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Decomposition andl1-Embedding of Weakly Median Graphs

HANS-JÜRGEN BANDELT AND V ICTOR CHEPOI†

Weakly median graphs, being defined by interval conditions and forbidden induced subgraphs,
generalize quasi-median graphs as well as pseudo-median graphs.It is shown that finite weakly me-
dian graphs can be decomposed with respect to gated amalgamation and Cartesian multiplication
into 5-wheels, induced subgraphs of hyperoctahedra (alias cocktail party graphs), and 2-connected
bridged graphs not containingK4 or K1,1,3 as an induced subgraph. As a consequence one obtains
that every finite weakly median graph isl1-embeddable, that is, it embeds as a metric subspace into
someRn equipped with the 1-norm.

c© 2000 Academic Press

In this paper we continue to elaborate on a structure theory of graphs based on two fun-
damental operations, viz., Cartesian multiplication and gated amalgamation. While Cartesian
multiplication is a standard operation, gated amalgamation seems to appear only in the con-
text of median graphs and their generalizations; cf. [4, 6, 8, 23, 27]. An induced subgraphH
of a graphG is calledgatedif for everyvertexx outsideH there exists a vertexx′ (thegateof
x) in H such that each vertexy of H is connected withx by a shortest path passing through
the gatex′; cf. [18]. G is agated amalgamof two graphsG1 andG2 if G1 andG2 are (iso-
morphic to)two intersecting gated subgraphs ofG whose union is all ofG. A graph with at
least two vertices is said to beprime if it is neither a proper Cartesian product nor a gated
amalgam of smaller graphs. For instance, the only prime median graph is the two-vertex com-
plete graphK2; see Isbell [21] and van de Vel [26]. More generally, the prime quasi-median
graphs are exactly the complete graphs;quasi-median graphs were introduced by Mulder [23]
and further studied in [8, 14,28]. The pseudo-median graphs form yet another class of graphs
for which the prime members are known;see Bandelt and Mulder [6]. Unfortunately, the lat-
ter class is not closed under Cartesian multiplicationand does not include all quasi-median
graphs. In order to overcome these deficiencies we consider here the somewhat larger class
of weakly median graphs, previously studied by Chepoi [10, 11] under the name ‘locally me-
dian’ graphs. First, we say that a graphG is weaklymodularif its shortest-path metricd = dG

satisfies the following two conditions:
– for any three verticesu, v, w with 1 = d(v,w) < d(u, v) = d(u, w) there exists a

common neighbourx of v andw such thatd(u, x) = d(u, v)− 1;
– for any four verticesu, v, w, z with d(v, z) = d(w, z) = 1 and

2= d(v,w) ≤ d(u, v) = d(u, w) = d(u, z)− 1,

there exists a common neighbourx of v andw such thatd(u, x) = d(u, v)− 1.

For an illustration of these conditions see [9, Figure 2]. Aweakly mediangraph is a weakly
modular graph that doesnot contain any two vertices with an unconnected triple of common
neighbours; see Figure1.

Note that all bridged graphsare weakly modular; cf. [7, 10]. A graph is calledbridged if
G does not containany isometric cycle of length greater than 3, that is, each cycle of length
greater than 3 has a shortcut inG; see Soltan and Chepoi [25] and Farber and Jamison [20].
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K1,1,3 K2,3

FIGURE 1. Forbidden induced subgraphs.

Bridged graphs can easily be constructedsince, according to [1, Corollaries 2.4 and 2.6],
they admit certain vertex eliminationschemes (relaxing simplicial elimination for chordal
graphs). Now, a weakly median bridged graphG (i.e., a bridged graph in which the first
two graphs of Figure1 are forbidden induced subgraphs) is prime exactly when it has at
least two vertices and does nothave any cut vertex, that is, it is eitherK2 or two-connected.
Indeed, sinceG contains no induced 4-cycles,G cannot decompose as a nontrivial Cartesian
product;G cannot be a gated amalgam because two-connected bridged graphs have no proper
gated subgraphs other than singletons. This is an immediate consequence of the following two
elementary facts: first, a gated subgraph cannot intersect a triangle in just a single edge; and
second, the neighbourhood of any vertex induces a connected subgraph in a two-connected
bridged graph. Furthermore, all wheels (whether bridged or not) are prime weakly median
graphs; ann-wheel(n ≥ 4) consists of a cycle of lengthn and a ‘central’ vertex adjacent to all
vertices of the cycle. Finally, all multipartite graphs of the formK i1,i2,i3,... (with 1 ≤ i j ≤ 2)
different fromK1, K1,2, andK2,2 are prime weakly median graphs. A particular instance is
theα-octahedron K2,2,2,... (or hyperoctahedron,for short), which is the complement of the
disjoint union ofα ≥ 3 copies ofK2. For convenience, we refer to induced subgraphs of
hyperoctahedra as tosubhyperoctahedrawhen they contain eitherK4 or an induced 4-wheel
K1,2,2 (that is, whenever they constitute 1-skeletons of at least three-dimensional polyhedra).

THEOREM 1. Every finite weakly median graphG (with more than one vertex) is obtained
by successive applications of gated amalgamations fromCartesian products of the following
prime graphs: two-vertex complete graphs, 5-wheels, subhyperoctahedra, and two-connected,
K4- and K1,1,3-free bridged graphs. The latter bridged graphs are exactly the graphs which
can be realized as plane graphs such that all inner faces are triangles and all inner vertices
have degrees larger than 5. A weakly median graph is prime if and only if it does not have any
proper gated subgraphs other than singletons.

Particular instances of this result are the decomposition theorems for quasi-median graphs
(with prime graphs being complete) [8, 23] and pseudo-median graphs [6].

An important feature of weakly median graphs isthat they embed in rectilinear space.
A finite graphG with shortest-path metricdG is said to bel1-embeddableif there exists a
distance-preserving embeddingϕ into someRn equipped with the 1-norm‖ · ‖1, that is,

dG(x, y) = ‖ϕ(x)− ϕ(y)‖1

for all verticesx, y of G. Assouad and Deza [3] have shown that a graphG is l1-embeddable
if and only if for some integerη ≥ 1 it admits ascaleη embeddingψ in some hypercubeQ
(being a Cartesian power ofK2), that is,

η · dG(x, y) = dQ(ψ(x), ψ(y)) for all x, y;
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FIGURE 2. A weakly median bridged graphH and a fragment of a hypercubeindicating the scale 2
embedding ofH .

see Figure2 for an instance of a scale 2 embedding. The graphs with scale 1 embeddings
in hypercubes are thus the isometric subgraphs ofhypercubes (characterized in [17]). Shpec-
torov [24] has proved that a finite graph isl1-embeddable if and only if it is anisometric
subgraph of the Cartesian product of hyperoctahedra and ‘half-cubes’ (which are obtained
from one parity half of a hypercube, with two vertices being adjacent exactly when their dis-
tance in the hypercube equals 2). Our following result shows that in order to decide whether
a given graphG is l1-embeddable it suffices to check itsprime components,i.e., those prime
(gated) subgraphs from whichG can be built up by successive Cartesian multiplications and
gated amalgamations:

PROPOSITION1. A finite graph G isl1-embeddable if and only if every primecomponent
of G is such. G has a scaleη embedding in a hypercube if and only if every prime component
does. G is l1-rigid if and only if every prime component is such.

The particular instance of amalgamations along single vertices has already been dealt with
in [16, Proposition 7.6.1].

It is well known that a graphG is l1-embeddableif and only if its metricd can be expressed
in the form

d =
m∑

i=1

λi · δi (λi > 0 for i = 1, . . . ,m)

as a positive linear combination of ‘split’ (alias ‘cut’) metricsδi that are associated withsplits
{Ai , Bi } of G, i.e., partitions of the vertex-set into two parts, according to

δi (x, y) =

{
0 if either x, y ∈ Ai or x, y ∈ Bi ,
1 otherwise,

for i = 1, . . . ,m (cf. [5, 16]). If, in addition, this decomposition ofd is unique, thenG is
calledl1-rigid. Necessarily, for eachi the setsAi andBi occurringin the above decomposition
constitute complementaryhalf-spacesof G, that is, either set includes all shortest paths ofG
between any two of its vertices, and both sets together cover the vertex-set. Thus,G has a
scaleη embedding in a hypercube if and only if there is a collectionZ of splits such that any
two adjacent vertices ofG are separated by (i.e., in different parts of) exactlyη splits ofZ. In
particular, forη = 1 one obtains the well-known characterization of isometric subgraphs of
hypercubes [17]: G is isometrically embeddable in a hypercube if and only ifG is bipartite
andW(u, v) = {x : d(u, x) < d(v, x)} is a half-space for each pairu, v of adjacent vertices.

The specific information on half-spaces of weakly median graphs obtained in [11, 12] to-
gether with Theorem1 and Proposition 1 enables us toprove the concluding result:
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THEOREM 2. Every finite weakly median graphG is l1-embeddable. G has a scale 2 em-
beddingin a hypercube if and only if it does not contain K1,1,1,1,2 (that is, K6 minus an edge)
as an induced subgraph. Furthermore, G is l1-rigid if and only if it is K4-free.

A finite weakly median graphG which contains some inducedK1,1,1,1,2 has scaleη em-
beddings only forη ≥ 4. The minimum scaleη then depends solely on the maximal induced
subhyperoctahedra. To determine this numberη for a particular subhyperoctahedron is not a
trivial task; see [15] or [16, Chapter 7.4].

PROOF OFTHEOREM 1

We commence by establishing a number of auxiliary results. Unless stated otherwise,G
is always a weakly median graph (not necessarily finite). Recall that theinterval I(u, v) be-
tween two verticesu andv in G consists of all verticesx on shortest paths fromu to v, that is,
d(u, x) + d(x, v) = d(u, v). An induced subgraph (or a subset of vertices)H is calledcon-
vexif H includes every intervalI (u, v) of G between two verticesu, v from H . Half-spaces
are thus the nonempty convex sets with nonempty convex complement. The smallest convex
(or gated, respectively) subgraph containing a given subgraphS is theconvex hull(or gated
hull, respectively) ofS. A subgraphH is said to be1-closedif, for every triangle having
two vertices inH , the third vertex belongs toH as well; then the smallest1-closed subgraph
containingS is the1-closureof S. In order to check whether a given subgraph ofG is con-
vex or gated the following lemma is useful, which essentially coincides with Theorem 7 of
Chepoi [10] and can be proved quite easily by induction.

LEMMA 1. A connected subgraph H ofG is convex if and only if for every pair of vertices
at distance 2 in H all their commonneighbours belong to H. Moreover, a convex subgraph is
gated if and only if it is1-closed.

The next four lemmas provide the necessary information on gated hulls and isometric cycles
in G. A prism is the Cartesian productK22K3 of K2 andK3, and ahouseis obtained from a
prism by deleting one vertex.

LEMMA 2. The convex hull ofan induced (i) house, (ii) 5-cycle, (iii) 4-wheel, respectively,
in G is a (i) prism, (ii) 5-wheel,(iii) (maximal) subhyperoctahedron, respectively.

PROOF. Assertion (i) is obtained from [6, Lemma 4] and its proof.
Let C bean induced 5-cycle. SinceG is weakly median there exists a common neighbour

z of three vertices ofC, two of which are adjacent with the third one being opposite to them.
ThenC andz constitute a 5-wheel, for otherwise, an induced house arises whose convex hull
would not be a prism. If there is yet another vertexy in G adjacent to two non-adjacent vertices
on C, then we would obtain either one of the forbidden induced subgraphs (see Figure1) or
an induced house whose convex hull is not a prism.

An induced 4-wheel can be extended to a maximal induced subhyperoctahedronH in G.
Clearly H is included in the convex hull of this wheel. Suppose thatH is not convex: then
there exist two non-adjacent verticesu andv in H with a common neighboury outsideH .
Since the third and fourth graphs of Figure1 are forbidden,y is in fact adjacent to all pairs
of non-adjacent vertices fromH . Hence, asH together withy cannot induce a subhyper-
octahedron, there exist two adjacent common neighboursw andx of u andv in H such that
u, v, w, x, y induce the fourth graph of Figure1, giving a contradiction. 2
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LEMMA 3. Induced 5-wheels and convexsubhyperoctahedra containing an induced 4-
wheel are gated in G and donot contain any proper gated subgraphs other than singletons.

PROOF. In view of the preceding lemmas it suffices to show that induced 5-wheels and
convex subhyperoctahedra containingan induced4-wheel are1-closed. Clearly they do not
have any proper gated subgraphs other than singletons.

Suppose thatW is an induced 5-wheel which is not1-closed. Then two adjacent vertices
u andv of W have a common neighboury outsideW. If, say,u is the central vertex ofW,
theny must also be adjacent to the two common neighbours ofu andv in W in order to avoid
forbidden subgraphs. This, however, contradicts the fact that induced 5-wheels are convex.
Thereforeu andv are peripheral vertices of the wheel. Letz be the central vertex ofW, and
let t be the vertex opposite to the edgeuv on the cycle. Ifd(t, y) = 3, then asG is weakly
median the two vertices ofW different fromt, u, v, z would have a common neighbour with
y, which is necessarily outsideW, contrary to convexity. Henced(t, y) = 2, and so (again
asG is weakly median) there exists a common neighbourx of t, y, z, which is impossible by
what has just been shown.

Let H be a convex subhyperoctahedron which is not1-closed. Then there exists a vertexy
outsideH such that the neighbours ofy in H form a complete subgraphK of size at least 2.
Consider any induced 4-cycleC in H . If two vertices ofK belong toC, then we would obtain
an induced house the convex hull of which includes an induced 4-wheel, which is impossible.
Thereforey and any vertex pair fromK together with two (suitably chosen) non-adjacent
vertices onC induce the first graph of Figure1, a contradiction. 2

LEMMA 4. There are no isometricodd cycles in G of length greater than 5.
PROOF. Suppose the contrary, and choose a cycleC having minimal length among all

isometricodd cycles of length at least 7. LetC consist of the verticesx0, . . . , x2n and edges
xi xi+1 (i = 0, . . . ,2n, indices modulo 2n+ 1). Sincex0 andx1 are at distancen from xn+1,
they have a common neighboury1 with d(y1, xn+1) = n− 1 (becauseG is weakly median).
Further,x2 and y1 have a common neighboury2 with d(y2, xn+1) = n − 2. Continuing
this way, we eventually obtain a shortest pathx0, y1, . . . , yn−1, xn+1 such that eachyi is
adjacent toxi (i = 1, . . . ,n−1). Observe that eachyi is actually different fromxi+1 because
d(x0, xi+1) = i + 1 butd(x0, yi ) = i . Now, a shortest pathyn, . . . , y2n−3 is constructed as
follows: let yi be a common neighbour ofyi−1 and xi+2 with d(x0, yi ) = 2n− i − 2 for
i = n, . . . ,2n − 3. Again, eachyi (i ≥ n − 1) must be different fromxi+3. We claim that
the cycle induced byx0, x1, . . . , xn−1, yn−1, yn, . . . , y2n−3 is isometric. Indeed, suppose that
for somei = n, . . . ,2n − 3 the distance fromyi to one ofxi−n+1, xi−n+2 is smaller than
n − 1. Thend(xi+2, xi−n+1) < n or d(xi+2, xi−n+2) < n would follow, conflicting with
the isometry ofC. This proves the claim. Since the new isometric cycle has length 2n − 1,
we must haven = 3 by virtue of the initial minimality assumption. Thus,x0, x1, x2, y2, y3
induce a 5-cycle withy1 in its convex hull. Hence, by Lemma2, x2 and y1 are adjacent.
Now, by interchanging theroles ofxi andx8−i for i = 1,2,3 we obtain yet another 5-wheel
with central vertexy1, so thatx6 and y1 must be adjacent as well. This, however, implies
d(x2, x6) = 2, a final contradiction. 2

LEMMA 5. If G does not contain anyinduced 4-wheel or 5-wheel, then the gated hull of
any triangle is a two-connected bridged graph H, which does not have any proper gated
subgraph other than singletons.

PROOF. First suppose that some two-connected, weakly median bridged graphF contains a
proper gated subgraphSwhich is nota singleton.Pick a vertexx outsideShaving a neighbour
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w in S. Any neighbourv of w in S is connected withx by a path within theneighbourhood of
w becauseF is bridged and two-connected. Then, however, asS is1-closed, all vertices on
this path (includingx) must belong toS, yielding a contradiction.

Now, there exists a maximal isometric two-connected bridged subgraphH of G that con-
tains a given triangle. In the case whereG is infinite, this follows from Zorn’s lemma because
directed unions preserve isometry, two-connectedness as well as the property of being bridged.
To prove the lemma it thus suffices to show thatH is gated (by what has just been proven).

First suppose thatH is not convex. Then by Lemma1, we can find non-adjacent vertices
x, y in H having a commonneighbourz in H and another one,v, outsideH . SinceH is
two-connected and bridged,x andy are connected by a pathP in H which is fully included
in the neighbourhood ofz. We may assume thatv, x, y, z and P are chosen (in regard to
the stated properties) so thatP has minimal length. We claim thatv andz must be adjacent.
Suppose the contrary: thenP has length at least 3, for otherwise, we would obtain the fourth
graph of Figure1 or the 4-wheel as an induced subgraph, both of which are forbidden here.
By minimality, P has no neighbours ofv other thanx and y. Thusv, x, y, z together with
the neighbourt of x on P induce a house. This house extends to an induced prism (according
to Lemma2); letw denote the common neighbourof t, v, y. Thenw does not belong toH
becauseH is bridged. Now, the verticesw, t, y, z and the subpath ofP connectingt and y
violate the minimality assumption. This proves the claim.

Next we show that the larger subgraphH ′ induced byH together withv is also isometric
in G. Suppose the contrary: letu be a vertex ofH such that the distance ofu andv in H ′

exceeds the distanced(u, v) = k ≥ 2 in G. As no shortest path fromu to v in G can
pass through one of the three neighboursx, y, z of v (becauseH is isometric), the distances
d(u, x), d(u, y),d(u, z) are necessarily betweenk andk+ 1. So, we distinguish two cases.

Case 1. d(u, z) = k+ 1.

If d(u, x) = d(u, y) = k, thenx andy have a common neighbourt in the isometric bridged
subgraphH such thatd(u, t) = k−1 (sinceH is weakly modular), thus yielding a forbidden
4-cycle (induced byt, x, z, y) in H . Therefored(u, y) = k + 1, say. ThenH contains a
common neighbourt of y andz at distancek to u. In the weakly modular graphG we find a
common neighbourw of t andv with d(u, w) = k−1, whencet, v, w, y, z induce the fourth
graph of Figure1, which is impossible.

Case 2. d(u, z) = k.

Since now the verticesv andz are equidistant tou, they have a common neighbourw in G
with d(u, w) = k−1. As the distance betweenu andv in H ′ is larger thank, the vertexw lies
outsideH . In order to avoid forbidden induced subgraphs,w must be adjacent to bothx and
y. Now, replacingv byw andk by k−1 we are back in Case 1, thus leading to a contradiction.

We conclude that the extended subgraphH ′ is indeed isometric. From what has been shown
above we know thatH ′ cannot include any induced 4-cycle. ThereforeH ′ does not have any
isometric even cycle at all: for otherwise, such a cycleC would containv, and the two neigh-
boursx′, y′ of the vertexz′ opposite tov on C would admit a second common neighbourv′

in G (because of weak modularity) which satisfiesd(v, v′) = d(v, z′)−2, so that a forbidden
4-cycle arises (whetherv′ belongs toH or not). By the hypothesis of the lemma (together
with Lemma2), H ′ is without induced 5-cycles, and hence by Lemma4, it must be bridged.
ClearlyH ′ is two-connected, and therefore we arrive at a final contradiction to the maximality
of H . This proves thatH is in fact convex.

It remains to verify thatH is1-closed as well. Suppose there exists a vertexv outsideH
having at least two neighboursx, y in H . Then, asH is convex, the neighbours ofv in H form
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a complete subgraph.Thus,v is a simplicial vertex of theextended subgraphH ′ induced by
H andv. HenceH ′ is a bridged graph, which is evidently two-connected. As to isometry,
consider any vertexu of H . If d(u, y) < d(u, v), thenu andv are at distanced(u, v) in
H ′, too. We may therefore assume thatd(u, y) = d(u, v) becauseH is convex. SinceG is
weakly modular, we can find a common neighbourw of v andy at distanced(u, v)− 1 to u.
As H is convex,w belongs toH . This shows that there is a shortest path inH ′ betweenu and
v of lengthd(u, v). It follows that H ′ is also a two-connected, isometric bridged subgraph,
thus conflicting with the choice ofH . ThereforeH is 1-closed, concluding the proof (by
Lemma1). 2

The next lemma ensures that theprime graphs listed in Theorem1 actually encompass all
two-connected, weakly median bridged graphs.

LEMMA 6. A two-connected bridged graphH is weakly median if and only if either (1) H
is a complete graph Kn (n ≥ 4), or (2) H equals K1,1,...,1,2 (i.e., a complete graph minus an
edge, having more than four vertices), or (3) H does not contain K4 or K1,1,3 as an induced
subgraph.

PROOF. If H is of type (1) or (2),it is a subhyperoctahedron; ifH satisfies (3), thenH
does not contain anyforbidden induced subgraph of Figure1 and hence is weakly median.

Conversely, suppose thatH is weakly medianand contains someK4 but is not a subhyper-
octahedron of type (1) or (2). Extend thisK4 to a maximal induced subhyperoctahedronH ′,
which is necessarily convex, being a complete graph or a complete graph minus an edge (since
H has no induced 4-cycles). By the hypothesis, we can find a vertexz outsideH ′ which forms
a triangle together with two vertices fromH ′. Now, however, we arrive at a contradiction in
that eitherH ′ ∪ {z} would induce a subhyperoctahedron or a forbidden induced subgraph
(from Figure1) would arise. 2

To characterize the two-connected,K4- andK1,1,3-freebridged graphs via their planar em-
beddings, we will make use of the following counting argument.

LEMMA 7. Let G be a finite two-connectedplane graph in which all inner faces are tri-
angles and all inner vertices (i.e., thevertices not incident with the outer face) have degrees
larger than 5. Then the numbers n2 and n3 of vertices with degrees 2 and 3 satisfy the in-
equality2n2+ n3 ≥ 6.

PROOF. Let f denote the number of inner faces ofG, m thenumber of edges,n the number
of vertices, andb the number of vertices incident with the outer face. Then

f −m+ n = 1 and 3f + b = 2m

hold according to Euler’s theorem and the hypothesis that all inner faces are triangles. Elimi-
nating f yields

3n− b−m= 3.

The information on the vertex degrees is turned into the inequality

2m≥ 6(n− b)+ 4(b− n2− n3)+ 3n3+ 2n2

= 6n− 2b− 2n2− n3,

whence
2n2+ n3 ≥ 6n− 2b− 2m= 6,

as required. 2
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We are now in position to identify the finite two-connected,K4- and K1,1,3-free bridged
graphs with the plane graphs describedin the preceding lemma, when choosing a planar em-
bedding such that the outer face is bounded by the edges contained in exactly one triangle.

For the bridged graphs with the additional properties we construct a planar embedding
recursively by employing the dismantling scheme of Anstee and Farber [1] (for a short proof,
see [13]): there exists avertexz dominated by some neighboury in the sense that every vertex
adjacent toz is also adjacent or identical toy. If the degree ofz was larger than 3, theny
and z together with three common neighbours would either induceK1,1,3 or include some
K4, contrary to the hypothesis. Thereforez has degree 2 or 3. We assume thatG has at least
four vertices and that the desired planar embeddings can be realized for all proper induced
subgraphs which are two-connected.

Case 1. zhas exactly two neighboursx andy (which are adjacent).

ThenG − z is a graph of the same kind, to which the induction hypothesis applies. Note
that the edgexy belongs to exactly one triangle ofG − z becauseG is K4- andK1,1,3-free.
Therefore we have chosen a planar embedding ofG− z with xy on the boundary of the outer
face. Attaching the trianglex, y, z to G− z so thatz lies in the outer face ofG− z, we obtain
a plane graph with the required properties.

Case 2. zhas exactly three common neighboursw, x, and y (such thaty is adjacent tow
andx).

Thenw and x are not adjacent. IfG − z is not two-connected, theny is the unique cut
vertex. Moreover,G−{y, z} comprises exactly two components, which together withy induce
either K2 or two-connected subgraphs ofG. In any case we can transform and combine the
planar embeddings of these subgraphs so thatwy andxy lie on one line for which one of the
associated closed half-planes includesG − z. Placingz onto the complementary open half-
plane and linking it withw, x, y produces the desired embedding. IfG− z is two-connected,
then we could choose the planar embedding ofG − z right away, withwy andxy lying on
the boundary of the outer face (since both edges belong to exactly one triangle ofG − z).
Locatingz in this outer face we can extend the planar embedding toG, thereby creating two
new triangles and turningy into an inner vertex. Take a minimal pathP from G − z in the
neighbourhood ofy which connectsw andx. ThenP together withy andz induce ak-wheel
with k ≥ 6, whencey satisfies the degree constraint.

As to the converse, letG be a plane graph satisfying the hypothesis of Lemma7. We may
assume thatG hasat least four vertices. Consider any triangle ofG: together with its interior
in the plane it constitutes a plane graphH to which Lemma7 equally applies. We infer that
each vertex of the boundary trianglemust have degree 2 inH , that is,H includes no inner
vertex. Hence all triangles ofG constitute inner faces (and vice versa). In particular,G does
not include anyK4 or K1,1,3 as an induced subgraph. To show thatG is bridged, we proceed
by induction.

Case 1.There exist two adjacent verticesu andv separatingG.

Then necessarilyu andv both lie on the boundary of the outer face. We can thus decompose
G into two plane subgraphsG1 andG2 whose boundaries intersect in the edgeuv and cover
the boundary ofG. Certainly,G1 and G2 fulfil the hypothesis of Lemma7 and hence are
bridged by the induction hypothesis. ThenG is bridged aswell.

Case 2. Gdoes not have any separating edge.

Then, by Lemma7, the boundary contains some vertexv of degree 3 inG. Letw, x, y be
the neighboursof v. One of the edgesvw, vx, vy does not lie on the boundary, sayvx. Since
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vx is thus containedin two triangles,w andy must be adjacent tox. Further,x cannot bea
boundary vertex, for otherwise, the edgevx would separateG. Therefore the plane subgraph
G− v is two-connected and inherits its inner faces and inner vertices fromG. It follows from
the induction hypothesis thatG− v is bridged. Suppose thatG contains some isometric cycle
C of length 2kor 2k + 1 with k ≥ 2. ThenC includesv,w, y but notx. Substitutingv by x
creates a cycle inG − v of the same length. This cycle must have a short cut, so that some
vertexz on C is at distancek to v but k − 1 to x in G (asG − v is clearly isometric inG).
If w andy are at distancek − 1 to z, then (asG − v is weakly modular) there exist common
neighboursw′ of w and x and y′ of x and y, both at distancek − 2 to z. Recall that, for
any two verticesy andz in a bridged graph, the neighbours ofy on shortest paths betweeny
andz form a complete subgraph [20, 25]. In particular, here eitherw′ = y′ or w′ andy′ are
adjacent. Thenv,w, x, y together withw′, y′ induce a 4-or 5-wheel, so thatx would become
an inner vertex ofG with degree smaller than 6, a contradiction. ThereforeC must be an odd
cycle such that exactly one ofw, y is at distancek to z, sayw. Then the neighbouru 6= v of
w on C must be adjacent tox becauseG − v is bridged. Hence, asC is isometric, we infer
thatC is a 5-cycle comprisingv,w,u, z, y, which together withx induces a 5-wheel, again a
contradiction. We conclude thatG is bridged.

This completes the proof of the second statement in Theorem1, characterizing the specific
bridged graphs.

The subsequent Lemmas8 and10 are needed to detectamalgams or products withinG.
Any gated subsetS of G gives rise toa partitionWa (a ∈ S) of the vertex-set ofG; viz., the
fibre Wa of a relative toS consists of all verticesx (includinga itself) havinga as their gate
in S. For adjacent verticesa,b of S, letUab be the set of vertices fromWa which are adjacent
to vertices fromWb.

LEMMA 8. Let S be a gated subgraph of G. Then each fibre Wa relative to S is gated.
There exists an edge between two distinct fibres Wa and Wb if and only if a and b are adjacent.
Moreover, for any two adjacent vertices a, b of S, the sets Uab and Uba constitute isomorphic
gated subgraphs of G under the canonical isomorphism fab : Uab → Uba that maps each
vertex in Uab to its unique neighbour in Uba.

PROOF. We adapt some arguments from [6, proof of Theorem 12]. Ifx ∈ Wa andy ∈ Wb

are adjacent, then asd(b, x) ≤ d(b, y) + 1 we obtaind(a, x) ≤ d(b, y) and by symmetry,
d(a, x) = d(b, y); therefore, sincea andb are the gates ofx andy, respectively, inS, a and
b must be adjacent.

We claim that any vertexv ∈ Wb has at most one neighbour inWa for a 6= b. Suppose the
contrary: letv be adjacent to two distinct verticesx, y from Wa. Thena andb are adjacent,
andd(a, v) = d(a, x)+1= d(a, y)+1, by what has just been shown. By weak modularity,x
andy have a common neighbourz (necessarily inWa) at distanced(a, x)−1 froma. Further,
asd(b, x) = d(b, v) + 1 = d(b, z) + 1, there exists a common neighbourw (necessarily in
Wb) of v andz at distanced(b, v) − 1 from b. The five verticesv,w, x, y, z now induce the
third or fourth graph of Figure1, which is impossible. This proves the claim.

Each fibreWa is connected becauseI (a, x) ⊆ Wa for all x ∈ Wa. Then,by the above claim
and Lemma1, Wa is convex as well as1-closed and hence gated.

Let x ∈ Uab be adjacent tox′ ∈ Uba (for some edgeab). Every neighbourw of x in
I (a, x) ⊆ Wa has the same distance tob asx′. Hence, by weak modularity,w andx′ have a
common neighbourw′, which necessarily belongs toWb. Thereforew ∈ Uab, and it follows
by a straightforward induction thatI (a, x) ⊆ Uab. In particular,Uab is connected. To prove
thatUab is gated, apply Lemma1: let z be a common neighbour ofx, y ∈ Uab, which nec-
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essarily belongsto Wa and is at distance 2 to the (respective) neighbours ofx, y in Uba; then
the gate ofz in Wb is adjacent toz, showing thatz ∈ Uab, as desired.

Finally, let x andy be adjacent vertices inUab, with neighboursx′ andy′, respectively, in
Uba. SinceWa andWb are gated,x′ andy′ must be adjacent. We conclude that the neighbours
map fab is an isomorphism fromUab ontoUba. 2

The cycle spaceof a graph with edge-setE is the subspace of(GF(2))E comprising all
unions of closed walks. The isometric cycles clearly generate this space. In the presence of
weak modularity the triangles and induced 4-cycles generate all isometric cycles, as is eas-
ily seen by induction. Recall from Duchetet al. [19] or Jamison [22] that a graph isnull-
homotopicif its cycle space admits a basisconstituted solely of triangles. We then record the
following elementary fact.

LEMMA 9. A weakly modular graph isnull-homotopic whenever every induced 4-cycle
extends to a 4-wheel.

In the case thata proper gated subgraphSof G is two-connected and null-homotopic we can
say more about the associated setsUab: the following lemma constitutes the tool for detecting
proper decompositions of non-bipartite weakly median graphs.

LEMMA 10. Let S be a gated two-connectedand null-homotopic subgraph of G. Then the
gated subgraphs Uab (with a,b adjacent inS) are all isomorphic, and their union induces a
gated subgraph H isomorphic to a Cartesian product S2U (where U may be any Uab). If Wa

and Uab (b ∈ S) do not coincide for some a∈ S, then G is the gated amalgam of Wa and
G− (Wa −Uab).

PROOF. First we show thatUab = Uac whenevera, b, c form atriangle inS. Let xy be an
edge ofG with x ∈ Uab andy ∈ Uba. According to Lemma8 and its proof,c is equidistant
to x and y, whence there is a common neighbourz of x and y on shortest paths toc. Then
d(c, z) = d(c, x) − 1 = d(a, x), and hence asa is the gate ofx in S we infer thatz belongs
to Wc. Thereforez ∈ Uca as well asx ∈ Uac. Interchanging the roles ofa, b, c, this proves

Uab = Uac, Uba = Ubc, Uca = Ucb.

Now assume thatq andr are any two non-adjacent neighbours ofa in S. Then, asS is two-
connected, there exists a pathP from q to r not passing througha. By C denote the closed
walk from q to r along P and then back toq via the vertexa. To prove thatUaq = Uar

we proceed by induction on the minimal numberk of triangles whose (modulo 2) sum gives
C (thereby using the null-homotopy ofS). SinceP does not includea, there must be some
common neighbours of a andr such that the closed walk obtained fromC by substituting the
paira, r by the tripleta, s, r is the (modulo 2) sum ofk−1 triangles. ThenUaq = Uas = Uar

by virtue of the induction hypothesis. This justifies the shorthandUa for the setsUab.
We can verify that all subgraphsUa (a ∈ S) are actually isomorphic using the same kind

of argument: we claim that for every closed walka0,a1, . . . ,an,a0 the compositionfana0 ◦

fan−1an ◦ fan−2an−1 ◦ . . . ◦ fa0a1 is the identity map. Indeed, this is evidently true for triangles
(n = 2), by the first part of the proof. The general case is settled again by induction on the
minimal number of triangles adding up toC. In particular, we get a unique isomorphismfrs

from Ur to Us for any two (not necessarily adjacent) verticesr, s ∈ S, obtained by composing
the isomorphismsfab along the edgesab of any path fromr to s.
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The product representationof H (the subgraph induced by the union of allsetsUa) is now
immediate: pick any vertexa in Sand consider the mapping

f : S2 Ua→ H

(s, x) 7→ fas(x).

This constitutes the desired isomorphism since(i ) each mappingfas is an isomorphism from
Ua to Us, (i i ) the setsUs (s ∈ S) partition H , (i i i ) there is an edge betweenUr andUs only
if r ands are adjacent, and(i v) the isomorphismfrs maps each vertexx onto a neighbour
wheneverr ands are adjacent.

Finally, assumeWa 6= Ua for somea ∈ S. Since the subgraphG − (Wa − Ua) and the
gated fibreWa together coverG and intersect in a gated subgraph (viz.,Ua), G is the gated
amalgam ofG− (Wa −Ua) andWa. 2

Now, we have collected all the information that is necessary to conclude the proof of Theo-
rem1. Assume thatG is neither a singleton nor any ofthe prime graphs listed in Theorem1.
Then, by Lemma6, G is not a two-connected bridged graph. We have to show thatG has a
proper gated subgraphS with at least two vertices andG decomposes as a gated amalgam or
Cartesian product. IfG includes an induced 4- or 5-wheel, then by Lemmas2 and3 it has a
proper gated subgraphS, which is a subhyperoctahedron ora 5-wheel. Since these graphs are
null-homotopic and two-connected, Lemma10 provides us with the required decomposition.
So, we can assume thatG is without induced 4-or 5-wheels. IfG still contains some triangle,
then by Lemma5 we obtain a proper gated subgraphS which is bridged and two-connected.
Since bridged graphsare null-homotopic (cf. Lemma9), Lemma10 applies again, yielding a
proper decomposition ofG. It remains to consider thecase whereG is triangle-free. Then, by
Lemmas2 and4, there are no odd cycles at all, whenceG is a median graph, in whichany
edgeab serves as a proper gated subgraphS. This subgraphS leads to a decomposition as
stated in Lemma10; cf. [21, 23].

In conclusion, note that Cartesian multiplication distributesovergated amalgamation, viz.,
the Cartesian product of a graphH with a gated amalgam of two graphsG1 andG2 equals
the gated amalgam ofH2G1 andH2G2. This completes the proof of Theorem1.

PROOF OFPROPOSITION1

In the case whereG = G12G2 is the Cartesian product of two nontrivial graphsG1 andG2
the assertions of Proposition 1 are evident; see [16, Proposition 7.5.2]. In fact, we may regard
G1 andG2 as gated subgraphs ofG intersecting in a single vertex. Then the half-spaces ofG
correspond to the pairsH1,G2 andG1, H2 where eachHi is a half-space ofGi .

As to gated amalgamation, the following observation is instrumental.

LEMMA 11. Let G be a graphhaving a scaleη embeddingϕ in a hypercube Q. Then every
scaleη embeddingψ of a gated subgraph S of G in some hypercube R extends to a scaleη

embedding of G in some hypercube containing R.

PROOF. Let T be the convexhull of the imageϕ(S) in the hypercubeQ. For eachvertexx
of G let x′ be the gate ofx in S. We claim thatϕ(x′) is the gate ofϕ(x) in the subhypercube
T . Suppose it is not: then some vertexz from T − ϕ(S) is this gate. Choose any half-spaceH
of Q with ϕ(x′) ∈ H butz /∈ H . Sinceϕ(x′) is in the interval betweenϕ(x) andϕ(y) for each
y ∈ S (asϕ is a scale embedding), it follows thatH includesϕ(S) and henceT , yielding a
contradiction. This proves the claim. In particular, the distance between the gates inT of two
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verticesϕ(w), ϕ(x) from the image ofG equalsηdG(w
′, x′). Let U be a subhypercubeof Q

intersectingT in a single vertex such that the convex hull ofT andU is all of Q. LettingϕU

denote the scale embeddingϕ of G in Q followed by the gate map ontoU , we thus have

dU (ϕU (w), ϕU (x)) = η(dG(w, x)− dG(w
′, x′)).

Now, the required scaleη extension ofψ is given by

x 7→ (ψ(x′), ϕU (x)) ∈ R 2U.

Indeed, for verticesw, x of G,

ηd(w, x) = ηdG(w
′, x′)+ dU (ϕU (w), ϕU (x))

= dR(ψ(w
′), ψ(x′))+ dU (ϕU (w), ϕU (x)).

2

Assume thatG is the gated amalgam of two graphsG1 andG2, which admit scaleη em-
beddingsϕ1 andϕ2 in hypercubesQ1 and Q2, respectively. LetT be the convex hull of
ϕ1(G1∩G2) in Q1. By virtue of Lemma11we can extend the restrictionϕ1|G1∩G2 to a scale
η embeddingψ of G2 in a hypercubeR such thatR intersectsQ1 only in T . The median
graphQ1 ∪ R extends isometrically to a hypercubeQ. We can then regard the unionϕ1 ∪ ψ

as a mapping fromG to Q, yielding the required scaleη embedding.
As to l1-rigidity, observe thatH is a half-space ofG exactly when eitherH or its com-

plement is a half-space ofG1 or G2 not intersectingG1 ∩ G2, or H is a gated amalgam of
half-spacesHi of Gi (i = 1,2). This obviously implies thatG is l1-rigid wheneverG1 and
G2 are such. Conversely assume that thel1-embeddable graphG contains a gated subgraphS
which is notl1-rigid. ThenG has some scaleη embeddingϕ in a hypercube, whileS admits
yet another scaleξ embeddingψ in a hypercube such thatϕ|S andψ induce different weighted
systems of pairs of complementary half-spaces onS. Without loss of generality assume that
the scalesξ andη are the same (since scales can be enlarged to arbitrary multiples). Then the
extension ofψ to G guaranteed by Lemma 11 is essentially different fromϕ, showing thatG
is notl1-rigid.

PROOF OFTHEOREM 2

In view of Proposition 1 it suffices to verify the assertions of the theorem only for the prime
components of the given graphG. We may therefore assume thatG is prime. First note that
the 1-cubeK2 is trivially l1-rigid.

LEMMA 12. In a prime K4-free weaklymedian graph G otherthan K2, any two adjacent
vertices u andv are separated by exactly two distinct pairs of complementary half-spaces.

PROOF. Let V denote the vertex-set ofG. SinceG is two-connected, null-homotopic, and
K4-free, every edge belongs to exactly one or two triangles. Consider any triangleu, v, w in
G. Recall from [12, Lemmas 9 and 10] that then the setsW(u, v) = {x ∈ V : d(u, x) <
d(v, x)} andW(v,u) ∪W(w,u) are convex.

Case 1.w is the unique common neighbour ofu andv.

Then every vertexx equidistant tou andv is closer tow thanu andv (by weak modularity),
whence the convex setsW(u, v),W(v,u), andW(w,u)∩W(w, v) partitionV . It follows that
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W(u, v) andW(v,u) are non-complementary half-spaces. IfH is anyhalf-space withu ∈ H
andv,w ∈ V − H , then necessarilyW(u, v) ⊆ H andW(v,u) ∪W(w,u) ⊆ V − H , thus
yielding W(u, v) = H .

Case 2. uandv have exactly two common neighbours,w andw′.

Then every vertexx equidistant tou andv belongs toW(w,u) ∩W(w, v) or W(w′, u) ∩
W(w′, v). ThereforeW(u, v) ∪ W(w, v),W(v,u) ∪ W(w′, u) and W(u, v) ∪ W(w′, v),
W(v,u) ∪ W(w,u) constitute two distinct pairs of complementary half-spaces. LetH be
any half-space withu ∈ H andv ∈ V − H . Sinceu, v ∈ I (w,w′), the verticesw andw′ are
separated byH,V − H , sayw ∈ H andw′ ∈ V − H . Then necessarilyW(w, v) ⊆ H and
W(w′, u) ⊆ V − H , whenceH = W(u, v) ∪W(w, v). 2

From Lemma12 and the observations preceding Theorem2, we immediately infer that the
graphsG of Lemma12havescale 2 embeddings in hypercubes. The proof further shows that
the three splits of any triangleu, v, w uniquely extend to pairs of complementary half-spaces
of G. This implies that the associated split metrics are linearly independent, thus establishing
l1-rigidity.

To conclude the proof of Theorem2, we can assume (by Theorem1) thatG is a subhyper-
octahedroncontainingK4. The l1-embeddability of hyperoctahedra has been established by
Assouad [2]. It is easy to see that the 4-octahedronK2,2,2,2 has a scale 2 embedding in a
4-cube, but the minimum scale forK1,1,1,1,2 equals 4; see [16, Lemma 7.4.6]. The scale 2
embeddable subhyperoctahedra containingK4 are thus the subhyperoctahedraK i1,i2,i3,i4 with
1 ≤ i j ≤ 2 ( j = 1,2,3, 4), all of which fail to bel1-rigid; cf. [16, Proposition 7.4.3]. This
completes the proof of Theorem2.

ACKNOWLEDGEMENTS

We thank an anonymous referee for her/his careful reading of the manuscript, which helped
to improve the presentation. Part of this research was done when the second author was sup-
ported by the Alexander von Humboldt Stiftung.

REFERENCES

1. R. P. Anstee and M. Farber, On bridged graphs and cop-win graphs,J. Comb. Theory, Ser.B, 44
(1988), 22–28.

2. P. Assouad, Embeddability of regular polytopes and honeycombs in hypercubes, in:The Geometric
Vein:,The Coxeter Festschrift, Springer, Berlin, 1981, pp. 141–147.

3. P. Assouad and M. Deza, Espaces métriques plongeables dans un hypercube: aspects combinatoires,
Ann. Discrete Math., 8 (1980), 197–210.

4. H.-J. Bandelt and V. Chepoi, Cellular bipartite graphs,Europ. J. Combinatorics, 17 (1996), 121–
134.

5. H.-J. Bandelt andA. W.M. Dress, A canonical decomposition theory for metrics on a finite set,Adv.
Math., 92 (1992), 47–105.

6. H.-J. Bandelt and H. M. Mulder, Pseudo-median graphs: decomposition via amalgamation
and Cartesian multiplication,Discrete Math., 94 (1991), 161–180.

7. H.-J. Bandelt andH. M. Mulder, Cartesian factorization of interval-regular graphs having no long
isometric odd cycles, in:Graph Theory,Combinatorics, and Applications, volume 1, Y. Alavi, G.
Chartrand, O. R. Oellermann and A. J. Schwenk (eds), Wiley, New York, 1991, pp. 55–75.



714 H.-J. Bandelt and V. Chepoi

8. H.-J. Bandelt,H. M. Mulder and E. Wilkeit, Quasi-median graphs and algebras,J. Graph Theory,
18 (1994), 681–703.

9. H.-J. Bandelt andE. Pesch, Dismantling absolute retracts of reflexive graphs,Europ. J. Combina-
torics, 10 (1989), 211–220.

10. V. Chepoi,Classifying graphs by means of metric triangles (in Russian),Metody Diskret. Analiza,
49 (1989), 75–93.

11. V. Chepoi,d-Convexity and local conditions ongraphs (in Russian),Issledovania po Prikladnoj
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