 
and the S-continuity of P at z,, follows from the continuity off(z). On the 
other hand, P(z) cannot be S-continuous at a standard point z0 outside SL. 
Since standard points of A are in Q, such a z0 does not belong to A, and 
it must lie in some B, (1 d k d L) or on the polygonal line r. In each case, 
the monad of z0 contains at least a horizontal line segment, inside some Bh, 
of length 6. By our choice of /i this segment covers at least one period of 
sin Ax. Hence lsin AZ/ oscillates over noninfinitesimal amplitudes on the 
monad of zO. The same holds for [P(z)/, since P(z) is infinitely close to 
sin /iz on Bb. This proves that Q is the set of standard points at which P 
is S-continuous. That Q = YP, and f = “P on YP, results from P(z) being 
infinitely close to the standard function f(z). 

Finally, the almost-uniqueness of the coefficients of finite order follows 
from a theorem of Robinson’s [9, Th. 6.2.71, stating that differentiation 
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and standard part may be interchanged for S-continuous *-analytic 
functions. Here we infer that “(P’“‘(z)) =fck’(z) for any finite index k and 
any zE52. 1 

Remarks. (1) The above proof relies on the fact that a standard open 
set in the plane consists of the standard points of some nonstandard 
elementary figure. (Note that we intersect an internal set with R2, which is 
not the same as taking its standard part. The latter operation invariably 
yields a closed set, which is of no use here.) 

One might consider to use directly the open components of the set 
V,, n *Q, and to work not with a hyperfinite number of halfopen intervals, 
but with a hype&rite number of general open sets. Besides being intrinsi- 
cally interesting (after all, a possibly intricate open set is reduced to an 
elementary figure), the first choice is also technically rewarding. Reconsider 
squeezing, inside a connected set, a slightly smaller subset that is still 
connected. In an elementary figure there is no difficulty in doing that, 
because there is a smallest nonzero side of the composing intervals. For 
some open sets of a general structure, however, there may not be a uniform 
way to construct such connected subsets. Consider, e.g., the plane open 
subset of the first quadrant, bounded by the coordinate axes and by the 
sawtooth line passing through the points (0, l), (1, l/2), (2, l), (3, l/3), 
(4, l/2), ..., (2k - 1, 1/(2k - 1)) (2k, l/k), . . . . No matter how little is peeled 
off, the smaller set is disconnected. To obtain a bounded open set with this 
property, it suffices to have it not diverge along the x-axis, but spiral 
towards the origin. 

(2) It is not possible to extend the almost-uniqueness of the coef- 
ficients to infinite orders. Consider, e.g., z” and the trivial polynomial 0. 
Both have zero as standard part on the unit disc, their finite-order 
coefficients are identical, but the difference between the wth order 
coefficients 1 and 0 is not infinitesimal. 

Concerning the very notion of analyticity some interesting conclusions 
may be drawn from the above theorem. Suppose that the function f(z), 
analytic on the open set without holes Q 3 0, has the local development 

f(z) = co + c, z + c2z2 + ‘. . (lzl < R). 

Theorem 2 shows that f(z) is the standard part of a nonstandard 
polynomial P(z) whose finite-order coefficients are the same as forf(z), 

P(z) = cg + Cl z + c2z2 + . . . + UNZN. 

Loosely speaking, one could say that the nonstandard polynomial 
describing f is obtained by adding an infinite tail to the standard develop- 
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ment off near some starting point, say 0. This tail of infinite order terms, 
whose coefficients have no simple relation with the given functionf, makes 
the whole difference. The one polynomial obtained describes the given 
function f on the whole open set Sz. In the standard approach both the 
notions of infinite polynomial and of S-continuity are lacking, and 
standard developments are very “short” compared to the length of a non- 
standard polynomial. To compensate for these defects, standard analysis 
must resort to the use of an infinite patchwork of such short-ranged 
developments. The intrinsically “uniform” nature of Nonstandard Analysis 
is confirmed here: a single, finished object is at hand to replace a multitude 
of local limits. 

The strange thing is (see Proposition 2 below) that this tail does not 
contribute much in the neighbourhood of the starting point 0. Its effect 
only shows up in the neighbourhood of points q, # 0, where the infinite- 
order coefficients ai(O) contribute considerably to the new coefficients 
%W~ 

The characterizations in Proposition 2 involve “tails” and “partial 
differences” that resemble the tails and partial sums of series. Note, 
however, that in any of our partial differences the constant term a, of the 
polynomial must be left out, while all other terms are significant. (Compare 
with convergence, where any finite number of first terms in a partial sum 
can be left out.) 

PROPOSITION 2. Given a hypercomplex polynomial P(z) = I,!’ 0 ajzJ with 
a, finite, the following properties are equivalent: 

(i) P is absolutely microcontinuous at 0; 

(ii) P is absolutely microcontinuous on some noninfinitesimal 
O-centered ball B; 

(iii) on some noninfinitesimal O-centered ball all the partial differences 
sk(z) = If=, ajzJ (k 2 1) have ,finite modulus; 

(iv) on some noninfinitesimal O-centered ball all the tails tk(z) = 
C”= , k + , ajzi (k 2 0) have finite modulus; 

(v) on some noninfinitesimal O-centered ball all the tails tk(z) = 
z/c k + , aJzJ (k 3 0) have a finite and, for infinite k, infinitesimal modulus; 

(vi) on some noninfinitesimal O-centered ball all the partial differences 
sk(z) = cJk=, ajzJ (k b 1) have,finite modulus and are, for infinite k, infinitely 
close together. 

Proof (i) =+- (ii) by Proposition 1. 

(ii) * (iii). As shown in Proposition 1, we can take for B the ball 
described by (Czl < r~ < 1 (g standard). Then ICF=, ajzil < C,“=, (Cz(‘< 
1/(1-c). 
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(iii)*(iv) since t,=s,-sk. 

(iv) j (v). For infinite k and [Czl < c < 1 it follows from Cauchy’s 
Criterion that It,1 <C$+r ICZI’<C,“=~+, o’zO. 

(v) a (vi) since sk = sN - t,. 

(vi)*(i). ja,zjl = lsi-sipl / is finite on the interval considered, 
hence certainly for all IzI z 0. This implies that Ia,1 ‘li (j> 1) is finite, which 
is equivalent to (i). 1 

3. NONSTANDARD CHARACTERIZATION OF REAL ANALYTICITY, 
WITH STANDARD APPLICATIONS 

The foregoing sections contain nonstandard characterizations of real 
continuity on G, sets, and of holomorphy on open sets. We now turn to 
real functions analytic on open subsets of the real line. 

THEOREM 3. Let P(x) be any hyperreal polynomial, and let l;s, denote 
the set of standard points at which P is both finite and absolutely micro- 
continuous. Then (i) ~4~ is an open subset of the real line; (ii) the real 
function f(x) = “P(x) is defined and analytic on &r. 

Conversely, let A be an open subset of the real line and let f(x) be a real 
function, defined and analytic in A. Then there is, in an enlargement, a hyper- 
real polynomial P(x) such that (i) &p = A; (ii) f = “P on A. Moreover, the 
finite-order coefficients of P are uniquely determined up to infinitesimals. 

Proof: The openness of AZI~ and the analyticity of “P(x) are contained 
in the real version of Proposition 1. For the converse we rely on 
Theorem 2. The real function f(x) being analytic on A, we have, for every 
x E A, a development f(z) = c,EO aj(x)(z - x)’ (z E ]x - 6,, x + S,[). The 
same family of series, now for complex z E B(x, 6,) extends f(x) to a 
complex analytic function f (z) on an open complex superset, without holes, 
of A. Call this subset of the complex plane Q. Let P(z) be a hypercomplex 
polynomial for which Yp = Q and f(z) = “P(z) on R. The hyperreal 
polynomial P(x) =B(P(x)) satisfies the requirements (i) and (ii) of the 
converse part. The almost-unicity of the finite-order coefficients is deduced 
as in Theorem 2. 1 

Theorem 3 allows one to characterize an analytic real function as the 
standard part of an absolutely microcontinuous hyperreal polynomial. 
Comparing with Theorem 1 we see that the standard part f is continuous 
resp. analytic at a point if the underlying polynomial is microcontinuous 
resp. absolutely microcontinuous. By formula (4) absolute microcontinuity 
is reduced to an easy property of the coefficients. Moreover, as shown in 
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[6], regularity in the coefficient sequence tends to lift microcontinuity to 
absolute microcontinuity. This happens when all the coefficients are of 
the same sign, or if they alternate signs. In Proposition 3 below we 
give another of these regularity patterns. First, separating positive and 
negative coefficients, we rearrange P(x) in an internal way as P(X) = 
P+(x) -t- P-(x), where P, has positive coefficients, and P- negative ones. 
If P and P, are microcontinuous at x0, so is P . But for P, and P_ , 
having coefficients of constant sign, microcontinuity and absolute 
microcontinuity are equivalent. Hence P is the difference of two absolutely 
microcontinuous polynomials, and is itself absolutely microcontinuous. 
Conversely, if P is absolutely microcontinuous at x0, characterization (4) 
implies the absolute microcontinuity of P + and P at that point. Therefore 
we have the following: The polynomial P(x), microcontinuous at x0, is 
absolutely microcontinuous at that point tf and only !f P, or Pi is 
(absolutely) microcontinuous there. 

Translating this simple observation in terms of the coefficients, we find 

PROPOSITION 3. The hyperreal polynomial P(x) = C,y=, a/x’ is absolutely 
microcontinuous at 0 tf and only tf one of the ,following conditions holds: 
(i) P is microcontinuous at 0 and a, < rJ (j = 1, 2, . . . . N) for some real r > 0; 
(ii) P is microcontinuous at 0 and a, 3 -ri (j = 1, 2, . . . . N) for some real 
r 3 0. 

This proposition has the intrinsic value of clarifying to some extent the 
elusive concept of nonabsolute microcontinuity. In principle, it must be 
possible to characterize microcontinuity in terms of the coefficients a, and 
this characterization must contain more than the absolute values Iail; 
otherwise, microcontinuity and absolute microcontinuity could not be 
distinguished. From Proposition 3 we see that the characterization of 
microcontinuity must be such that, if one-sided geometric growth aj d r’ or 
ai 3 - ri is added, two-sided geometric growth lajl < ri ensues. 

We end this section with two standard applications. Both are related to 
the question: When is a real ,function, initially only known to be C” or 
continuous, in fact an analytic function. 7 The first characterization of this 
kind, due to Pringsheim, reduces analyticity to the uniform boundedness of 
\f(“)(x)/n!) I!“. Rather unexpectedly, Bernstein [ 1 ] established results in 
which the sign of the derivatives (even: of the differences) is important, 
rather than the modulus. A whole family of related results have been found 
since, by Boas, Widder, and others. (See the survey paper [2] for an 
account of these.) It is not difficult to prove the theorems below by 
standard means, if one takes Bernstein’s sufficient condition for granted. 
The point is that the nonstandard approach gives a more general result in 
a straightforward way. 
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THEOREM 4 (Generalized Bernstein Theorem). Let f be continuous on 
[u, b] and C” on [a, b[. Zf there exists a constant r > 0 such that 

f (i’(x) 6 r’j!, abx<h (j= 1, 2, . ..) (7) 
or 

f”‘(x) 3 -r’j!, abx<b (j = 1, 2, . ..) (8) 

then f is analytic on [a, b[. 

Proof We rely on some properties of Bernstein polynomials, and there- 
fore limit ourselves to the unit interval. (For a general interval modified 
Bernstein polynomials with identical properties could be used.) With f we 
associate the nonstandard Bernstein polynomial 

B/v(f; x)= 2 *f(j/W 7 x’( 1 -x)“-’ 

of infinite order NE *N\N. ‘=’ 

0 

Bernstein polynomials inherit, only slightly modified, the bounds of the 
function they approximate, and the same holds for derivatives of all orders. 
More precisely [4, p. 1141: 

For every integer j kth 0 < j<n we have that, if ,f”‘(x)>,m (resp. 
,f”‘(x)<M) on [0, 11, then B!,j)(f;x)>F!/‘m (resp. Br)(f;x)bF!/‘M), 
with Fy’=n(n- 1) . ..(n- j+ 1)/n’ (interpreted as 1 for j=O.) 

The assumption (7) implies that *f(‘)(x) < r-lj! for all nonstandard x 
in * [0, 1 [ and every hypernatural j 2 1. We infer that, for hypernatural 
jai B(j)(f.x)dr’j!F(~)~r’j! on *[O, l[. This means that, if B($)(f;x) 2 N 3 
is rearranged around any centerpoint x0 E *[O, l[, the coefftcients 
a,(~,) = B$‘(f; x0)/j! satisfy the condition aj d rJ (j= 1, 2, . . . . N) of 
Proposition 3. Since BN(f; x) is microcontinuous and finite at every 
standard X~E *]O, l[ (its standard part is .f(xO) by Bernstein’s form of 
Weierstrass’ Theorem), B, (f; x) is absolutely microcontinuous and finite 
on 10, I [. By Proposition 3, the standard part f is analytic on 10, 1 [. 

Microcontinuity at x0 involves all values for x z x0, both x < x0 and 
x 3 x0. Since we do not, a priori, know how BN(,f’, x) behaves for x < 0 or 
I > 1, this polynomial need not be microcontinuous at x0 = 0 or x0 = 1. 

A short direct reasoning shows that BN(f; x) = a, + u,x + . + aNxN is 
absolutely microcontinuous at 0. For hypercomplex infinitesimal z we have, 
assuming (7), that 

la,,+ “’ +a,zNI 

dl(u,-r)z+ ... +(a,W-rN)~NI +Irz+ ... +rNzNJ 

<(r--a,)lzI + ... +(r” -uN)lzlN+rIz/ + ... +rNIzIN 

=2(rI=I + ... +r”Iz/“)-(u,Iz/ + ... +uylzlN). 
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But 

a1 IZI + ... +aN~z~N=BN(f;~~/)-BN(f;O)~**J'(J~I)-*f(0)~O 

since O< IzI < 1. Also Y/Z/ + ... +r”IzIN~O. Hence Ja,z+ ... +n,vz_N( ~0. 
This reasoning cannot be repeated for x0 = 1 and, indeed, the theorem 

does not extend to compact [a, b].’ [ 

Bernstein proved [3, p. 1601 that the existence and positivity of all 
derivatives in the sufficient condition f”‘(x) > 0 can be replaced by the 
mere positivity of all differences 

Aif( i ‘k 
0 

(- l)kf(X +jh). 
k=O 

In our context this variant also can easily be generalized. We shall rely on 
the well-known fact [4, pp. 108, 1141 that the Bernstein polynomial 
B,(f; X) can be rearranged as 

Mf; xl= i 4,“fKu J x’ 
/=O 0 

and that, generally, 

THEOREM 5. Let f be continuous on [a, b]. If there exists a real r 2 0 
such that 

(n = 1, 2, . . . . p = 1, . . . . n; 0 <j< n - p) (9) 

or 

(n = 1, 2, . . . . p= 1, . . . . n;06 j<n-p) (10) 

then f is analytic on [a, b[. 

‘Let ,j”(x)=C,‘>02~“*x2” for 04x<l. Then feCr([O, I]) and f”‘>O on [0, 1] for 
j= 1,2 ) . . yetfis not analytic at 1. The author thanks Professor J. Siciak of Krakov (Poland) 
for delivering this counterexample to the (originally ill-stated) theorem in proof. 
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Proqf Again, we limit ourselves to the unit interval. Consider the 
nonstandard Bernstein polynomial B,(f; x), with NE *N infinite. The 
assumed continuity off implies that BN(f; x) z *f(x) on *[O, 11, so that in 
particular BN(f; x) is finite on this interval. After transfer, condition (9) 
holds for p = 1, . . . . N and we infer that 

N-P 

B(NP)(f;X)=N(N-l)...(N-P+l) 1 d[,,J’ $ 
/=o 0 

X s’(l -.X)N-p-j 

xl(l -x)N~-P-I 

= rpp! (XE *[IO, 11; p = 1, . . . . N). 

The rest of the reasoning is identical with that for Theorem 4. 1 

In Theorems 4 and 5, Bernstein’s condition corresponds to Y = 0 in the 
second form. 
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