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Abstract. The paper solves an open problem from [4] by showing a decision algorithm for =
temporal logic language L(Q’, GF). It implies the decidability or the problem of the existence of
an infinite weakly fair occurrence sequence for a given Petri net; thereby an open problem from
[2] is soived.

1. Intreduction

Real parallel systems should always satisfy some conditions of fairness; it means
that the behaviour of a (global) system should be fair with respect to (local)
components (processes). Therefore it is desirable to search for an exact expression
of fairness in theoretical models and so also in Petri nets. Throughout the paper,
we consider the “‘classical” place/transition Petri nets.

If we try to define a fair behaviour (execution) of a Petri net independently on
a modelled problem, the following notions seem to be natural: an infinite vccurrence
sequence o is (strongly) fair with respect to a transition ¢ if ¢ occurs infinitely many
times or is enabled only finitely many times in o; o is weakly fair (or o has the
finite delay property) with respect to ¢ if 1 occurs infinitely many times or is disabled
infinitely many times in o.

Carstensen uses more general notions in [2]; he considers fairness with respect
to sets of transitions (where the above-mentioned fairness with respect to single
transitions is a special case).

He proves that it is undecidable for a given Petri net and some sets of its transitions
whether an infinite occurrence sequence being (strongly) fair with respect to the
given sets of transitions exists; the same even holds in case of one given (singie)
transition (and in case of all (single) transitions as well).

On the other hand, [2] shows that it is decidable for a given Petri net and one
set of its transitions whether an infinite occurrence sequence being weakly fair with
respect to the given set exists. The idea of the proof cannot be generalized and the
general problem (weak fairness with respect to several sets of transitions) is left
open in [2]. The problem is also open in the later published paper [4] which provides
a nice survey of complexities of similar problems for various definitions of fairness;
[4] also defines a simple temporal logic language L(Q’, GF), in which the problem
can be expressed.
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[his paper shows that there is a decision algorithm for formulas of L(Q', GF),
by vhich Carstensen’s open problem is also solved.

Section 2 contains preliminaries, Section 3 shows the structure of the proof in an
informal way, and Section 4 reduces our problem to the *“key” problem which is
to be soived. Sections 5 and 6 contain some auxiliary results—a decidable generaliz-
ing of the reachability problem and an application of a result from [3] on occurrence
sequences. The main proof (of the decidability of the “key” problem) is given in
Section 7.

2. Basic definitions and results

We use usual logical and set theoretical symbols 11, &, v,=, &, 3, ¥, €, ¢, N,
u; the quantifier 3, means “there are infinitely many™.

A\ B denotes the set difference of sets A, B, AX B their cartesian product. |A|
denotes the cardinality of a set A, f| A the restriction of a function f to a domain A.

N, N, , Z denote the sets of nonnegative, positive and all integers, respectively.
Q. denotes the set of nonnegative rational numbers.

Sometimes we implicitly regard a function feZ* (f:S->2Z), S being a finite set,
as a vector from Z" for r=|S|. The bold symbo! 0 stands for the null vector
(0,0,...,06); the dimension will be clear from the context.

A* denotes the set of finite sequences of elements of A; £ denotes the empty
sequence. For ue A*, keN, (u)* stands for uu...u, u being written k-times, (u)“
stands for uuu... .

The Petri net notation is taken mainly from [1].

A quadruple 2=(S, T, W, M,) is called a Petri net if S and T are finite disjoint
sets of places and transitions, respectively, W:(SxT) (TxS)->N is a weight
function (for W(s, t)>0, there is an arc from s to t with the multiplicity W(s, t);
similarly for W(t, s)>0) and M, is an initial marking, where 2 marking M of X is
a function M:S->N.

A transition t is enabled by M, M[1t), if M(s)= W(s, t) for every s€ S. If t is
enabled by M, it can “occur” yielding a new marking M', M[$H)M’', where M'(s) =
M(s)— W(s, t)+ W(s1,s) for every s€ S. In a natural way, the defimiions can be
extended for the case M[u), M[u)M', where ue T*. By M[ >M' we mean that
there is some u e T* such that M[u)M'.

Remark. Notice the trivial fact that M < M' & M[u) implies M'[u); we often use
it implicitly.

The effect of ue T* (on markings), denoted by A(u), is given by the following:
A:T*>Z°, where A(e) =0,

(AMNDNs)=—-W(s, )+ W(s,s), A(t) =A(t)+ A(u).
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For a Petri net, asequence o = y; 1y ag, 1> ag, - - - by a1, 18 @ ( fintite) occurrence sequence
if M_\[¢)M, for all i; similarly for an infinite occurrence sequence o=
M, 1 M, 12 M, - - . - The whole information in o is given by the sequence of transitions;
we write o =41-....

Describing an occurrence sequence, we often write only some *‘passed through™
markings explicitly (e.g. we write &=y, Uy pm, Uy 1, ... fOT ;€ T),

We dcfine weak fairness (finite delay property) as in [2].

Definition 2.1. Let a Petri net 2 =(S, T, W, M,) and some sets of transitions
T\, T,,..., Ty = T be given. An infinite occurrence sequen.e o =y, t; ay, t2 a1, .. . 1S
weakly fair, or has the finite delay property (has the fdp), with respectto T,, T, ..., T,
if (3.i)(t;€ T;) or (Ai)(M; 4 I})) for every T, (1<j<k), where the expression
M, ¥ T;) means that all 1€ T, are disabled (i.e. not enabled} by M,.

We are interested in the following problem Pqyy,.

Definition 2.2. Problem Py, is specified in the following way:
Instance: A Petrinet 2 =(S, T, W,M,) and somesets T,, T>,..., T, c T.
Question: Is there an infinite occurrence sequence o of 3 which has the fdp with
respectto T, T>,.... T;.?

We need the well-known resuit on the decidability of the reachability problem RP:

Definition 2.3. Problem RP is specified in the following way:

Instance: A Petrinet 3 = (S, T, W, M,), a set S'c S and a function (submarking)
M':S'>N.

Question: Is there 2 marking M such that M| >M & M| S'=M"?
Theorem 2.4. Problem RP is decidable.
Preof. In[6] or [8]. O

It is known from [7] that RP is exp-space-hard, but the known upper bound is
not primitive recursive.

We know the foilowing facts from [2].

Theorem 2.5. (1) Py, is exp-space-hard.
(2) In case of one given set (k=1 in Definition 2.2.), P4, is decidable.

Proof. In [2]; (1) by the construction from [7], (2) by a reduction to RP. L[]
The above results are shown more precisely in [4].

Theorem 2.6. (1) RP <pprime Prap (P is af least as hard as RP).
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(2) In case of one given set, RP =prime Poap-
Proof. In [4]. O
In {4], a simple temporal language L(Q’, GF) is defined.

Definition 2.7. Vet a Petri net 3 =(8, T, W, M,) be given. The language L (), GF)
is defined in the following way:

{a) atomic formulas (predicaies) are gels, c), fi(1), where s€ §, te T, ceN, with
the following interpretation: for any infinite occurrence sequence o = 5, iy ag, 2 a5, - - -
and for any neh,

(2, 0,mEge(s,c) © M (s)=¢
df
(S, 0,m=f(1)  t,.,=1,
day

(b) formulas are either lirerals, i.e. atomic formulas or their negations {ge(s, ¢),
—ge(s, ¢}, fi(1), ~fi(1)), or of the form GFY, ¢, & /4, ¢ v, where 4, /,, /. are
formoulas. GFY (it is always true that ¢ will hold in future) can be defined as follows:

(3, 0,n)=GFf © (3 P w‘”", . V=AY
df \x 7
The rest of the interpretation is natural.
For technical reasons, we will also use literals eq(s, ¢j, where

(5,0, mEeqls,¢) & M(s)=c
f

The decidability of the next problem P, ., was open in [4].

Definition 2.8. Problem P.., is specified ia the following way:
Instance: A Petri net 2, a formula /¢ L(Q', GF).
Question: 1s there an infinite occurrence sequence o of X such that (&, o, 0)=¢?

it is easy to verify that the finite delay propernty can be expressed . y a formula
from L(Q’, GF); it means that Py, is reducible to P, ,,,. (1t can be done in PTIME;
thus Py = pring Promp)

The main aim of this paper is to prove the decidability of Py, . In fact, the proof
shows an exponential reduction {o RP.

A crucial pownt of the proof is 10 show the decidability of the following problem
P..-

Definition 2.9. Problem P,., is specified in the following way:
Instance: A Petri net £ =(8, 7, W, A,), » pairs (ncN,),

(S, 0.8 f) . S, fiwhere 5,8 f:S =N
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Question: Is there a solution of the P, .- instance, i.e. an infinite occurrence sequence
T = pg, 1 A, ¢ ¥ AR such that

(Vj, 1<jsn)3iNM]IS =£)?

3. Iinformal outline of the proof

Carstensen’s proof of (2) in Theorem 2.5 depends on the fact that the existence
of o which has the fdp with respect to T, implies the existence of a “periodic™ &’
(o', is in the form u(w)*) which has the fdp with respect to T, as well.

Figrre 1 (also given in [2]) shows that this idea cannot be extended. The occurrence
sequence

a= [URANE FE (A XN A E:m__‘(h e
4t ‘ N 25
u-m:'.n“r) (o () ety

has the fdp with respect to {r}, {£,} (also with respect to {,}, {.}) but there is not
any periodic &' with this property.

Notice that the Py -instance I, {:}, {t;} can be reduced to searching for an infinite
occurrence sequence in which s,, s, are empty infinitely many times, ie. to a
Py -instance.
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It is not difficult to show that P, (and so Py, also) is reducible to Py, (see
Se.iion 4).

We shall outline the proof of the decidability of P,., . First notice that the described
o is regular in a certain way: if we denote M} =(0,2',1), M3=(2',0,1) then (1)
holds for all i.

(Vj,1<j=<2) (JkeN,) (M”-M]"'=k(M;"'-M)). (1)

It is important that a “‘regular beginning™ (a finite sequence in which (i) holds for
i =0; cf. Definition 7.8.) can be lengthened to infinity in a “regular” way.

P.,-solutions will be characterized as so-called w-good sequences satisfying a
certain condition INSERT; it will be done using the results from Section 6.

Within a (finite) f(n]S|)-good INSERT sequence, where f is a certain exponential
function of the “‘size™ of the relevant P,.,-instance, a series of modifications can be
performed so that a regular sequence (i.e. a regular beginning) arises; it is the most
technically difficult part of the proot.

Unfortunately, neither the existence of a regular sequence nor the existence of
an f(n|S))-good INSERT sequence can be reduced to the reachability problem in
a straightforward way.

We shall use the fact that the infinite regular lengthening of a regular sequence
yields an w-good seguence which satisfies INSERT in a STRICT way.

The existence of an f(n|S|)-good STRICT INSERT sequence is reducible to the
reachability problem using the results from Section 5.

Figure 2 shows the structure of the proof.

. 3an f(niS1) —good
3a P~ solution STRICT INSERT
sequence
7' 7' Iriv. /[Friv.
- triv. 3 an w—good
ila;;:mgood : STRICT INSERT
sequence L,/ sequence
AN 3 an {(n]S])—good
INSERT
sequence

L 3 a regular sequence
(a regular beginning )

Fig. 2.

triv.
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4. Reduction of Pepp to Py,

Let us say that a formula /e L(Q’, GF) is “simple” if ¢/ can be written /=
&,., GFf;, J being a finite index set and ¢; being finite conjunctions of literals of
the type eq(s, ¢).

A P -instance 2, /, where ¢ is simple, can be rewritten intn a Py.,-instance in
an obvious way. ‘

In what follows we show how to reduce any (general) P\.,,-instance to finitely
many Pp-instances with simple formulas only.

Convention 4.1. Further we will implicitly assume that all literals —ge(s, ¢) are
replaced by eq(s,0)veq(s,1)v:--veq(s,c~1) and so we will not consider them.

Let us define a natural equivalence on the set of formulas.

Definition 4.2 (of the equivalence =). Let a Petri net X be given. For any ¢,, /€
L(Q,GF), /i=£ iff (2, 0,00F £, (2, 0,0 =4, for all o

Lemma 4.3. Any P, -instance £ =(S, T, W, M,), ¢ can be reduced to finitely many
Premp-instances where the formulas are in the form &,-u GF/, ¢ being conjunctions
of literals.

Proof. Using the distributive laws for v, & and cbvicus cquivalences
GF(GFY) =GFy,
GF(/, v /) =GF¢, v GFY;,
GF(GF{, & £,) =GF¢, & GF/,,

it is clear that / can be written as a finite disjunction of formulas of the type
#'=&., g, where g; are either literals or in the form GFg, ¢ being a conjunction
of literals.

Answering all instances %, /', where /' is a member of the disjunction, we obtain
the answer for 2, / easily.

Hence it suffices to get rid of literals in the conjunction /' = &,€ 1 4

(i) If none of g; is a literal, we are done.

(ii) In the following four points we show how X', /" can be constructed so that
the answer for X', /" is the same as for X, /' and ¢” is “‘more simple’ than /.

It will be clear that Case (i) will be achieved by finitely many steps.

(1) f=ge(s, )& &;c, ;-

If My(s) <c then the answer for 2, /' is NO,
if My(s)=c then put 2'=23 and /'= &je,ryj.

2) f=eq(s, )& &, g

It is similar to (1).
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(3) =6 8& ¢, g

To obtain X', do the following changes in X (cf. Fig. 3):

- add new places s,, s> and put W(s,, t')= W(r',s,) =1, W(s,, 1)= W(1,5,) =1 for
all te T\{t'} (s, is a “run-place” for ', s, for T\{t'}) and still W(t’,s,)=1 (the
other values of W are 0).

- put My(s,) =1, M(s,)=0. Finally put /'= ., g;.

@ /= wW("& &y,
jerJ’

We can proceed as in (3) (W(¢, s,) =1 for all te T\{t'}, My(s;)=0 and M(s,)=1
in this case). O

v W{v}

y ~{}

Fig. 3. Fig. 4.

Lemma 4.4. Any P, -instance X = (S, T, W, M), ¢, where /= &je 1 GFY,, ¢; being
conjunctions of literals, can be reduced to another P -instance X', /', where {'=
&jel GFY;, ¢; being conjurcctions of literals of the type eq(s, c).

Proof. Again, it suffices to show how X', /' with “more simple” #' can be constructed.
(1) fi(¢') or —fi(¢') occurs in £ (We will slightly modify the construction from (3)

in the proof of Lemma 4.3.)

To obtain 2’, do the following changes in X (cf. Fig. 4):

- add places s, 5,, 5, and put W(s,,t')=1, W(s,, t)=1 for all te T\{t'} and
W(t,so)=1forall teT

- add transitions ¢,, t, and put W(s,, t,) = W(so, ) =1, W(t,, 5,) =1, W(1,, s,)=1
(the other values of W are 0).

- put Mo(so) =1, My(s;) = My(s,) =0. (First 1, or t, occurs by which it is decided
whether ¢’ or some t € T\{t'} can occur next. Any ¢ € T puts *“a token” to s,, then
again t, or ¢, occurs, etc.)
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To obtain ¢, replace the occurrences of fi(t') by eq(s,, 1) and the occurrences
of —fi(¢') by eq(s,, 1) in /.
In (2), we can suppose only literals ge(s, ¢}, eq(s, ¢) occurring in £
(2) ge(s, ¢) occurs in £ To obtain X', do the following changes in 2. Add places
S1s 82, 83, Mo(s1) =1, Mgy(s,) = My(s;)=0, and transitions ¢,, t,, t; as in Fig. §
(W(s;, t)= W(t,s,)=1forall te T). To obtain ¢', replace the occur:ences of ge(s, ¢)
by eq(s,c)ing 0O

*
1
Fig. 5.

Proposition 4.5. If Py, is decidable then T, is decidable.

Proof. It follows from Lemmas 4.3. and 4.4. and from the considerations at the
beginning of this section. [J

5. A decidable extension of the reachability problem

Look at the proposition of Lemma 5.2. If #{M ) is a finite conjunction of conditions
M(s)=c¢, s S, ceN, then the problem under discussion is, in fact, RP and the
propositidn follows from Theorem 2.4. But we need formulas from Ly, which are
more geiieral.

Definition 5.1. Let a Petri net 3 =(S, T, W, M,) be given. The ranguage Ly is the
set of the formulas which are defined as follows:

(1) there is one variable 4 for elements of N*;

(2) a term is either atomic, #(s) or ¢, where s€ S, ceN, or of the form t,+ ¢,
where t,, t, are terms;
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(3) a formula is either atomic, t,<t, or ¢, <1,, where t,, t, are terms, or of the
form ¢, & /., where /,, /> are formulas.
The semantics is natural.

We also use 1, = 1, by which 1, <, & 1, < ¢, is abbreviated. For a concrete marking
M, /(M) denotes the instance of ¢ in which M is substituted for ..

Lemma 5.2. There is an algorithm with the following specification:

Input: A Petrinet 3 =(S, T, W, M) and a formula f€ L.

Quitput: YES if there is a marking M such that My[ > M and /(M) is true, NO
otherwise.

Proof. (i) The case with ¢ as described before Definition 5.1, /£ is “simpie”, is
obvious.

(ii) In the general case, we shall show how X’ and /'€ Ly can be constructed so
that the output for 2’, /' is the same as for 2, # and /' is “‘more simg!e” than /.

The way of constructing X', /' is shown in the following five points; it will be
clear that Case (i) will be achieved by finiteiy many steps.

(1) Some ceN occurs in ¢: add a new isolated place sy with My(sy)=c and
replace an occurrence of ¢ by #M(sy) in £

(2) Some se S occurs in ¢ several times: add a new place § to £ and put
M(5) = My(s) and W(§, t) = W(s, t), W(t, §)= W(t, s) for every te T (§ is a dupli-
cate of s); in ¢, replace an occurrence of #(s) by J(S$).

Thus we can suppose in the following points that no ceN occurs in ¢/ and that
every s€ S occurs in ¢/ at most once.

(3) Aterm t=l(s,)+ H(s,) occurs in ¢: 2 is shown in Fig. 6; in /, replace the
occurrence of t by #(sy) and add the conjunction (s,)=0& A (s,)=0.

(4) a formula g=(s,)<M(s;), or ¢'=M(s,)<H(s,), occurs in £ I’ is
shown in Fig. 7; in / replace g by J(s,)=0& M(s;)=1 or ¢ by M(s)=
0& f(s,))=0. O

=
z’
I~

N
o

Fig. 6.
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Fig. 7.

We shall still generalize the result by putting some conditicns on *“*passed through™
tnarkings.

Definition 5.3. Let a Petri nct 2 =(S, T, W, M,) be given. For keN,, the language
L% is defined in the same way as Ly, but it contains k variables ,, f,,..., M,
(M(s)isatermfori=1,2,...,k).

Theorem 5.4. There is an algorithm specified as follows:
Input: a Petri net 3 = (S, T, W, M,) and a formula /< L% (for any keN,).
Output: YES if there are markings M, , M,,...,M, such that
M >M,[>M,...[>M, and f/(M,, M., ..., M,) is true, NO ctherwise.

Proof. The case /€ L is clear from Lemma 5.2.

The case 2, /< L% will be reduced to the case 3', #' € LY. with the same output
in the following way:

- Add a duplicate § for every s€ S (as in (2) in the proof of Lemma 5.2.) and
denote $={§|se S}.

- For every te T, add a new transition 7 and put W(s, 1) = W(f,5)=0, W(5 1) =
W(s, t), W(i, §) = W(4, s) for every s S. Denote T ={i|te T}. (The transitions
from (original) T work both on original and on duplicate places, the transitions
from T work on duplicate places only.)

- Now add a place s putting My(sg) =1, W(sg, t) = W(1, sg) = a, where a is 1 for
te T and O for te T, and a place sk putting My(sk) =0, W(sg, 1) = W(t, sg) =B,
where BisOforte T and 1 for te T. (sg i 2 “run-place” for T, si a “‘run-place”
for 7).

- Finally add t; as shown in Fig. 8; thereby the construction of X' is completed.
To obtain f'e L%., do the following changes in /:

- add the conjunction

M(Sg)=1& M(sp)=1& - - & M _(sg)=1& M (sg) =0,

- replace every occurrence of /,.,(s) by #,(5). O



82 P. Jancar

Fig. 8.
6. A special ordering of occurrence sequences
Recall the following well-known proposition.

Propesition 6.1. Every infinite sequence of elements of N (reN,) has an infinite
ascending subsequence (< being considered componentwise).

Proof. By inductionon r. O

We shall use a nontrivial generalization for quasi-crdered sets (in such aset, a<a
and asb& b=<c=a=<c hold for all a, b, c).

Definition 6.2. A quasi-ordered set (A, <) has the finite basis property, the fbp, if
every infinite sequence cf eiements of A has an infinite ascending subsequence.

For a quasi-ordered set (A, <), let A* be quasi-ordered in the following way: for
u,veA*, u=aa,...a, (a;ecA), u<v holds iff v can be written v=
0,8,0:b50; ... b4y sO that b€ A and a;<b, fori=1,2,..., m.

Proposition 6.3. If (A, <) has the fbp then (A*, <) also has the fbp.
Proof. In [3] as a corollary of a more general theorem. [J

For a Petri net, we shall show a quasi-order with the fbp on the set of couples
(M, u), where M enables wu.

Definition 6.4. Let a Petri net be given. Let us define the following relation <: for
any markings M,, M, and any finite sequences of transitions u,, u, such that M,[u,),
Milu,), (M, u,) <(M,, u,) iff, for u,=t,1,...1t, (t; being transitions), u, can be
written = w,t,wotows ... 1, W,,,,, where M,—M,+A(w,w....w.)=0 for c=
0,1,2,..., m+1.
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Thus (M,, u,) <(M,, u,) means that M, < M,, M, + A(u,) < M,+ A(u,) and M, 4
A(hita. . t)sS My+A(wiywaty .. wt) for e=1,2,..., m. It is easy to verify that
< is a quasi-order.

The next theorem gives the main result of this section.

Theorem 6.5. For any Peiri net 3 = (S, T, W, M,), the set M = {(M, u)| M{u)} has
the fbp in <.

Proof. First notice that (N")*, reN,, has the fbp (cf. Propositions 6.1 and 6.3).
We can define a one-to-one map EMS of M into (N")¥, where r=|S|+|T|+2, in

the following way:

- take the marking sequence corresponding to (M, u);

- extend each element of this sequence by |T| components; the component corre-
sponding to the transition just occurred will be equal to 1, the others will be equal
to 0;

- add a special end-element which contains the last marking but all *‘the transition
components” are equal to 0;

- extend each element by another iwo components, one indicating the begin-element
and the other indicating the end-element.

An example makes it clear:

EMS[(M, 1,1,)]
=[M,0,...,0,1,0][M+A(t,),0,...,0,1,0,...,0,0,0]
T ) ‘
Begin t,
t End

! l
x[M+4(1t,),0,...,0,1,0,...,0,0,0][(M +4A(1,1,),0,...,0,0,1].

[ ]

The following equivalence is easy to verify:
(M,, u)) <(M,, u,) iff EMS[(M,, u;)]<EMS[(M,, us)].

Hence the theorem is obvious. [1
Later we shall use Lemma 6.7 for which Lemma 6.6 is needed.

Lemma 6.6. Suppose (M, u)<(M’', u’) for a given Petri net. For any “partition™
U=uu,...u, of u, u' can be written u'=v,v,...0, where M+ A(uu,... U )<
M'+A(vv,...0.) forc=0,1,2,...,m.

Proof. It follows from the definition of < in an obvious way. [J

Lemma 6.7. Let a Petrinet X = (S, T, W, M) be given. Suppose (M, u)) <(M,, uy) <
(M., us) and M[u)M', for i=1,2,3. Then there is ve T* such that M+ (M,— M,)
[v)M;+(M5— M) and (M, u;) < (M;+(M.— M), v).
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Proof. Suppose &, =0ly...0n, W=WHWLWs. .. LWy Where M,—M,+
A(w,w;...w)=0for c=0,1,..., m+1. Due to the previous lemma, we can write
Uy =00r...0Upsy Where Mr+A(witiwyty...wit)<M;+A4A(vv,...0.) for c=
0,1,...,m. It can be easily verified that v=w,0,w:0;... Wy Up 4, proves the
lemma. O

7. Decidability of P,
We use the following technical convention in this section.

Convention 7.1. We wiil assume implicitly that every Petri net 3 = (S, T, W, M,) has
a special step counter place, denoted by s, , where My(s.,)=0 and W(s.,, t)=0,
W(t, s.) =1 for every te T.

We can immediately establish a result corresponding to Carstensen’s resuit 2.5. (2).
Proposition 7.2. Py, is decidable in case n =1 (there is one (S,, f,) only).

Proof. Insuch a case, a solution o exists iff there is a finite sequence o' = py, Uy u, Uzms,
such that

[IM\[S, =/, & My S, =fi] & [M, < M, & M (5cr) < M(5cai) ]-

(o implies ¢’ due to Proposition 6.1, o’ implies a solution o = u,(u,)*.)
The existence of such o' is decidable due to Theorem 5.4. [

In what follows we implicitly assume n=2 in P,.,-instances. Now we show a
more detailed structure of Py.,-solutions.

Definition 7.3. Let X =(S, T, W, M), (S:,f),...,(S,, f,) be a Py-instance. A
(finite) occurrence sequence o in the form

— 1 1 2 .02 k k
TZ=pUond U M) Wongd U a2 Wingd oo agh U pmk Wipghtt,

where every subsequence u'py: can be written in more detail
Mo Wi m) Uams .- Upar, is k-good if the following conditions hold for all (relevant)
ij:

(1) M;}S;=J; (i.e. M1 S;=M;|S;=---=M]|S;=f for 1<j<n)and M| S, =
S

(2) A(u")=0, A(W')=0 (ie. Mos M \,<MisM,<---sM§{<Mi<Ms"");

(3) Mj"'sMj (ie. Mj<sM;sMj<---<Mj also for 1<j<n-1) and
M (Sca) < Mj(5c0) (the “sector from M ' to M;” is not empty).

We will say that a k-good sequence o satisfies INSERT, o is a k-good INSERT
sequence, if in addition{M|_,, u)) {(M}*}, u} Nfori=1,2,...,k—-1,j=1,2,...,n
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In a natural way, the definition can be extended for the case k = w yielding the
notions of an w-good sequence and an w-good INSERT sequence.

Notation 7.4. For technical convenience, we write sect(i,j) for u’',ju,,:..
u' 'w'uind ... uj (i.e. for “'sector from M| ' to M;>). Condiiion (3) in Definition

7.3. means that A[seci{i, j)]=0 and A[sect(i, j)}(s.n:) > 0.

Remark 7.5. We will often suppose w'=¢ for all i (M} =M in such a case).
Considering a k-good (w-good) sequence, we can always ubiain the case w' =¢ by
the notation change (u}"")new = (W't} )oLp; of course, the condition INSERT may
be affected thereby. Doing a notation change (w')npw = (w'u''w'* g, for some
i, we obtain a (k —1)-good sequence (another form of an w-good sequence, respec-
tively).

Lemma 7.6. Any w-good sequence can be rewritten into a form of an w-good INSERT
sequence.

Proof. Because of Theorem 6.5, any infinite sequence of elements of the set
{(M, u)| M[u)} has an infinite subsequence ascending in {. The lemma can be proved
by applying this fact n-times (and using the last notation change in the previous
remark). [

Proposition 7.7. Let a P,.-instance 2 = (S, T, W, M,), (S,, f1), ..., (S, J,) be given.
The solutiors of the P,.-instance are exactly the w-good ITNSERT sequences.

Proof. It is obvious that an w-good sequence is a solution.

(*) Now let o=y, 1) a1, 12 m, - - . b€ @ solution of the Py.,-instance. Due to thc
previous lemma it suffices to show that o can be written in a form of an w-good
sequence.

Take any j, 1<j=<n. From Proposition 6.1. it is clear that there is an infinite
subsequence ¢; of the sequence M,, M,, M,, ..., where M[S§; = Jf; for every member
M of ¢; and ¢; is ascending (in the component s, strictly ascending).

It is easy to establish (#) using sequences @, ¢2,..., ¢, [

A special 3-good sequence will be called regular.

Definition 7.8. Let a P,,-instance X = (S, T, W, M,), (S,,11),...,(S,,[,) be given.
A 3-good sequence o in the form

I ! 2, 2,3 3
OC=p UM Uy pat o Upppl Ui pad oo - Unna Uiy e - Unrl
(w'=¢ for i=1,2,3) will be called a regular sequence if

(Vji1<j<n) (3keN,) [M}-M;=k(M;-M))]
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Our next aim will be to prove that the existence of a k-good INSERT sequence,
for sufficiently large k, implies the existence of a regular sequence. It is the most
tcchinical part of the whole proof.

First we define iechnical notions R; and MUL(|, j).

Definition 7.9. Consider a k-good sequence o as in Definition 7.3 (we can suppose
w' =¢ for all i). _ ‘

(1) The functions (vectors) Rje (@.)° (2<i<k, 1<j<n) will be defined in the
following way: for any s€ S,
_ IM-Mi')(s) _ [Acsect(i, ))I(s)

[M;—M; " Vseu)  [A(sect(i, j)1(Sca)”
(2) The predicate MUL(}, j) (3<i= k, 1<j=<n) will be defined in the following way:

MULC(, j) ?(Hp eNL (M= M) (sen) = pL(M;™" = M;7*)(5cn0) 1}

R(s)

Remark 7.10. Notice that a 3-good sequence with w'=e¢ is regular iff MUL(3, j)
and R;=R] for j=1,2,...,n.

We will use certain special k-good sequences (called “relatives’’); for them, we
will show certain modifications which keep the special k-goodness conditions and
change R; (and are able to establish MUL(i, j)). We need the next two lemmas.

Notation 7.11. Let o be a k-good sequence as in Definition 7.3. For any (relevant)
i,jand any ry,r,,..., 1, €EN, M_;(rl’ r»,..., ri-y) stands for M;+r1(1\'l’f“M})+
(M} =MD+ -+r_(M;—M;™").

Lemma 7.12. Let o be a k-good INSERT sequence as in Definition 7.3. For any i, j,
I<is<k, O0<jsn-1 and any r,,r,,...,r,_ €N, there is ucT* such that
M_;‘(rh ra, ..., ri—l)[u)M]"+l(rla Fayeuoslisy).

Proof. We show in addition that u can be chosen so that (Mj,uj,,)<

(Mj(r,, rs, ..., 1)), u). The proof is made by induction on the sum ¢=Y,, r,
(assuming fixed i, j).

(i) In case of ¢=0, put u=u,,.

(i) In the induction step, denote

M=Mr,r,...,r_), M'=Mj,(r,r,...,r,)
and suppose
M[u)M',(M}, u;+1)<(M, u). (2)
The proposition will be shown for
Mj(ry, .oty 14ty Fayy oo 1) =M+ (M = M),

where Isd=si-1.
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We have (M}, ul, ) <(M*", ul'y<(M, u) due to INSERT and (2). Because
of Lemma 6.7, there is v e T* such that

M+(M;Hl - Mf)[U>M’+(M;I++|‘ - M:iﬂ

and
(M, u)<(M+(M{*"'= M), v).
Hence
Mi(r, ... ta V4 ra Fasyy oo 1))
YMi(ry ey gy Vg Fayy ooy B y)
and

(M;9 u;‘+l)<[M,;(rls NI 7 S 1+rds Figars ey rl—l)s U]

by which the proof is finished. [

The next lemma adds the case j = n to the previous one (we do not need INSERT
in this case).

Lemma 7.13. Let o be a k-good sequence as in Definition 7.3. For any i, 1<i<Kk,
and any r,, r,,...,ri_ €N, there is we T* such that

Mil(rlsr’v"'sri-l)[W>M(i)+](r;,r£9-"s r:~lsr1{)’

<

where r,<r, forp=1,2,...,i—1.

Proof. (i) The case Z;;', r, =0 is clear (put w=w").
(i) Suppose Mi(ry, ray. .., i )IWIME (rl, 1y, ..., ri_y, r}). It is easy to verify
that

i d d d, d+1
Mi(r, .o i)+ (M = M) [wuw" M,
where
i ' - 2 d+1
M=MyNr, e r, )+ M = Mg+ My = Mg+ M =My
=M:)+](r;9"'.sr:l~)’1+r£is1+r:1+lar:1+29"'ar:'l)' L_-I
Now we define the notion of a “relative™; it is a k-good sequence which does

not need to satisfy INSERT but which is closely related to some k-good INSERT
sequence.
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Definition 7.14. Let o be a k-good INSERT sequence exactly as in Definition 7.3.
iLet v be an occurrence sequence in the form

. 1 2 3 k
T =, Uppd U p) U a2 Uiyl Uty
where every subsequence » #' ) can be written in more detail

Y i
LYHE SR YHE 53 VAR Y VAR

(Hence o' has the same prefix as o; of course, M. = M}).

¢’ is a relative of o if the following conditions hold:

() for all i,j, 1<i<k, 1 <j<n, there are parameters r,, r,,..., r,_, such that
Mi=Mi(r, ra... 1),

(2) the parameters in (1) can be chosen so that if (i<i’)v(i=i"&j<j’) then
r,<r,forp=1,2,...,i—1 (r, being the parameters belonging to i, j, r, to i, j’).

Remark 7.15. It is easy to verify that a relative of o is also a k-good sequence
(where INSERT is not necessary and w'=e¢ for all i). Notice that any k-good
INSERT sequence can be rewritten into a form of its relative by the notation change
(uy)new= (W' 'ul)oLp for all i=2.

Now we are ready to define the modifications mentioned before Notation 7.11.
They use linear combinations of the “previous relevant sectors” in order to change
R; (and establish MULC(i, j)).

Definition 7.16. Let o and its relative o’ be exactly as in Definition 7.14. An
i, j-modification of o' (2< i<k, 1<j<n) consists of two steps:
(1) replacing u; by

uj=u[sect(2, j)1%[sect(3, ))I*.. . [sect(i, j)]*

forsome k,, ks, . .., k; €N (the sectors from o' are meant; M J' changes appropriately,
but conditions from Definition 7.14. remain holding for it).
(2) a successive replacing of

y;‘+|9y}+2$"'9unsyl ’ l_‘.l’. se--s Up o"'sy.
(and the appropriate changingof M}, ,, ..., M})insuch a way that the new sequence

is also a relative of o.

Lemma 7.17. For any i,j, 2<i<k 1s<j<n, and any k, ki, ..., k€N, there is the
i, j-modification described above.

Proof. The correctness of Step (1) follows from the k-good sequence properties (a
relative is k-good); the “new™ M (i.e. M) is obviously equal to Mi(r,, rs,..., 1)
for some parameters which are equal or greatei than the “old” ones.
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For Step (2), we can use Lemmas 7.12 aud 7.13. If, during the successive replacing,
wc are to replace some u., where 2<j<n, we use u ensured by Lemma 7.12. If
we are to replace some u}, we use wu, where w is ensured by Lemma 7.13. and u
by Lemma 7.12.

By such a successive replacing *“‘from left to right”, we really get another :elative
a” of (the original) . [J

Remark 7.18. In fact, only i, j-modifications with at most two k, not equal to zero
will be used. Notice that any i, j-modification does not affect the prefix before u,
(u; is changed ini the defined way; as regards the suffix, we need only the correctness).

Now we show how MULC(i, j) can be achieved without zffecting R;.

Lemma 7.19. Let a relative o (of a k-good INSERT sequence) be given. For any fixed
i, j, there is an i, j-modification after which MULC(i, j) holds and R; remains unchanged.

Proof. It suffices to perform an i, j-modification which starts by replacing u; by
ui[sect(i, j)]” where r=[M|"' =M *I(s;e)—~1. O

A crucial point in changing R} is Lemma 7.21; we need the following simple fact.

Lemma 7.20. Foranym,, m-eN, n,,n,eN,, qe Q. , wherem,/n, < q < m./n-, there
are x,, x-€N, such that (in,x,+ m,x,)/(nx,+ n>x;) = q.

Proof. Let g =c,/c,for ¢,, c,eN,. We want to solve the equation c,m, x, + c;m;x> =
cit, ¥, + ¢ nx%>, i.e. (camy,—cyny)x;=(cyny—camy)x,. Due tc com<cny, ¢n><
¢,m,, a positive solution is clear. O

Lemma 7.21. Let a relative o (of a k-good INSERT sequence) be given. Let S'< S,
s'eS\S', 2si'<i"<isk, 1<j<nand

R/}1S'=R]}S'=R]j|S" (3)

In addition, let g€ Q, be strictly between R} (s') and R;(s’). Then it can be achieved
by an i, j-modification that Ri(<") = q and R} S’ remains the same.

Proof. If Ri(s") # q then ¢ is strictly between R;(s’) and R;(s’) or strictly between
R!(s") and R(s'); suppose the first alternative (the second being similar).

Due to the previous lemma there are x,, x, such that the following holds:
performing an i j-modification which starts by replacing u; by
uilseci(i', j)1M[sect(i, j)1%~', we obtain Ri(s')=q and Rj| S’ remains the same due
to (3). O
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Now we can reach the aim defined after Definition 7.8.

Proposition 7.22. Leta Py -instance 2 = (S, T, W, M,), (S,, f1), - . ., (S,, /) be given.
If there is a k-good INSERT sequence for k =1+2°, where ¢ = n|S|+ 1, then there is
also a regular sequence.

Proof. Let o be a k-good INSERT sequence. Change the notation as in Remark
7.15 to obtain o in a form of its relative. It suffices to show a series of modifications
which will ensure that

@m1sm<k-2) (Vj1<ysn) [R''=R"2&MUL(m+2,j)] (4)

(cf. Remark 7.10; the exact form of a regular sequence will then be obtained by
notation changes).

We shall show the following proposition P(r) for r=0, 1,.. ., n|S| by induction.
P(n|S|) will imply (4) by which the proof will be finished.

Propositior 7.23 (P(r)). There are
- a reiative o, of o,
- meN,, Ism<k-27" (c=1|S|+1),
- two disjoint scis M,, N, §x{1,2,..., n}, where {M, U N,| = r and some q;(s)c Q..
is given for every (s, j)e M,
meeting the fcllowing two conditions (we write range, instead of {m,+1,m,+2,...,
m,+2°7"}):
(1) suppose any series of any i, j-modifications of o,, i moving in range, only, has
been performed. Now for every pair i', j', i’ € range,, we can achieve by several i’,
Jj'-modifications that

(Vse8) [(s,j)e M, = Ri(s)=qy(s)].

(2) Again, suppose any series of any i, j-modifications of o,, i moving in range,
only, has been performed. For any i', i", j', i’, i" € range,, if

(VseS) [(s,j)e M, = Ri(s)=Ri(s)=g(s)]
holds, then
(VseS) [(s,jYe N, = Rj(s)=Rj(s)]

is also ensured.

P(0) is obvious: take o in the form of its relative as o, and put my=1, My= Ny=0.
We shall show P(r)=P(r+1) for r<n|S|. FH(range,) will denote the first half
of range,, i.e. {im,+1, m, +2,..., m,+2" """}, SH(range,) the second half similarly.
Take an arbitrary (s, j') 2 M, U N,. There are two possibilities, (a) and (b), only.
(a) After performing any series of zay i, j-modifications of ,, i moving in
FH(range,) only, the following holds: for any i’, i" € FH(range, ), if

(VseS) [(sjYeM, = Ri(s)= R (s)=gi(s)]
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holds then R;}(s’)=R;(s’) is also ensured. In such a case, we can put o.,,=0,,
m=m, M,.,=M, N, =Nu{(s',j)} and P(r+1) is clear (range,,,=
FH(range,), of course).

(b) There is a series ¢ of i, j-modifications of o,, where i moves in FH(range,)
only, after the performing of which we have for some /', i"€ FH(-ange, ):

(VseS) [(s,j)eM, = Rj(s)=Rj(s)=gq,(s)]
and Rj(s") # R}(s").
In such a case, take o, modified by ¢ as 0,., and put m,,, =m,+2"""' N,,,=N,,
M,.,=M,u{(s’,j')} choosing g;(s’) strictly between R(s’) and R)(s’).
P(r+1) can then be verified by help of P(r) and Lemma 7.21 (in this case,
range,., = SH(range,)).
in the end, we show P(n|S})=>(4). Take o, and put m = m, for r = n|S| (range, =

{m+1, m+2}). The ', j’~-modifications ensured by (1) of P(n|S|) can be performed
successively for

(,j)=(m+1,1}, (m+1,2),...,(m+1,n), (m+2,1),
(m+2,2),...,(m+2,n),

in case i'=m+2, we always add the (i’,j')-modification ensured by Lemma 7.19.
Thereby (4) is established. [

Now we will show that a regular sequence can be lengthened to infinity in the
“regular’” way whereby an w-good STRICT INSERT sequence arises.

Lefinition 7.24. Let o be a k-good sequence as in Definition 7.3. o will be called
a k-good STRICT INSERT sequence if

(1) w'=¢ for all i, and

(2) for any i,j,2<i<k, 1<j<n, uj=u, 'v for some v.
An w-good STRICT INSERT sequence is defined in the same way.

Itis obvious that a k-good (w-good) STRICT INSERT sequence satisfies INSERT
(i.e. the above notion is correct).

Proposition 7.25. Let a P,.,-instance be given. If there is a regular sequence then there
is also an w-good STRICT INSERT sequence.

Proof. Suppose o as in Definition 7.8 and take some x =N such that k,+x =k,
for some c eN. Notice that

AGlulul . )y =(M3= M2+ (M- MY =~(M,- M)+ (Mj-M))
and recall M, = M, +k,(M.— M),).
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Now we can easily verify what follows.
Mi[(wiudus . .. up)*IM; + k(M7= MDup) My +k, (M7~ M)
x ((u3u) . .. uaui) WM,
where
M’ = Mi+k (M}~ M)+ k,(M{- M)+ x(M;~ M)
=M+ k,(M}= M) +ck,(Mi-M})
=M+ (k, + )M~ M) = M.
Thus we have lengthened o by a certain u} = ujv in the “regular way™. This way

can be continued to infinity. Then the notation change (u')new = (4’ **)oLp finishes
the proof. [0

Proposition 7.26. There is an algorithm specified as follows:

Input: a Py -instance £ =(8, T, W, My), (S:, f1), (S2,5), ..., (Sns fo)-

Output: YES if there is a k-good STRICT INSERT sequence for k = 1+2° where
¢ =n|S|+1, NO otherwise.

Proof. In a straightforward way, the conditions satisfied by a k-good STRICT
INSERT sequence can be described with a formula from LY (defined in Definition
5.3.) for some m depending on k. The orly difficulty is to describe the condition
u;=u; 'v (for some v); but it suffices to ensure uj=uv where A(u)=A4(u,™"); as
such u could be immediately replaced by u;™' (because of MjZ}< M)_)).

Thus the existence of the above-specified algorithm follows from Theorem 5.4. [

Theorem 7.27. Problem Py, is decidable.

Proof. It follows from Propositions 7.7, 7.22, 7.25 (cf. Fig. 2) that the algorithm
from Proposition 7.26, decides Py.,. [

Theorem 7.28. Problem P, (including Pc,,) is decidable.

Proof. It follows from Proposition 4.5 and Theorem 7.27. O

Conclusion

Establishing the decidulilily of Py, and of (more general) P, we have solved
an open problem from [2] and [4]. Unfortunately, the presented proof does not
imply Prap =prime RP (our reduction was exponential); that would answer the
relevant question from [4] completely.
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