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Decomposition andl1-Embedding of Weakly Median Graphs

HANS-JURGEN BANDELT AND VICTOR CHEPOI'

Weakly median graphs, being defined by interval conditions and forbidden induced subgraphs,
generalize quasi-median graphs as well as pseudo-median gitaiplshown that finite weakly me-
dian graphs can be decomposed with respect to gated amalgamation and Cartesian multiplication
into 5-wheels, induced subgraphs of hyperoctahedra (alias cocktail party graphs), and 2-connected
bridged graphs not containirtgs or K1 1 3 as an induced subgraph. As a consequence one obtains
that every finite weakly median graphlisembeddable, that is, it embeds as a metric subspace into
someR" equipped with the 1-norm.
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In this paper we continue to elaborate on a structure theory of graphs based on two fun-
damental operations, viz., Cartesian multiplication and gated amalgamation. While Cartesian
multiplication is a standard operation, gated amalgamation seems to appear only in the con-
text of median graphs and their generalizations; cf. [4, 6, 8, 23, 27]. An induced suligraph
of a graphG is calledgatedif for everyvertexx outsideH there exists a vertex (thegateof
X) in H such that each vertexof H is connected wittx by a shortest path passing through
the gatex’; cf. [18]. G is agated amalganof two graphsG; andG; if G; andG are (iso-
morphic to)two intersecting gated subgraphs@fwhose union is all of5. A graph with at
least two vertices is said to h@ime if it is neither a proper Cartesian product nor a gated
amalgam of smaller graphs. For instance, the only prime median graph is the two-vertex com-
plete graphKy; see Isbell [21] and van de Vel [R@Vore generally, the prime quasi-median
graphs are exactly the complete grapisasi-median graphs were introduced by Mulder [23]
and further studied in [8, 128]. The pseudo-median graphs form yet another class of graphs
for which the prime members are knowsee Bandelt and Mulder [6]. Unfortunately, the lat-
ter class is not closed under Cartesian multiplicatod does not include all quasi-median
graphs. In order to overcome these deficiencies we consider here the somewhat larger class
of weakly median graphs, previously studied by Cheft6i [L1] under the name ‘locally me-
dian’ graphs. First, we say that a gra@hs weaklymodularif its shortest-path metrid = dg
satisfies the following two conditions:

— for any three vertices, v, w with 1 = d(v, w) < d(u,v) = d(u, w) there exists a
common neighboux of v andw such thad(u, x) = d(u, v) — 1;
— for any four verticesl, v, w, zwith d(v, z) = d(w, z) = 1 and

2=d(v,w) <du,v) =du,w) =d(u, 2) — 1,

there exists a common neighbouof v andw such thad(u, x) = d(u, v) — 1.

For an illustration of these conditions s&g Figure 2]. Aweakly mediargraph is a weakly
modular graph that doe®t contain any two vertices with an unconnected triple of common
neighbours; see Figude

Note that all bridged graphare weakly modular; cf.7, 10]. A graph is calledbridged if
G does not contailany isometric gcle of length greater than 3, that is, each cycle of length
greater than 3 has a shortcut® see Soltan and Chepoi [25] and Farber and Jamisdn [20
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FIGURE 1. Forbidden induced subgraphs.

Bridged graphs can easily be constructgace, according to [1, Corollaries 2.4 and 2.6],

they admit certain vertex eliminatioschemes (relaxing simplicial elimination for chordal
graphs). Now, a weakly median bridged gra@h(i.e., a bridged graph in which the first

two graphs of Figurel are forbidden induced subgraphs) is prime exactly when it has at
least two vertices and does rfwdve any cut vertex, that is, it is eithEp or two-connected.
Indeed, sincé& contains no induced 4-cycleS, cannot decompose as a nontrivial Cartesian
product;G cannot be a gated amalgam because two-connected bridged graphs have no proper
gated subgraphs other than singletons. This is an immediate consequence of the following two
elementary facts: first, a gated subgraph cannot intersect a triangle in just a single edge; and
second, the neighbourhood of any vertex induces a connected subgraph in a two-connected
bridged graph. Furthermore, all wheels (whether bridged or not) are prime weakly median
graphs; am-wheel(n > 4) consists of a cycle of lengthand a ‘central’ vertex adjacent to all
vertices of the cycle. Finally, all multipartite graphs of the fom i, i,,.. (With 1 <ij < 2)

different fromKj, K1 2, andKy > are prime weakly median graphs. A particular instance is

the a-octahedron k 25 . (or hyperoctahedronfor short), which is the complement of the
disjoint union ofa > 3 copies ofK,. For convenience, we refer to induced subgraphs of
hyperoctahedra as tubhyperoctahedravhen they contain eithdf4 or an induced 4-wheel

K122 (that is, whenever they constitute 1-skeletons of at least three-dimensional polyhedra).

THEOREM 1. Every finite weakly median grapgh (with more than one vertex) is obtained
by successive applications of gated amalgamations fZamesian products of the following
prime graphs: two-vertex complete graphs, 5-wheels, subhyperoctahedra, and two-connected,
Ks- and Ky 1 3-free bridged graphs. The latter bridged graphs are exactly the graphs which
can be realized as plane graphs such that all inner faces are triangles and all inner vertices
have degrees larger than 5. A weakly median graph is prime if and only if it does not have any
proper gated subgraphs other than singletons.

Particular instances of this result are the decomposition theorems for quasi-median graphs
(with prime graphs being complete) [8, 23] and pseudo-median graphs [6].

An important feature of weakly median graphstlat they embed in rectilinear space.
A finite graphG with shortest-path metridg is said to bdi-embeddabléf there exists a
distance-preserving embeddipdnto someR" equipped with the 1-norr - |1, that is,

da(X,y) = llo(X) — @Y1

for all verticesx, y of G. Assouad and Deza [3] have shown that a gr@ph |1-embeddable
if and only if for some integen > 1 it admits ascalen embedding/ in some hypercub€&
(being a Cartesian power #f,), that is,

n-de(x,y) =do(¥(x), ¥(y)) forall x,y;
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FIGURE 2. A weakly median bridged grapH and a fragment of a hyperculiedicating the scale 2
embedding oH.

see Figure? for an instance of a scale 2 embedding. The graphs with scale 1 embeddings
in hypercubes are thus the isometric subgraphsypercubes (characterized in [17]). Shpec-
torov [24] has proed that a finite graph ik -embeddable if and only if it is aisometric
subgraph of the Cartesian product of hyperoctahedra and ‘half-cubes’ (which are obtained
from one parity half of a hypercube, with two vertices being adjacent exactly when their dis-
tance in the hypercube equals 2). Our following result shows that in order to decide whether
a given graplG is |1-embeddable it suffices to check igme components.e., those prime
(gated) subgraphs from whidh can be built up by successive Cartesian multiplications and
gated amalgamations:

PrRoPOSITIONL. A finite graph G id1-embeddable if and only if every printemponent
of G is such. G has a scaleembedding in a hypercube if and only if every prime component
does. G is4-rigid if and only if every prime component is such.

The particular instance of amalgamations along single vertices has already been dealt with
in [16, Proposition 7.6.1].

It is well known that a grapks is |1-embeddabld and only if its metricd can be expressed
in the form

m
d=Zki'5i (Aj >0fori=1,...,m)
i=1

as a positive linear combination of ‘split’ (alias ‘cut’) metrigisthat are associated witiplits
{A;, Bi} of G, i.e., partitions of the vertex-set into two parts, according to

0 ifeither x,ye Ay or Xx,ye B,

oY) = { 1 otherwise,

fori = 1,...,m(cf. [5,16]). If, in addition, this decomposition af is unique, therG is
calledl;-rigid. Necessarily, for eadhthe setsA; andB; occurringin the above decomposition
constitute complementahalf-space®f G, that is, either set includes all shortest path&of
between any two of its vertices, and both sets together cover the vertex-setGrhas, a
scalen embedding in a hypercube if and only if there is a collectibof splits such that any
two adjacent vertices db are separated by (i.e., in different parts of) exagtiplits of Z. In
particular, forn = 1 one obtains the well-known characterization of isometric subgraphs of
hypercubes7]: G is isometrically embeddable in a hypercube if and onlgifs bipartite
andW(u, v) = {x : d(u, X) < d(v, X)} is a half-space for each pair v of adjacent vertices.

The specific information on half-spaces of weakly median graphs obtained in [11, 12] to-
gether with Theorem and Proposition 1 enables usgmve the concluding result:
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THEOREM 2. Every finite weakly median graph is l;-embeddable. G has a scale 2 em-
beddingin a hypercube if and only if it does not contain KK1.1,2 (that is, Kg minus an edge)
as an induced subgraph. Furthermore, Giigigid if and only if it is Ks-free.

A finite weakly median grapls which contains some induceg 1 11,2 has scale) em-
beddings only for; > 4. The minimum scal@ then depends solely on the maximal induced
subhyperoctahedra. To determine this numpéar a particular subhyperoctahedron is not a
trivial task; see 15 or [16, Chapter 7.4].

PROOF OFTHEOREM 1

We commence by establishing a number of auxiliary results. Unless stated othe&Bwise,
is always a weakly median graph (not necessarily finite). Recall thabhtéeval | (u, v) be-
tween two vertices andv in G consists of all verticez on shortest paths fromto v, that is,

d(u, x) + d(x, v) = d(u, v). An induced subgraph (or a subset of verticHsjs calledcon-

vexif H includes every interval (u, v) of G between two vertices, v from H. Half-spaces

are thus the nonempty convex sets with nonempty convex complement. The smallest convex
(or gated, respectively) subgraph containing a given subgg&iptthe convex hull(or gated

hull, respectively) ofS. A subgraphH is said to beA-closedif, for every triangle having

two vertices inH, the third vertex belongs tbl as well; then the smalleat-closed subgraph
containingSis the A-closureof S. In order to check whether a given subgraplhGois con-

vex or gated the following lemma is useful, which essentially coincides with Theorem 7 of
Chepoi [1Q and can be proved quite easily by induction.

LEMMA 1. A connected subgraph H & is convex if and only if for every pair of vertices
at distance 2 in H all their commameighbours belong to H. Moreover, a convex subgraph is
gated if and only if it isA-closed.

The next four lemmas provide the necessary information on gated hulls and isometric cycles
in G. A prismis the Cartesian produé&t,0K3 of K2 andK3s, and ahouseis obtained from a
prism by deleting one vertex.

LEMMA 2. The convex hull odin induced (i) house, (ii) 5-cycle, (iii) 4-wheel, respectively,
in G is a (i) prism, (ii) 5-wheel(iii) (maximal) subhyperoctahedron, respectively.

PrROOFE Assertion (i) is obtained fromg] Lemma 4] and its proof.

Let C bean induced 5-cycle. Sind8 is weakly median there exists a common neighbour
z of three vertices o€, two of which are adjacent with the third one being opposite to them.
ThenC andz constitute a 5-wheel, for otherwise, an induced house arises whose convex hull
would not be a prism. If there is yet another verygr G adjacent to two non-adjacent vertices
on C, then we would obtain either one of the forbidden induced subgraphs (see Ejgure
an induced house whose convex hull is not a prism.

An induced 4-wheel can be extended to a maximal induced subhyperoctahé¢dnoG.
Clearly H is included in the convex hull of this wheel. Suppose tHais not convex: then
there exist two non-adjacent verticesandv in H with a common neighbouy outsideH.
Since the third and fourth graphs of Figukrare forbiddeny is in fact adjacent to all pairs
of non-adjacent vertices froril. Hence, asH together withy cannot induce a subhyper-
octahedron, there exist two adjacent common neighbewadx of u andv in H such that
u, v, w, X, y induce the fourth graph of Figutie giving a contradiction. O
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LEMMA 3. Induced 5-wheels and convexibhyperoctahedra containing an induced 4-
wheel are gated in G and dwot contain any proper gated subgraphs other than singletons.

PROOF In view of the preceding lemmas it suffices to show that induced 5-wheels and
convex subhyperoctahedra containarginducedd-wheel areA-closed. Clearly they do not
have any proper gated subgraphs other than singletons.

Suppose thatV is an induced 5-wheel which is nat-closed. Then two adjacent vertices
u andv of W have a common neighboyroutsideW. If, say, u is the central vertex ofV,
theny must also be adjacent to the two common neighbourtsasfdv in W in order to avoid
forbidden subgraphs. This, however, contradicts the fact that induced 5-wheels are convex.
Thereforeu andv are peripheral vertices of the wheel. Lz=tbe the central vertex oV, and
lett be the vertex opposite to the edge on the cycle. Ifd(t, y) = 3, then asG is weakly
median the two vertices & different fromt, u, v, z would have a common neighbour with
y, which is necessarily outsid&/, contrary to convexity. Hence(t, y) = 2, and so (again
asG is weakly median) there exists a common neighboaft, y, z, which is impossible by
what has just been shown.

Let H be a convex subhyperoctahedron which is setlosed. Then there exists a vertex
outsideH such that the neighbours gfin H form a complete subgragh of size at least 2.
Consider any induced 4-cycein H. If two vertices ofK belong toC, then we would obtain
an induced house the convex hull of which includes an induced 4-wheel, which is impossible.
Thereforey and any vertex pair fronK together with two (suitably chosen) non-adjacent
vertices orC induce the first graph of Figurk a contradiction. |

LEMMA 4. There are no isometriodd cycles in G of length greater than 5.

PROOFE Suppose the contrary, and choose a cy&ldaving minimal length among all
isometricodd g/cles of length at least 7. L& consist of the verticegy, . .., Xon and edges
XiXj+1 (i =0,...,2n, indices modulo 2ri+ 1). Sincexg andx; are at distanca from X1,
they have a common neighbowr with d(y1, Xn+1) = h — 1 (becaus& is weakly median).
Further,xo and y; have a common neighbowe with d(y2, xh+1) = n — 2. Continuing
this way, we eventually obtain a shortest pathyi, ..., ¥n—1, Xn+-1 Such that eacly; is
adjacenttog (i = 1,...,n—1). Observe that each is actually different fronx; ;1 because
d(Xo, Xi+1) = i + 1 butd(xo, yi) = i. Now, a shortest pati, ..., yon—3 iS constructed as
follows: lety; be a common neighbour gf _1 andx;;2 with d(xp, ¥i) = 2n—i — 2 for
i =n,...,2n— 3. Again, eachy; (i > n — 1) must be different fronx; 3. We claim that
the cycle induced byo, X1, ..., Xn—1, Yn—1, ¥n. - - - » Yon—3 iS isometric. Indeed, suppose that
for somei = n,...,2n — 3 the distance frony; to one ofX; _nt1, Xi—n+2 is smaller than
n — 1. Thend(Xj4+2, Xi—n+1) < hor d(Xj12, Xi—n+2) < n would follow, conflicting with
the isometry ofC. This proves the claim. Since the new isometric cycle has length 2,
we must haven = 3 by virtue of the initial minimality assumption. Thusg, X1, X2, Y2, Y3
induce a 5-cycle withy; in its convex hull. Hence, by Lemm2, x, and y; are adjacent.
Now, by interchanging theoles ofx; andxg_; fori = 1,2, 3 we obtain yet another 5-wheel
with central vertexy;, so thatxg and y; must be adjacent as well. This, however, implies
d(x2, Xg) = 2, a final contradiction. O

LEMMA 5. If G does not contain aninduced 4-wheel or 5-wheel, then the gated hull of
any triangle is a two-connected bridgedagh H, which does not have any proper gated
subgraph other than singletons.

PROOF First suppose that some two-connected, weakly median bridged Grephitains a
proper gated subgraf@which is nota singletonPick a vertexx outsideShaving a neighbour



706 H.-J. Bandelt and V. Chepoi

w in S. Any neighboun of w in Sis connected witkx by a path within theneighbourhood of
w becausd- is bridged and two-connected. Then, howeverSas A-closed, all vertices on
this path (includingc) must belong td, yielding a contradiction.
Now, there exists a maximal isometric two-connected bridged subdiaphG that con-
tains a given triangle. In the case wh&aés infinite, this follows from Zorn’s lemma because
directed unions preserve isometry, two-connectedness as well as the property of being bridged.
To prove the lemma it thus suffices to show thhts gated (by what has just been proven).
First suppose thatl is not convex. Then by Lemmb, we can find non-adjacent vertices
X, y in H having a commomeighbourz in H and another oney, outsideH. SinceH is
two-connected and bridged,andy are connected by a pathin H which is fully included
in the neighbourhood of. We may assume that X, y, z and P are chosen (in regard to
the stated properties) so thathas minimal length. We claim thatandz must be adjacent.
Suppose the contrary: théhhas length at least 3, for otherwise, we would obtain the fourth
graph of Figurel or the 4-wheel as an induced subgraph, both of which are forbidden here.
By minimality, P has no neighbours af other thanx andy. Thusv, X, y, z together with
the neighbout of x on P induce a house. This house extends to an induced prism (according
to Lemma?2); let w denote the common neighbooft, v, y. Thenw does not belong téd
becauseH is bridged. Now, the vertices, t, y, z and the subpath oP connectingt andy
violate the minimality assumption. This proves the claim.
Next we show that the larger subgraph induced byH together withv is also isometric
in G. Suppose the contrary: letbe a vertex ofH such that the distance ofandv in H’
exceeds the distanaiu,v) = k > 2 in G. As no shortest path from to v in G can
pass through one of the three neighbauryg, z of v (becauseH is isometric), the distances
d(u, x), d(u, y), d(u, z) are necessarily betweérandk + 1. So, we distinguish two cases.

Casel.du,z) =k+ 1.

If d(u, X) = d(u, y) = k, thenx andy have a common neighbotin the isometric bridged
subgraphH such thatd(u, t) = k — 1 (sinceH is weakly modular), thus yielding a forbidden
4-cycle (induced by, x, z, y) in H. Therefored(u, y) = k + 1, say. ThenH contains a
common neighbour of y andz at distancek to u. In the weakly modular grap& we find a
common neighbouw of t andv with d(u, w) = k— 1, whencd, v, w, y, zinduce the fourth
graph of Figurel, which is impossible.

Case 2. qu, 2) = k.

Since now the vertices andz are equidistant ta, they have a common neighbowrin G
with d(u, w) = k— 1. As the distance betweerandv in H' is larger thark, the vertexw lies
outsideH. In order to avoid forbidden induced subgraplsnust be adjacent to bothand
y. Now, replacing by w andk by k— 1 we are back in Case 1, thus leading to a contradiction.

We conclude that the extended subgr&fhis indeed isometric. From what has been shown
above we know thaH’ cannot include any induced 4-cycle. Therefétedoes not have any
isometric even cycle at all: for otherwise, such a cyelerould containv, and the two neigh-
boursx’, y’ of the vertexz’ opposite tov on C would admit a second common neighbatr
in G (because of weak modularity) which satisfigs, v") = d(v, Z) — 2, so that a forbidden
4-cycle arises (whethar belongs toH or not). By the hypothesis of the lemma (together
with Lemma2), H’ is without induced 5-cycles, and hence by Lemdna must be bridged.
ClearlyH’ is two-connected, and therefore we arrive at a final contradiction to the maximality
of H. This proves thaH is in fact convex.

It remains to verify thaH is A-closed as well. Suppose there exists a vertexitsideH
having at least two neighbouxsy in H. Then, adH is convex, the neighbours ofin H form
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a complete subgrapfhus,v is a simplicial vertex of thextended subgrapH’ induced by

H andv. HenceH' is a bridged graph, which is evidently two-connected. As to isometry,
consider any vertex of H. If d(u,y) < d(u, v), thenu andv are at distancel(u, v) in

H’, too. We may therefore assume tldkiti, y) = d(u, v) becauseH is convex. Sinces is
weakly modular, we can find a common neighbauof v andy at distancel(u, v) — 1 tou.

As H is convexw belongs toH. This shows that there is a shortest patliinbetweeru and

v of lengthd(u, v). It follows that H’ is also a two-connected, isometric bridged subgraph,
thus conflicting with the choice ofl. ThereforeH is A-closed, concluding the proof (by
Lemmal). a

The next lemma ensures that fheme graphs listed in Theorefnactually encompass all
two-connected, weakly median bridged graphs.

LEMMA 6. A two-connected bridged graph is weakly median if and only if either (1) H
is a complete graph K(n > 4), or (2) H equals K 1,12 (i.e., a complete graph minus an
edge, having more than four vertices), or (3) H does not contagjoiKK 1 1 3 as an induced
subgraph.

ProOF If H is of type (1) or (2),it is a subhyperoctahedron; H satisfies (3), therH
does not contain anfprbidden induced subgraph of Figutend hence is weakly median.
Conversely, suppose thhlt is weakly mediarand contains somi4 but is not a subhyper-
octahedron of type (1) or (2). Extend tHfg, to a maximal induced subhyperoctahedtéh
which is necessarily convex, being a complete graph or a complete graph minus an edge (since
H has no induced 4-cycles). By the hypothesis, we can find a vedetsideH’ which forms
a triangle together with two vertices frokt’. Now, however, we arrive at a contradiction in
that eitherH’ U {z} would induce a subhyperoctahedron or a forbidden induced subgraph
(from Figurel) would arise. ]

To characterize the two-connectéts- andK 1 3-freebridged graphs via their planar em-
beddings, we will make use of the following counting argument.

LEMMA 7. Let G be a finite two-connectgdane graph in which all inner faces are tri-
angles and all inner vertices (i.e., thvertices not incident with the outer face) have degrees
larger than 5. Then the numbers and rg of vertices with degrees 2 and 3 satisfy the in-
equality2ny + n3 > 6.

PROOF Let f denote the number of inneades ofG, m thenumber of edges) the number
of vertices, andb the number of vertices incident with the outer face. Then

f—-m+n=1 and X +b=2m

hold according to Euler's theorem and the hypothesis that all inner faces are triangles. Elimi-
nating f yields
3n—b—-m=3.

The information on the vertex degrees is turned into the inequality
2m>6(n—b) +4(b—n2 —n3) +3n3 + 2n;
=6n-2b—2n, — n3,

whence
2n; +n3z >6n—2b—2Mm=6,

as required. |
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We are now in position to identify the finite two-connectdty- and K1 1 3-free bridged
graphs with the plane graphs descritiethe preceding lemma, when choosing a planar em-
bedding such that the outer face is bounded by the edges contained in exactly one triangle.

For the bridged graphs with the additional properties we construct a planar embedding
recursively by employing the dismantling scheme of Anstee and Farber [1] (for a short proof,
see [13]): there exists\aertexz dominated by some neighbowyin the sense thawery vertex
adjacent taz is also adjacent or identical tp. If the degree oz was larger than 3, then
and z together with three common neighbours would either indkigg 3 or include some
K4, contrary to the hypothesis. Therefaréas degree 2 or 3. We assume t@Bahas at least
four vertices and that the desired planar embeddings can be realized for all proper induced
subgraphs which are two-connected.

Case 1. has exactly two neighboussandy (which are adjacent).

ThenG — zis a graph of the same kind, to which the induction hypothesis applies. Note
that the edgexy belongs to exactly one triangle & — z becausés is K4- and K1 1 3-free.
Therefore we have chosen a planar embedding efz with xy on the boundary of the outer
face. Attaching the triangle, y, zto G — z so thatz lies in the outer face d& — z, we obtain
a plane graph with the required properties.

Case 2. zhas exactly three common neighbouwrsx, andy (such thaty is adjacent taw
andx).

Thenw andx are not adjacent. I6 — z is not two-connected, thew is the unique cut
vertex. MoreoverG —{y, z} comprises exactly two components, which together witduce
either Ky or two-connected subgraphs Gf In any case we can transform and combine the
planar embeddings of these subgraphs souwtyaandxy lie on one line for which one of the
associated closed half-planes inclu@gs- z. Placingz onto the complementary open half-
plane and linking it withw, X, y produces the desired embeddingGIf- z is two-connected,
then we could choose the planar embeddingof z right away, withwy andxy lying on
the boundary of the outer face (since both edges belong to exactly one triangle- o).
Locatingz in this outer face we can extend the planar embedding, tthereby creating two
new triangles and turning into an inner vertex. Take a minimal pathfrom G — z in the
neighbourhood of which connectsw andx. ThenP together withy andz induce a&k-wheel
with k > 6, whencey satisfies the degree constraint.

As to the converse, lgb be a plane graph satisfying the hypothesis of Lemim@/e may
assume thaG hasat least four vertices. Consider any triangleGaftogether with its interior
in the plane it constitutes a plane grabhto which Lemmar equally applies. We infer that
each vertex of the boundary triangieust have degree 2 iH, that is,H includes no inner
vertex. Hence all triangles @ constitute inner faces (and vice versa). In particulagoes
not include anyK4 or K1 1 3 as an induced subgraph. To show t@&ais bridged, we proceed
by induction.

Case 1There exist two adjacent verticasandv separatinds.

Then necessarily andv both lie on the boundary of the outer face. We can thus decompose
G into two plane subgraphs; andG, whose boundaries intersect in the edgeand cover
the boundary ofG. Certainly, G; and G fulfil the hypothesis of Lemm@& and hence are
bridged by the induction hypothesis. Thénrs bridged asvell.

Case 2. Gdoes not have any separating edge.

Then, by Lemma, the boundary contains some verterf degree 3 irG. Let w, X, y be
the neighboursf v. One of the edgesw, vx, vy does not lie on the boundary, say. Since
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vX is thus containeéh two triangles,w andy must be adjacent tg. Further,x cannot bea
boundary vertex, for otherwise, the edgewould separat&. Therefore the plane subgraph
G — v is two-connected and inherits its inner faces and inner vertices@&olifollows from
the induction hypothesis th& — v is bridged. Suppose th& contains some isometric cycle
C of length 2kor 2k + 1 with k > 2. ThenC includesv, w, y but notx. Substitutingv by x
creates a cycle i — v of the same length. This cycle must have a short cut, so that some
vertexz on C is at distancek to v butk — 1 tox in G (asG — v is clearly isometric inG).

If wandy are at distanck — 1 to z, then (asG — v is weakly modular) there exist common
neighboursw’ of w andx andy’ of x andy, both at distancé& — 2 to z. Recall that, for
any two vertices/ andz in a bridged graph, the neighboursybn shortest paths betwegn
andz form a complete subgrapl2(, 25. In particular, here eithew’ = y’ or w’ andy’ are
adjacent. Them, w, X, y together withw’, y" induce a 4-or 5-wheel, so that would become
an inner vertex ofs with degree smaller than 6, a contradiction. Therefomaust be an odd
cycle such that exactly one af, y is at distancé to z, sayw. Then the neighbour # v of

w on C must be adjacent t® becauseés — v is bridged. Hence, a8 is isometric, we infer
thatC is a 5-cycle comprising, w, u, z, y, which together withx induces a 5-wheel, again a
contradiction. We conclude th&t is bridged.

This completes the proof of the second statement in Thedrarharacterizing the specific
bridged graphs.

The subsequent Lemm&sand 10 are needed to deteatmalgams or products withi@.
Any gated subse® of G gives rise toa partitionW; (a € S) of the vertex-set 0oG; viz., the
fibre W, of a relative toS consists of all verticeg (includinga itself) havinga as their gate
in S. For adjacent vertices, b of S, letUyp be the set of vertices fromM/; which are adjacent
to vertices from\,.

LEMMA 8. Let S be a gated subgph of G. Then each fibre Welative to S is gated.
There aists an edge between two distinct fibreg &id W, if and only if a and b are adjacent.
Moreover, for any two adjacent verticestaof S, the sets 4) and U, constitute isomorphic
gated subgraphs of G under the canonical isomorphism: Usp — Upa that maps each
vertex in Uy to its unique neighbour in k.

PROOF We adapt some arguments from [6, proof of Theorem 12.4f W, andy € W
are adjacent, then alb, x) < d(b, y) + 1 we obtaind(a, x) < d(b, y) and by symmetry,
d(a, x) = d(b, y); therefore, sinca andb are the gates of andy, respectively, irS, a and
b must be adjacent.

We claim that any vertex € W, has at most one neighbour W, for a # b. Suppose the
contrary: letv be adjacent to two distinct verticas y from W,. Thena andb are adjacent,
andd(a, v) = d(a, x)+1 = d(a, y)+1, by what has just been shown. By weak modulaxity,
andy have a common neighboginecessarily inV,) at distancel(a, x) — 1 froma. Further,
asd(b, x) = d(b, v) + 1 = d(b, 2) + 1, there exists a common neighbaur(necessarily in
W) of v andz at distanced (b, v) — 1 fromb. The five vertices, w, X, y, z now induce the
third or fourth graph of Figuré&, which is impossible. This proves the claim.

Each fibreW, is connected becauséa, x) € W, for all x € W;. Then,by the above claim
and Lemmal, Wj is convex as well aa-closed and hence gated.

Let x € Ugp be adjacent tox’ € Up, (for some edgeb). Every neighbourw of x in
I (a, X) € W, has the same distanceliasx’. Hence, by weak modularityy andx’ have a
common neighbouw’, which necessarily belongs W,. Thereforew € Ugap, and it follows
by a straightforward induction that(a, X) € Ugp. In particular,Uyp is connected. To prove
thatUap is gated, apply Lemma: let z be a common neighbour of, y € Ugap, Which nec-
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essarily belongso W, and is at distance 2 to the (respee)ineighbours ok, y in Upg; then
the gate ok in W, is adjacent t@, showing thatz € Ugp, as desired.

Finally, letx andy be adjacent vertices idap, with neighbours<’ andy’, respectively, in
Upa. SinceW, andW, are gatedx’ andy’ must be adjacent. We conclude that the neighbours
map fap is an isomorphism fror g, ontoUpg. O

The cycle spacef a graph with edge-sef is the subspace aiGF(2))® comprising all
unions of closed walks. The isometric cycles clearly generate this space. In the presence of
weak modularity the triangles and induced 4-cycles generate all isometric cycles, as is eas-
ily seen by induction. Recall from Duchet al. [19] or Jamison [22] that a graph isill-
homotopidf its cycle space admits a bagienstituted solely of triangles. We then record the
following elementary fact.

LEMMA 9. A weakly modular graph isiull-homotopic whenever every induced 4-cycle
extends to a 4-wheel.

In the case tha proper gated subgraj@of G is two-connected and null-homotopic we can
say more about the associated $&is: the following lemma constitutes the tool for detecting
proper decompositions of non-bipartite weakly median graphs.

LEMMA 10. Let S be a gated two-connectadd null-homotopic subgraph of G. Then the
gated subgraphs &) (with a, b adjacent inS) are all isomorphic, and their union induces a
gated subgraph H isomorphic to a Cartesian productiis(where U may be any i). If Wy
and Uyp (b € S) do not coincide for some & S, then G is the gated amalgam of, \éhd
G — (Wa — Uap).

PROOF First we show thallp, = Uac whenevera, b, ¢ form atriangle inS. Let xy be an
edge ofG with x € Ugp andy € Upa. According to Lemma and its proofc is equidistant
to x andy, whence there is a common neighbaurf x andy on shortest paths to. Then
d(c,z) = d(c, x) — 1 =d(a, x), and hence aa is the gate ok in Swe infer thatz belongs
to W.. Thereforez € Ugg as well asx € Ugc. Interchanging the roles @f, b, c, this proves

Uab = Uac, Uba = Upe, Uca = Ucp.

Now assume thag andr are any two non-adjacent neighboursadgh S. Then, asSis two-
connected, there exists a pahfrom g to r not passing through. By C denote the closed
walk from g to r along P and then back ta via the vertexa. To prove thatUsq = Ugy
we proceed by induction on the minimal numieof triangles whose (modulo 2) sum gives
C (thereby using the null-homotopy &). SinceP does not include, there must be some
common neighbouws of a andr such that the closed walk obtained fr@rby substituting the
paira, r by the tripleta, s, r is the (modulo 2) sum df — 1 triangles. ThetJaq = Uas = Uar

by virtue of the induction hypothesis. This justifies the shorthdgdor the setdJp.

We can verify that all subgraphs, (a € S) are actually isomorphic using the same kind
of argument: we claim that for every closed walk ay, . .., an, ag the compositionfa,a, ©
fan_1an © fan_sa,_1 © - .. 0 faga, is the identity map. Indeed, this is evidently true for triangles
(n = 2), by the first part of the proof. The general case is settled again by induction on the
minimal number of triangles adding up @ In particular, we get a unique isomorphisin
from U; to Us for any two (not necessarily adjacent) vertices € S, obtained by composing
the isomorphismd,p along the edgeab of any path fronr to s.
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The product representatiaf H (the subgraph induced by the union of sditsUy) is now
immediate: pick any vertea in Sand consider the mapping

f:SOU;—> H
(8, X) = fas(x).

This constitutes the desired isomorphism sifigeeach mappindgss is an isomorphism from
Ua to Ug, (i) the setdJs (s € S) partitionH, (iii ) there is an edge betwe&h andUs only
if r ands are adjacent, andv) the isomorphismf,s maps each vertex onto a neighbour
whenever ands are adjacent.

Finally, assumaN,; # U, for somea € S. Since the subgrap@ — (W; — Ug) and the
gated fibreW, together covefs and intersect in a gated subgraph (vizy), G is the gated
amalgam ofG — (W, — Uy) andW. O

Now, we have collected all the information that is necessary to conclude the proof of Theo-
rem1. Assume thaG is neither a singleton nor any tife prime graphs listed in Theoren
Then, by Lemma, G is not a two-connected bridged graph. We have to showGhlaas a
proper gated subgraghwith at least two vertices an@ decomposes as a gated amalgam or
Cartesian product. I6 includes an induced 4- or 5-wheel, then by Lemr@and3 it has a
proper gated subgrap) which is a subhyperoctahedronab-wheel. Since these graphs are
null-homotopic and two-connected, Lem@provides us with the required decomposition.
So, we can assume thatis without induced 4er 5-wheels. IfG still contains some triangle,
then by Lemma& we obtain a proper gated subgraplwhich is bridged and two-connected.
Since bridged graphare null-homotopic (cf. Lemm8), LemmalO applies again, yielding a
proper decomposition d@. It remains to consider thease wheré& is triangle-free. Then, by
Lemmas2 and4, there are no odd cycles at all, wher@éas a median graph, in whicany
edgeab serves as a proper gated subgr&pfThis subgrapls leads to a decomposition as
stated in Lemmad0; cf. [21, 23].

In conclusion, note that Cartesian multiplication distributesrgated amalgamation, viz.,
the Cartesian product of a graph with a gated amalgam of two grap@ and G, equals
the gated amalgam ¢ 0G1 andH OG». This completes the proof of Theoren

PROOF OFPROPOSITION1

Inthe case wher& = G;0G;, is the Cartesian product of two nontrivial graghs andG.
the assertions of Proposition 1 are evident; 4€eProposition 7.5.2]. In fact, we may regard
G1 andG; as gated subgraphs @fintersecting in a singleartex. Then the half-spaces Gf
correspond to the paitd;, G2 andG1, Hy where eaclH; is a half-space 06;.

As to gated amalgamation, the following observation is instrumental.

LEMMA 11. Let G be a grapthaving a scale; embedding in a hypercube Q. Thervery
scalen embedding) of a gated subgraph S of G in some hypercube R extends to aiscale
embedding of G in some hypercube containing R.

PROOF LetT be the convekull of the imagep(S) in the hypercube&). For eachrertexx
of G let X’ be the gate ok in S. We claim thatp(x’) is the gate ofp(x) in the subhypercube
T. Suppose itis not: then some verieftom T — ¢(S) is this gate. Choose any half-spade
of Qwith ¢(x’) € H butz ¢ H. Sincep(x’) is in the interval betwee@a(x) andg(y) for each
y € S(asg¢ is a scale embedding), it follows that includesy(S) and hencel, yielding a
contradiction. This proves the claim. In particular, the distance between the gates two
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verticesp(w), ¢(X) from the image ofs equalsndg (w’, X'). LetU be a subhypercubaf Q
intersectingT in a single vertex such that the convex hullfoindU is all of Q. Letting ¢y
denote the scale embeddipgf G in Q followed by the gate map ontd, we thus have

du (¢u (w), pu (X)) = n(da(w, X) — dg (W', X)).
Now, the required scalg extension ofys is given by
X (Y (x), pu(x)) € ROU.
Indeed, for vertices, x of G,

nd(w, x) = ndg (w’, X') + duy (pu (w), u (X))
=dr(¥ (w), ¥ (X)) + du (gu (w), u (X)).

O

Assume thaG is the gated amalgam of two grapBs andG,, which admit scale; em-
beddingsy; and ¢, in hypercubesQ; and Q», respectively. LefT be the convex hull of
91(G1N Gy) in Q1. By virtue of Lemmal1lwe can extend the restrictign |g,nc, to a scale
n embeddingy of G2 in a hypercubeR such thatR intersectsQ1 only in T. The median
graphQ; U R extends isometrically to a hypercukie We can then regard the uniga U
as a mapping fron® to Q, yielding the required scalgembedding.

As to I1-rigidity, observe thai is a half-space o6 exactly when eitheH or its com-
plement is a half-space @, or G, not intersectings1 N G, or H is a gated amalgam of
half-spaced; of Gj (i = 1, 2). This obviously implies tha® is |1-rigid wheneverG; and
G are such. Conversely assume thatlthembeddable grapB contains a gated subgrafh
which is notls-rigid. ThenG has some scale embeddingy in a hypercube, whilé& admits
yet another scalg embedding) in a hypercube such thats andy induce different weighted
systems of pairs of complementary half-spacesSowithout loss of generality assume that
the scaleg andn are the same (since scales can be enlarged to arbitrary multiples). Then the
extension ofyr to G guaranteed by Lemma 11 is essentially different figgrshowing thaG
is notl,-rigid.

PROOF OFTHEOREM 2

In view of Proposition 1 it suffices to verify the assertions of the theorem only for the prime
components of the given grajgh. We may therefore assume th@tis prime. First note that
the 1-cubeKy is trivially 11-rigid.

LEMMA 12. In a prime K4-free weaklymedian graph G othethan Ky, any two adjacent
vertices u and are separated by exactly two distinct pairs of complementary half-spaces.

PROOF LetV denote the vertex-set @. SinceG is two-connected, null-homotopic, and
K4-free, every edge belongs to exactly one or two triangles. Consider any triangle in
G. Recall from [12, Lemmas 9 and 10] that then the &&t@, v) = {x € V : d(u,x) <
d(v, X)} andW (v, u) U W(w, u) are convex.

Case 1w is the unique common neighbourwfindv.

Then every vertex equidistant tas andv is closer tow thanu andv (by weak modularity),
whence the convex sef¥(u, v), W(v, u), andW(w, u) "W (w, v) partitionV. It follows that
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W (u, v) andW (v, u) are non-complementary half-spacedHlfis anyhalf-space withu € H
andv, w € V — H, then necessarily(u, v) € H andW(v, u) U W(w,u) € V — H, thus
yieldingW (u, v) = H.

Case 2. tandv have exactly two common neighbouts andw’.

Then every vertex equidistant tas andv belongs towW(w, u) N W(w, v) or W(w’, u) N
W(w’, v). ThereforeW(u, v) U W(w, v), W(v, u) U W(w’, u) and W(u, v) U W(w’, v),
W(v, u) U W(w, u) constitute two distinct pairs of complementary half-spaces. H.dte
any half-space witlhu € H andv € V — H. Sinceu, v € | (w, w’), the verticeav andw’ are
separated bH, V — H, sayw € H andw’ € V — H. Then necessarilWW(w, v) € H and
W(w’,u) €V — H, whenceH = W(u, v) UW(w, v). ]

From Lemmal2 and the observations preceding Theoiznve immediately infer that the
graphsG of Lemmal2 havescale 2 embeddings in hypercubes. The proof further shows that
the three splits of any triangle v, w uniquely extend to pairs of complementary half-spaces
of G. This implies that the associated split metrics are linearly independent, thus establishing
I1-rigidity.

To conclude the proof of Theore®) we can assume (by TheordmthatG is a subhyper-
octahedrorcontainingK,4. Thel;-embeddability of hyperoctahedra has been established by
Assouad [2]. It is easy to see that the 4-octahedfern 2> has a scale 2 embedding in a
4-cube, ot the minimum scale foK1 11,12 equals 4; see [16, Lemma 7.4.6]. The scale 2
embeddable subhyperoctahedra contaifiagre thus the subhyperoctahe#a i, i, i, with
1<ij <2(j =1,2,3,4), all of which fail to bel;-rigid; cf. [16, Proposition 7.4.3]. This
completes the proof of Theoretn
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