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Abstract

We consider the problem of the numerical solution of stochastic delay di�erential equations of Itô form

dX (t) = f(X (t); X (t − �))dt + g(X (t); X (t − �))dW (t); t ∈ [0; T ]

and X (t) =	(t) for t ∈ [−�; 0]; with given f; g, Wiener noise W and given �¿ 0, with a prescribed initial function 	.
We indicate the nature of the equations of interest and give a convergence proof for explicit single-step methods. Some
illustrative numerical examples using a strong Euler–Maruyama scheme are provided. c© 2000 Elsevier Science B.V. All
rights reserved.

1. Introduction

We are concerned here with the evolutionary problem for Itô stochastic delay di�erential equations
or SDDEs. SDDEs generalise both deterministic delay di�erential equations (DDEs) and stochastic
ordinary di�erential equations (SODEs). One might therefore expect the numerical analysis of DDEs
and the numerical analysis of SODEs to have some bearing upon the problems that concern us here.
We refer to [14] for an overview of the issues in the numerical treatment of DDEs. For a reprise
of the basic issues in the numerical treatment of SODEs, see [4]; for more extensive treatments
see [8,11]. In this article we will be interested in obtaining approximations to strong solutions of
an SDDE. One reason to be interested in this kind of approximation is to examine the dependence
of the solution on the initial function or on parameters that are contained in the de�nition of the
SDDE. The article is based on [2].
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We shall use a brief discussion of some model problems to introduce SDDEs to the reader.

• (Cell population growth) Consider a large (in order to justify continuous as opposed to discrete
growth models) population N (t) of cells at time t evolving with a proportionate rate �0¿ 0
of ‘instantaneous’ and a proportionate rate �1 of ‘delayed’ cell growth. By ‘instantaneous’ cell
growth, we mean that the rate of growth is dependent on the current cell population, and by
‘delayed’ cell growth, we mean that the rate of growth is dependent on some previous cell
population. If the number �¿ 0 denotes the average cell-division time, the following equation
provides a model

N ′(t) = �0N (t) + �1N (t − �); t¿0; N (t) =	(t); t ∈ [− �; 0]:
Now assume that these biological systems operate in a noisy environment whose overall noise
rate is distributed like white noise � dW (t). Then we will have a population X (t), now a random
process, whose growth is described by the SDDE

dX (t) = (�0X (t) + �1X (t − �))dt + � dW (t); t ¿ 0;

with X (t)=	(t) for −�6t ¡ 0. This is a constant delay equation with additive noise (the delay
is only in the drift term).

• (Population growth again) Assume now that in the above equation we want to model noisy be-
haviour in the system itself, e.g. the intrinsic variability of the cell proliferation or other individual
di�erences and the interaction between individuals. This leads to the multiplicative noise term,
as in

dX (t) = (�0X (t) + �1X (t − �)) dt + �X (t) dW (t); t ¿ 0;

with X (t) =	(t) for −�6t ¡ 0.
• (More examples) For some additional examples we can refer to examples in neural control
mechanisms: neurological diseases [3], pupil light reex [9] and human postural sway [6].

2. General formulation

Let (
;A; P) be a complete probability space with a �ltration (At) satisfying the usual conditions,
i.e. the �ltration (At)t¿0 is right-continuous, and each At ; t¿0, contains all P-null sets in A. In
this article we will prove convergence of a numerical method in the mean-square-sense, i.e. we say
that X ∈ L2 =L2(
;A; P) if E(|X |2)¡∞ and we de�ne the norm ||X ||2 = (E(|X |2))1=2: We refer
to [13] for the background on probability theory and to [1,7] for properties of a Wiener process and
stochastic di�erential equations.
Let 0= t0¡T ¡∞. Let W (t) be a one-dimensional Brownian motion given on the �ltered prob-

ability space (
;A; P).We consider the scalar autonomous stochastic delay di�erential equation (SDDE)

dX (t) =

drift coe�cient︷ ︸︸ ︷
f(X (t); X (t − �)) dt +

di�usion coe�cient︷ ︸︸ ︷
g(X (t); X (t − �)) dW (t);

t ∈ [0; T ]
X (t) = 	(t); t ∈ [− �; 0]

(1)

with one �xed delay, where 	(t) is an At0 -measurable C([− �; 0];R)-valued random variable such
that E||	||2¡∞ (C([ − �; 0];R) is the Banach space of all continuous paths from [ − �; 0] → R
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equipped with the supremum norm). The functions f :R×R→ R and g :R×R→ R are assumed
to be continuous. Eq. (1) can be formulated rigorously as

X (t) = X (0) +
∫ t

0
f(X (s); X (s− �)) ds+

∫ t

0
g(X (s); X (s− �)) dW (s) (2)

for t ∈ [0; T ] and with X (t) = 	(t), for t ∈ [ − �; 0]. The second integral in (2) is a stochastic
integral, which is to be interpreted in the Itô sense. If g does not depend on X the equation has
additive noise, otherwise the equation has multiplicative noise. We refer to [10,12] for the following
de�nition and a proof of Theorem 2.

De�nition 1. An R-valued stochastic process X (t) : [ − �; T ] × 
→R is called a strong solution
of (1), if it is a measurable, sample-continuous process such that X |[0; T ] is (At)06t6T -adapted
and X satis�es (1) or (2), almost surely, and satis�es the initial condition X (t) = 	(t) (t ∈
[ − �; 0])). A solution X (t) is said to be path-wise unique if any other solution X̂ (t) is stochas-
tically indistinguishable from it, that is P(X (t) = X̂ (t) for all −�6t6T ) = 1.

Theorem 2. Assume that there exist positive constants Lf; i; i = 1; 2 and Kf; such that both the
functions f and g satisfy a uniform Lipschitz condition and a linear growth bound of the following
form: For all �1; �2; �1; �2; �; � ∈ R and t ∈ [0; T ]

|f(�1; �1)− f(�2; �2)|6Lf;1|�1 − �2|+ Lf;2|�1 − �2|;
|f(�; �)|26Kf(1 + |�|2 + |�|2)

and likewise for g with constants Lg; i; i=1; 2; and Kg. Then there exists a path-wise unique strong
solution to Eq. (1).

3. Numerical analysis for an autonomous SDDE

De�ne a mesh with a uniform step h on the interval [0; T ] and h=T=N; tn= n · h; n=0; : : : ; N . We
assume that there is an integer number N� such that the delay can be expressed in terms of the stepsize
as �=N� ·h. We consider strong approximations X̃ n of the solution to (1), using a stochastic explicit
single-step method with an increment function � incorporating increments �Wn+1:=W(n+1)h−Wnh of
the driving Wiener process. For all indices n− N�60 de�ne X̃ n−N� :=	(tn − �), otherwise

X̃ n+1 = X̃ n + �(h; X̃ n; X̃ n−N� ;�Wn+1); n= 0; : : : ; N − 1: (3)

Notation 1. We denote by X (tn+1) the value of the exact solution of Eq. (1) at the meshpoint tn+1
and by X̃ n+1 the value of the approximate solution using (3) and by X̃ (tn+1) the value obtained after
just one step of (3), i.e., X̃ (tn+1) = X (tn) + �(h; X (tn); X (tn − �);�Wn+1).

With this notation we can give the following de�nitions.

De�nition 3. The local error of the above approximation {X̃ (tn)} is the sequence of random vari-
ables �n+1 = X (tn+1)− X̃ (tn+1); n= 0; : : : ; N − 1. The global error of the above approximation {X̃ n}
is the sequence of random variables �n:=X (tn)− X̃ n; n= 1; : : : ; N .
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Note that �n is Atn-measurable since both X (tn) and X̃ n are Atn-measurable random variables.

De�nition 4. Method (3) is consistent with order p1 in the mean and with order p2 in the
mean-square sense if the following estimates hold with p2¿ 1

2 and p1¿p2 +
1
2 :

max
06n6N−1

|E(�n+1)|6Chp1 as h→ 0; (4)

max
06n6N−1

(E|�n+1|2)1=26Chp2 as h→ 0; (5)

where the (generic) constant C does not depend on h, but may depend on T and the initial data.

We also will assume the following properties of the increment function �: assume there exist
positive constants C1; C2 such that for all �; �′; �; �′ ∈ R

|E(�(h; �; �;�Wn+1)− �(h; �′; �′;�Wn+1))|6C1h(|�− �′|+ |�− �′|); (6)

E(|�(h; �; �;�Wn+1)− �(h; �′; �′;�Wn+1)|2)6C2h(|�− �′|2 + |�− �′|2): (7)

We now state the main theorem of this article.

Theorem 5. We assume that the conditions of Theorem 2 are ful�lled and that the increment
function � in (3) satis�es estimates (6) and (7). Suppose the method de�ned by (3) is consistent
with order p1 in the mean and order p2 in the mean-square sense; so that (4) and (5) hold (where
the constant C does not depend on h). Then; approximation (3) for Eq. (1) is convergent in L2

(as h→ 0 with �=h ∈ N) with order p= p2 − 1
2 . That is; convergence is in the mean-square sense

and

max
16n6N

(E|�n|2)1=26Chp as h→ 0; where p= p2 − 1
2 : (8)

Proof. Since we have exact initial values we set �n = 0 for n = −N�; : : : ; 0. Now beginning with
�n+1=X (tn+1)−X̃ n+1, using Notation 1, adding and subtracting X (tn) and �(h; X (tn); X (tn−�);�Wn+1)
and rearranging we obtain �n+16�n + �n+1 + un, where

un :=�(h; X (tn); X (tn − �);�Wn+1)− �(h; X̃ n; X̃ n−N� ;�Wn+1):

Squaring both sides, employing the conditional mean with respect to the �-algebra At0 , and taking
absolute values, we obtain

E(�2n+1|At0)6E(�2n|At0) + E(|�n+1|2|At0)︸ ︷︷ ︸
1)

+E(|un|2|At0)︸ ︷︷ ︸
2)

+ 2|E(�n+1 · un|At0)|︸ ︷︷ ︸
3)

+ 2|E(�n+1 · �n|At0)|︸ ︷︷ ︸
4)

+ 2|E(�n · un|At0)|︸ ︷︷ ︸
5)

(9)

which holds almost surely. We will now estimate the separate terms in (9) individually and in
sequence; all the estimates hold almost surely. We will frequently use the H�older inequality, the
inequality 2ab6a2 + b2 and properties of conditional expectation.
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• For the term labelled 1) in (9) we have, due to the assumed consistency in the mean-square
sense of the method,

E(|�n+1|2|At0) = E(E(|�n+1|2|Atn)|At0)6c1h
2p2 :

• For the term labelled 2) in (9) we have, due to property (7) of the increment function,

E(|un|2|At0)6c2hE(|�n|2|At0) + c2hE(|�n−N� |2|At0):

• For the term labelled 3) in (9) we obtain, by employing the consistency condition and property
(7) of the increment function �,

2|E(�n+1 · un|At0)|6 2(E(|�n+1|2|At0))
1=2(E(|un|2|At0))

1=2

6E(E(|�n+1|2|Atn)|At0) + E(|un|2|At0)

6 c3h2p2 + hc6E(�2n|At0) + hc6E(�
2
n−N� |At0):

• For the term labelled 4) we have, due to the consistency condition,

2|E(�n+1 · �n|At0)|6 2E(|E(�n+1|Atn)| · |�n||At0)

6 2(E|E(�n+1|Atn)|2)1=2 · (E(|�n|2|At0))
1=2

6 2(E(c5hp1)2)1=2 · (E(|�n|2|At0))
1=2

= 2(E(c25h
2p1−1))1=2 · (hE(|�n|2|At0))

1=2

6 c25h
2p1−1 + hE(|�n|2|At0):

• For the term labelled 5) in (9) we have, using property (6) of the increment function �,

2|E(�n · un|At0)|6 2E(|E(un|Atn)||�n||At0)

6 c6hE(|�n|2|At0) + 2c6hE(|�n||�n−N� ||At0)

6 c6hE(|�n|2|At0) + c6h2(E(|�n|2|At0))
1=2 · (E(|�n−N� |2|At0))

1=2

6 c6hE(|�n|2|At0) + c6hE(|�n|2|At0) + c6hE(|�n−N� |2|At0)

6 c6hE(|�n|2|At0) + c6hE(|�n−N� |2|At0):

Combining these results, we obtain, with 2p262p1 − 1,
E(�2n+1|At0)6(1 + c7h)E(�

2
n|At0) + c7h

2p2 + c8hE(|�n−N� |2|At0):

Now we will proceed by using an induction argument over consecutive intervals of length � up to
the end of the interval [0; T ].
Step 1: tn ∈ [0; �], i.e., n= 1; : : : ; N� and �n−N� = 0.

E(�2n+1|At0)6 (1 + c7h)E(�2n|At0) + c7h
2p2

6 c7h2p2
n∑
k=0

(1 + c6h)k = c7h2p2
(1 + c6h)n+1 − 1
(1 + c6h)− 1

6 c9h2p2−1((ec6h)n+1 − 1)6c9h2p2−1(ec6T − 1):
Step 2: tn ∈ [k�; (k + 1)�] and we make the assumption E(|�n−N� |2|At0)6c10h

2p2−1.

E(�2n+1|At0)6 (1 + c7h)E(�2n|At0) + c7h
2p2 + c8hE(|�n−N� |2|At0)

6 (1 + c7h)E(�2n|At0) + c7h
2p2 + hc10h2p2−1
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= (1 + c7h)E(�2n|At0) + c11h
2p2

6 c12h2p2−1(ec6T − 1);
by the same arguments as above. This implies, almost surely,

(E(�2n+1|At0))
1=26c9hp2−1=2;

which proves the theorem.

Remark 6. Assumption (6) reduces to the condition of Lipschitz-continuity for the increment func-
tion � in the deterministic setting, i.e., without noise. This is a standard assumption for convergence
in the theory of numerical analysis for deterministic ordinary di�erential equations, as it implies the
zero-stability of the numerical method.

4. The Euler–Maruyama scheme

As a start we have considered strong Euler–Maruyama approximations with a �xed stepsize on
the interval [0; T ], i.e., h = T=N; tn = n · h; n = 0; : : : ; N . In addition we have assumed that there is
an integer number N� such that the delay can be expressed in terms of the stepsize as �= N�h.
For Eq. (1) the increment function �EM of the Euler–Maruyama scheme has the following form

in the method (3):

�EM(h; X̃ n; X̃ n−N� ;�Wn+1) = hf(X̃ n; X̃ n−N�) + g(X̃ n; X̃ n−N�)�Wn+1 (10)

for 06n6N −1 and with �Wn+1:=W(n+1)h−Wnh, denoting independent N (0; h)-distributed Gaussian
random variables.

Theorem 7. If the functions f and g in Eq. (1) satisfy the conditions of Theorem 2; then the
Euler–Maruyama approximation is consistent with order p1 = 2 in the mean and order p2 = 1 in
the mean square.

We gave a complete proof in [2], based on the consistency analysis given in [11] for SODEs and
using a theorem from Mao [10, Lemma 5:5:2], which provides the necessary moment inequalities
for the solution of (1).

Lemma 8. If the functions f and g in Eq. (1) satisfy the conditions of Theorem 2; then the
increment function �EM of the Euler–Maruyama scheme (given by (10)) satis�es estimates (6)
and (7) for all �; �′; �; �′ ∈ R.

|E(�EM(h; �; �;�Wn+1)− �EM(h; �′; �′;�Wn+1))|

=|E(hf(�; �) + g(�; �)�Wn+1 − hf(�′; �′)− g(�′; �′)�Wn+1)|

6h|f(�; �)− f(�′; �′)|+ |g(�; �)− g(�′; �′)||E(�Wn+1)|

6h(L1|�− �′|+ L2|�− �′|)
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Table 1

Time step 0.25 0.125 0.0625 0.03125

I � 0.0184 0.00404 0.000973 0.000244
II � 0.1088654 0.04912833 0.02437045 0.01213507

E(|�EM(h; �; �;�Wn+1)− �EM(h; �′; �′;�Wn+1)|2)
=E(|hf(�; �) + g(�; �)�Wn+1 − hf(�′; �′)− g(�′; �′)�Wn+1|2)
6h2|f(�; �)− f(�′; �′)|2 + |g(�; �)− g(�′; �′)|2E|�Wn+1|2

6h2(L21|�− �′|2 + L22|�− �′|2) + h(L23|�− �′|2 + L24|�− �′|2);
from which the estimates follow.

Remark 9. Theorem 7 and the last lemma imply that for the Euler–Maruyama method Theo-
rem 5 is valid, with order of convergence p = 1

2 in the mean-square-sense. If Eq. (1) has addi-
tive noise, then the Euler–Maruyama approximation is consistent with order p1 = 2 in the mean
and order p2 = 3

2 in the mean square, which implies an order of convergence p = 1 in the
mean-square-sense.

5. Numerical experiments

We have used the equation

dX (t) = {aX (t) + bX (t − 1)} dt + {�1 + �2X (t) + �3X (t − 1)} dW (t)
as a test equation for our method. In the case of additive noise (�2 = �3 = 0) we have calculated an
explicit solution on the �rst interval [0; �] by the method of steps (see, e.g., [5]), using 	(t)= 1+ t
for t ∈ [− 1; 0] as an initial function. The solution on t ∈ [0; 1] is given by

X (t) = eat
(
1 +

b
a2

)
− b
a
t − b

a2
+ �eat

∫ t

0
e−as dW (s):

We have then used this solution as a starting function to compute an ‘explicit solution’ on the second
interval [�; 2�] with a standard SODE-method and a small stepsize. In the case of multiplicative noise
we have computed an ‘explicit solution’ on a very �ne grid (2048 steps) with the Euler–Maruyama
scheme.
One of our tests concerned the illustration of the theoretical order of convergence. In this case

the mean-square error E|X (T ) − X̃ N |2 at the �nal time T = 2� was estimated in the following
way. A set of 20 blocks each containing 100 outcomes (!i;j; 16i620; 16j6100), were sim-
ulated and for each block the estimator �i = 1

100

∑100
j=1 |X (T; !i; j) − X̃ N (!i;j)|2 was formed. In

Table 1 � denotes the mean of this estimator, which was itself estimated in the usual way:
�= 1

20

∑20
i=1 �i.
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Fig. 1. Upper left: �i =0; i=1; : : : ; 3, upper right: �1 = 0:5; �i =0; i 6= 1, lower left: �2 = 0:5; �i =0; i 6= 2, lower right:
�3 = 0:5; �i = 0; i 6= 3.

We have used the set of coe�cients I a=−2; b= 0:1; �1 = 1 and II a=−2; b= 0:1; �2 = 1 (the
other coe�cients in the di�usion term are set to 0). The �gures display max16n6N E|X (T )− X̃ N |2,
which according to (8) in Theorem 5 is bounded by c2h2p, and they are compatible with the results
given in Remark 9, i.e. p=1 in (I), the example with additive noise, and 2p= 1

2 in (II), an example
with multiplicative noise.
One may consider Eq. (1) as a deterministic delay equation perturbed by white noise. In this

context Figs. 1 and 2 show the inuence of the parameters �i on the solution of the deterministic



E. Buckwar / Journal of Computational and Applied Mathematics 125 (2000) 297–307 305

Fig. 2. Upper left: �i = 0; i = 1; : : : ; 3, upper right: �1 = 1; �i = 0; i 6= 1, lower left: �2 = 1; �i = 0; i 6= 2, lower right:
�3 = 1; �i = 0; i 6= 3.

test equation x′(t) = ax(t) + bx(t − �). In the �rst four pictures a = −2; b = 1, in the second four
pictures a= 0; b= 1:45.
As a last experiment we varied the stepsize in order to observe some stability behaviour of the

Euler–Maruyama method. Using the coe�cients a=−16; b=1 and two stepsizes: h= 1
16 (left �gure)

and h= 1
32 (right �gure), we observe the same stability behaviour as for the deterministic equation,

i.e., a change from unstable to stable, when varying the coe�cients of the di�usion term. In the
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pictures we have �1 =0:5 (�i=0; i 6= 1); �2 =0:5 (�i=0; i 6= 2); �3 =0:5 (�i=0; i 6= 3), respectively.

6. Conclusions

This article provides an introduction to the numerical analysis of stochastic delay di�erential
equations. When one seeks to advance the study further, one sees open a number of unanswered
questions, involving (for example)
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• the design of numerical methods for more general kinds of memory (e.g., time or state dependent
time lags);

• the stability and dynamical properties of the numerical methods;
• the design of numerical methods for more general problems (e.g., stochastic integrodi�erential
equations).
We hope that such issues will be addressed in sequels to this report.
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