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a b s t r a c t

Given a simple undirected graph G = (V , E) and a constant γ ∈ (0, 1), a subset of vertices
is called a γ -quasi-clique or, simply, a γ -clique if it induces a subgraph with the edge den-
sity of at least γ . The maximum γ -clique problem consists in finding a γ -clique of largest
cardinality in the graph. Despite numerous practical applications, this problem has not
been rigorously studied from themathematical perspective, and no exact solutionmethods
have been proposed in the literature. This paper, for the first time, establishes some fun-
damental properties of the maximum γ -clique problem, including the NP-completeness
of its decision version for any fixed γ satisfying 0 < γ < 1, the quasi-heredity property,
and analytical upper bounds on the size of a maximum γ -clique. Moreover, mathematical
programming formulations of the problem are proposed and results of preliminary nu-
merical experiments using a state-of-the-art optimization solver to find exact solutions
are presented.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Networks or graphs, consisting of vertices (nodes, dots) and edges (links, arcs) connecting pairs of vertices, provide a
convenient modeling tool for studying objects of diverse origins, including the Internet and the World Wide Web, natural
ecosystems, cellular processes in biology, and phone call records in telecommunications, among other applications [21]. One
of the common issues of interest to many such applications is finding large clusters, or ‘‘tightly knit’’ subsets of vertices. The
ideal description of a cluster of similar elements is given by the concept of a clique, defined as a subset of vertices any two
of which are connected by an edge. For example, in social networks, where the vertices correspond to ‘‘actors’’ and an edge
indicates a relationship between two actors, a clique represents a group of people, any two of which have a certain kind of
relationship (friendship, acquaintance, etc.) with each other [24]. In fact, some of the earliest work addressing the concept
of cliques and methods of their detection was motivated by applications in sociometry [17,16,14]. Due to its numerous
applications, the maximum clique problem is one of the most important NP-hard problems and it has been extensively
studied in the literature. A detailed survey of results on the maximum clique problem and related references can be found
in [8].

While the clique model is, undoubtedly, a very reasonable formalization of a cluster, the requirement for every two
vertices to be connected is rather restrictive for some applications, especially for those relying on experimental data. This
motivated research on a variety of related concepts, some of which can be viewed as ‘‘relaxations’’ of the idea of clique.
Not surprisingly, several such concepts first appeared in studying cohesive subgroups in social networks and were based
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on relaxing some of the desirable properties that a clique idealizes. The clique relaxation models originating from social
network analysis include the notions of k-clique [16], k-club [19], and k-plex [23]; see also [6,5]. Abello et al. [1,2] proposed
a density-based relaxation called quasi-clique, which requires at least the fraction γ of all possible edges between vertices
of a γ -quasi-clique to be present. As a density-based relaxation, γ -cliques provide a reasonable way for grouping objects
that possess no inherent reason to display the structure of other clique relaxations. The previous literature related to the
maximum γ -clique problem concentrated on heuristic detection of large quasi-cliques in various application scenarios.
The goal of this paper is to start examining the maximum γ -clique problem from the mathematical perspective, including
establishing the computational complexity of the problem for any fixed γ , exploring structural properties of γ -cliques,
deriving analytical upper bounds, and developing mixed-integer programming (MIP) formulations.

The remainder of this paper is organized as follows. Section 2 introduces the definitions and notations used throughout
the paper. The NP-completeness of the decision version of the maximum γ -clique problem is proved in Section 3. Section 4
defines the quasi-heredity property and establishes analytical bounds on the γ -clique number of a graph. Mathematical
programming formulations are derived in Section 5 and results of preliminary numerical experiments are reported in
Section 6. Finally, Section 7 concludes the paper.

2. Definitions, notations, and motivation

Let G = (V , E) be a simple undirected graph with the set V of n vertices and the set E of m edges. For u, v ∈ V , dG(u, v)
is the length of a shortest path between u and v in G and d(G) = maxu,v∈V dG(u, v) is the diameter of G. Given S ⊆ V ,
G[S] = (S, E ∩ S × S) denotes the subgraph induced by S on G. A graph G = (V , E) is called complete if all its vertices are
pairwise adjacent, i.e. if ∀i, j ∈ V , i ≠ j, we have (i, j) ∈ E. A clique C is a subset of V such that the subgraph G[C] induced by
C on G is complete. A clique is maximal if it is not a subset of a larger clique, and maximum if there is no larger clique in the
graph. The maximum clique problem is to find a clique of maximum cardinality in G, which is called the clique number and
is denoted by ω(G).

Given G = (V , E) and fixed real γ satisfying 0 < γ < 1, a subset of vertices Q is called a γ -quasi-clique or, simply,
a γ -clique if the edge density of the induced subgraph G[Q ], which is given by the ratio of the number of edges in G[Q ]

to


|Q |

2


, is at least γ . The maximum γ -clique problem asks for a γ -clique with the maximum possible number of vertices

in G. We will denote the γ -clique number of a graph G, which is the cardinality of a largest γ -clique in G, by ωγ (G). Note
that for γ = 1 the maximum γ -clique problem would become the classical maximum clique problem, while for γ = 0
the problem would be trivial. For a fixed γ ∈ (0, 1) the problem has not been well studied. The earliest publication on
the topic is attributed to Abello et al. [1], who defined the concept of γ -quasi-clique and proposed greedy randomized
adaptive search procedures (GRASP) for detecting large quasi-cliques in graphs representing telecommunications data.
Similar approaches were implemented in semi-external memory algorithms that handled massive graphs with hundreds of
millions of vertices [2]. Several other papers, some of which use modified definitions of quasi-cliques, presented heuristic
approaches to detecting large quasi-cliques in graphs arising in various applications [9,7,18,22,25,15]. In summary, the
previous work on the problem of interest concentrated mainly on heuristic detection of large quasi-cliques in graphs
arising in a diverse set of applications. This paper provides a formal study of the computational complexity of the γ -clique
problem, establishes analytical bounds on the γ -clique number and proposes mathematical programming formulations of
the problem that can be used for finding provably optimal solutions.

3. Computational complexity

This section presents the computational complexity analysis for the maximum γ -clique problem for any fixed density γ
between 0 and 1. To simplify the analysis, we first replace a real γ in the definition of a γ -clique with a rational p

q , where
positive integers p and q (p < q) are given, resulting in the p

q -clique model. Afterwards, the results obtained for p
q -cliques

will be extended to the general γ -clique case. Following the standard approach [13], we define the recognition version of
the problem, p

q -Clique, as follows: Given a graph G = (V , E) and positive integers p, q and k, does there exist a p
q -clique of

size at least k in G?

Proposition 1. The p
q -Clique problem is NP-complete for any positive integer constants p, q, p < q.

Proof. The proof is done by observing that p
q -Clique is, obviously, in the class NP and by reducing the classical Clique

problem to p
q -Clique. Namely, for the given k and p

q , we will construct an auxiliary graph G′
= (V ′, E ′) and prove that G has

a clique of size k if and only if G ∪ G′ has a p
q -clique of size |V ′

| + k.
The construction proceeds as follows. We build the set of vertices V ′ with |V ′

| = 4(|V |
2

+ k2)q − k and construct
edges to obtain a 2|V |-regular graph. It is easy to observe that one can always construct a graph with any specified even
regularity, provided there are enough vertices. This can be done by, e.g., placing all the vertices of V ′ on a circle and
connecting each vertex to its immediate |V | neighbors on each side in the circle. Next we randomly place edges so that
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we have p
q ·


|V ′

|+k
2


−


k
2


edges between the |V ′

| vertices. The value of p
q ·


|V ′

|+k
2


−


k
2


is integer since |V ′

| + k is a

multiple of 2q. |V ′
| is sufficiently large to guarantee that the following inequalities hold:

|V ′
|

2


≥

p
q


|V ′

| + k
2


−


k
2


≥ |V ||V ′

|.

The first inequality ensures that we can fit in the number of edges needed for a p
q -clique of size |V ′

| + k in G ∪ G′, where k
vertices would come from a clique in G. The second inequality allows one to build a 2|V |-regular graph on |V ′

| vertices with
no more edges than the desired value of p

q


|V ′

|+k
2


−


k
2


.

Consider the union G ∪ G′ of the two graphs. Then we can show that for any p
q -clique Q with |Q | > |V ′

| in G ∪ G′ there
exists a p

q -clique Q ′ in G ∪ G′ such that |Q ′
| = |Q | and V ′

⊂ Q ′. Indeed, suppose that there is a p
q -clique Q that has more

than |V ′
| vertices and does not include the entire V ′. Define Vin to be the vertices from G′ that are included in this p

q -clique
and Vout to be the ones missing. Then |Vout | ≤ |V |, so a vertex from Vout cannot be connected to more than |V | − 1 vertices
of Vout . Since every vertex in G′ has degree at least 2|V |, each vertex in Vout must be connected to at least |V | + 1 vertices in
Vin. Therefore, any vertex from Q \ Vin can be replaced with any vertex from Vout in Q with no reduction in the edge density
of the subgraph induced by Q . Substituting arbitrary |Vout | vertices from Q \ Vin with Vout , we obtain a p

q -clique Q ′ of the
same size as Q that includes the entire V ′.

To complete the proof, we will show that G has a clique of size k if and only if G ∪ G′ has a p
q -clique of size |V ′

|+ k. Given

a clique C of size k in G, combining G[C] with all of G′ we have |V ′
| + k vertices and p

q ·


|V ′

|+k
2


−


k
2


+


k
2


=

p
q ·


|V ′

|+k
2


edges, making this collection of vertices a p

q -clique by definition. On the other hand, assuming that G ∪ G′ has a p
q -clique of

|V ′
| + k vertices, we know that there is p

q -clique Q ′ of size |V ′
| + k in G ∪ G′ that contains all of the vertices from G′ and

hence precisely k of the vertices come from G. To see that the k vertices in Q \ V ′ form a clique, consider the density of G′. It
is precisely p

q ·


|V ′

|+k
2


−


k
2


by construction. If the k vertices from G don’t contribute


k
2


edges, then the set of |V ′

| + k

vertices forming Q cannot have density p
q . Thus the existence of a p

q -clique of size |V ′
| + kmeans the set of k vertices in the

original graph induces a subgraph with


k
2


edges and hence forms a clique. This establishes the NP-completeness of the

p
q -Clique problem. �

Corollary 1. For any given fixed real γ ∈ (0, 1), the γ -Clique problem is NP-complete.

Proof. First observe that instead of assuming that p
q is a fixed value, we could allow p = p(n) and q = q(n) to be functions

of n such that 0 < p(n) < q(n) and both p(n) and q(n) are O(n2). Clearly, any possible edge density for a graph on n vertices
can be specified by p(n)

q(n) with p(n), q(n) ≤ n(n−1)/2. The resulting p(n)
q(n) -Clique problem is also NP-complete, using the same

proof we have given above. Based on this observation, it suffices to show that for any γ ∈ (0, 1) there exist two functions
p(n), q(n), of the order O(n2), such that 0 < p(n) < q(n) for any n, and the resulting p(n)

q(n) -Clique problem and γ -Clique
problem are equivalent.

Let γ be fixed. Define for any positive integer s

p̄(s) =


γ
s(s − 1)

2


, q̄(s) =

s(s − 1)
2

.

Note that p̄(s) defines the minimum possible number of edges in the induced subgraph of any γ -clique of size s, so
p̄(s)/q̄(s) ≥ γ and the actual edge density of any γ -clique of size s is at least p̄(s)/q̄(s). Hence, any γ -clique of size s is
also a p̄(s)

q̄(s) -clique and vice versa. Next, for any positive integer nwe define

p(n) = p̄(s∗), q(n) = q̄(s∗), where s∗ = arg min
1≤s≤n

p̄(s)
q̄(s)

.

Then 0 < p(n) < q(n) for any n and p(n), q(n) are of order O(n2). Moreover, for any s ≤ n, any s-vertex subgraph
Gs = (Vs, Es) of G is p(n)

q(n) -clique if and only if it is a γ -clique, so p(n)
q(n) -Clique problem is equivalent to γ -Clique problem. �

4. Properties of γ-cliques

In this section we will discuss some properties of γ -cliques that may be useful in designing solution procedures for the
maximum γ -clique problem. Unlike cliques, the γ -cliques fail to display a key property used in successful algorithms for
the maximum clique problem: heredity. A property is called hereditary if, when it exists in a graph, it exists in all its induced
subgraphs. It is easy to identify γ -cliques containing subsets of vertices that induce subgraphswith edge density less than γ .
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Because of this, even checking maximality by inclusion is a non-trivial task for quasi-cliques. However, γ -cliques do display
a related property, which we will call quasi-heredity.

4.1. Quasi-heredity

If, given any graph G = (V , E) satisfying a property P , there exists v ∈ V such that G− v := G[V \ {v}] also has property
P , we call the property P a quasi-hereditary property and say that the property P displays quasi-heredity or quasi-inheritance.

Proposition 2. The graph property of having edge density of at least γ displays quasi-inheritance. In other words, any γ -clique
with s > 1 vertices is a strict superset of a γ -clique with s − 1 vertices.

Proof. Consider a γ -clique Q that induces a subgraph with s > 2 vertices and e edges (the statement is trivially true for
s = 2). Then a smaller γ -clique of size s− 1 can always be formed by removing a vertex v with the lowest degree within Q .
Since this vertex will have degree less than or equal to the average, which is given by 2e/s, the edge density of the subgraph
induced by Q \ {v} will be at least

2e − 4e/s
(s − 1)(s − 2)

=
2e

s(s − 1)
,

i.e., no less than that of G[Q ], and hence Q \ {v} is a γ -clique. �

The quasi-heredity property implies that, provided the vertices are placed in the right order, a maximum γ -clique can be
found by starting with the first vertex in the list and sequentially adding the next vertex if the resulting subset of vertices is
still a γ -clique. This gives us a hope that if we apply some ‘‘smart’’ vertex ordering rules, perhaps based on vertex degrees,
there is a chance that we will be able to find large γ -cliques quickly (even though we cannot say how far their size will
be from optimal). This observation suggests metaheuristic procedures such as GRASP [2] as a natural choice for solving the
problem of interest. The successful computational experience reported by Abello et al. [2] provides practical evidence in
support of this hypothesis.

4.2. Upper bounds

The proposed upper bound on the γ -clique number is a generalization of the classical Amin–Hakimi bound on the clique
number [4].

Proposition 3. The γ -clique number ωγ (G) of a graph G with n vertices and m edges satisfies the following inequality:

ωγ (G) ≤
γ +


γ 2 + 8γm
2γ

. (1)

Moreover, if a graph G is connected then

ωγ (G) ≤
γ + 2 +


(γ + 2)2 + 8(m − n)γ

2γ
. (2)

Proof. The first bound is obtained by solving the quadratic inequality

γ
ωγ (G)(ωγ (G) − 1)

2
≤ m.

Assuming that the graph G is connected and has a γ -clique of size ωγ (G), the following inequality must hold:

γ
ωγ (G)(ωγ (G) − 1)

2
+ n − ωγ (G) ≤ m.

Solving this quadratic inequality for ωγ (G), we obtain the second bound. �

For γ = 1 the second of the bounds becomes the Amin–Hakimi bound on the clique number, which is the only constant-
time computable upper bound used in the comparison performed by Budinich [10].

4.3. Relation between ωγ (G) and ω(G)

Next we derive an inequality that will relate the γ -clique number to the clique number of G. We will need the following
classical lower bound on the clique number that can be easily obtainedfrom the Motzkin–Straus [20] formulation for the



248 J. Pattillo et al. / Discrete Applied Mathematics 161 (2013) 244–257

Table 1
The value of upper bound (5) on γ -clique numberωγ (G) (γ = 0.95, 0.9, 0.85) for graphswith known clique
number ω(G) ∈ {2, 3, . . . , 10}. The bound does not depend on the size of G and only assumes that ω(G) is
given by the value specified in the first column. Cases where the bound is not applicable (i.e., γ ≤ 1 −

1
ω(G)

)
are marked with ‘‘–’’.

ω(G) 1 −
1

ω(G)
Bound (5) on ωγ (G) for γ = · · ·

0.95 0.9 0.85

2 0.5 2.111 2.25 2.429
3 0.667 3.35 3.86 4.64
4 0.75 4.75 6 8.5
5 0.8 6.33 9 17
6 0.83 8.14 13.5 51
7 0.86 10.23 21 –
8 0.88 12.67 36 –
9 0.89 15.55 81 –

10 0.9 19 – –

maximum clique problem:

ω(G) ≥
1

1 − δ
, (3)

where δ = 2m/n2.

Proposition 4. The γ -clique number ωγ (G) and the clique number ω(G) of graph G satisfy the following inequalities:

ω(G) − 1
ω(G)

≤
ωγ (G) − 1

ωγ (G)
≤

1
γ

ω(G) − 1
ω(G)

. (4)

Proof. The first inequality is trivial due to the fact thatω(G) ≤ ωγ (G). To prove the second inequality, consider a γ -clique C
of largest sizeωγ (G) in G. Then, according to (3), the sizeω(G[C]) of the largest clique in the induced subgraph G[C] satisfies
the inequalities

ω(G) ≥ ω(G[C]) ≥
1

1 − δC
,

where δC = 2mC/n2
C , mC is the number of edges in G[C], and nC = ωγ (G) is the number of vertices in G[C]. Since C is a

γ -clique, we have

δC =
2mC

n2
C

=
2mC

nC (nC − 1)
nC − 1
nC

≥ γ
nC − 1
nC

.

Therefore,

ω(G) ≥
1

1 − γ
nC−1
nC

,

which, taking into account that nC = ωγ (G), is equivalent to

ωγ (G) − 1
ωγ (G)

≤
1
γ

ω(G) − 1
ω(G)

. �

Corollary 2. If γ > 1 −
1

ω(G)
then

ωγ (G) ≤
ω(G)γ

1 − ω(G) + ω(G)γ
. (5)

Proof. The result follows directly from the second inequality in (4). �

Observe that bound (5) on the γ -clique number ωγ (G) involves only one graph invariant, which is the clique number
ω(G). Unlike more traditional bounds, such as (1) or (2), it does not explicitly depend on the number of vertices and edges
in graph G, but instead assumes that the clique number of G is known. Such a bound can be especially useful for large sparse
networkswith a small clique numberω(G), assuming thatω(G) can be computed using effective scale-reduction procedures
such as ‘‘peeling’’ used in [1]. As supporting evidence, Table 1 provides the value of bound (5) with γ = 0.95, 0.9, 0.85 for
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graphs with clique number in the range between 2 and 10. The first column of this table contains the value of the graph’s
clique number ω(G) (which is all one needs to know about G in order to compute bound (5) on ωγ (G)); the second column
shows the value of threshold 1−

1
ω(G)

needed to determine whether bound (5) is applicable for given values of ω(G) and γ ;
and the remaining three columns provide the value of bound (5) for γ = 0.95, 0.9, and 0.85, respectively. Since the bound
is available only if γ > 1 −

1
ω(G)

, the cases when this condition is not met are marked with a dash in the table. As can be
seen from the table, in some cases the bound appears to be extremely useful. For example, if one is given a very large, sparse
graph G with ω(G) = 4, it immediately follows from the bounds provided in the table that ω0.95(G) = 4, 4 ≤ ω0.9(G) ≤ 6,
and 4 ≤ ω0.85(G) ≤ 8.

5. MIP formulations of the maximum γ-clique problem

The lack of structure in γ -cliques as opposed to cliques and some other clique relaxations, such as k-plex [5], makes this
problem extremely difficult to solve to optimality. Indeed, the most successful combinatorial algorithms for the maximum
clique and maximum k-plex problems rely on the heredity property of these structures, which is not an option in our
case. Tight bounds and effective pruning strategies within a branch-and-bound framework are not easy to develop for the
maximum γ -clique problem. This section develops mixed integer programming formulations for the maximum γ -clique
problem.

We consider a graphG = (V , E)with the setV = {1, . . . , n} of n vertices.We denote byA = [aij]ni,j=1 its adjacencymatrix,
which is an n × n matrix with aij equal to one if (i, j) ∈ E, and zero otherwise. We introduce n binary decision variables
xi, i = 1, . . . , n, one for each vertex, such that the value x∗

i assigned to the variable xi in the output optimal solution will
indicate whether the corresponding vertex i is a part of the maximum γ -clique C∗ computed. Namely, i ∈ C∗ if and only if
x∗

i = 1. Then the maximum γ -clique problem can be formulated as follows:

ωγ (G) = max
n

i=1

xi (6)

subject to
n

i=1

n
j=i+1

aijxixj ≥ γ

n
i=1

n
j=i+1

xixj, (7)

xi ∈ {0, 1}, i = 1, . . . , n. (8)

This problem has a linear objective, but its single constraint is quadratic. Next, we introduce new variables to make this
problem linear. We define wij = xixj. We need only n(n − 1)/2 − n new variables since wij = wji. The quadratic constraint
wij = xixj with binary variables is equivalent to the following three linear constraints:

wij ≤ xi, wij ≤ xj, wij ≥ xi + xj − 1. (9)

Therefore, we can formulate our graph problem as a mixed integer linear optimization problem:

ωγ (G) = max
n

i=1

xi, (10)

subject to
n

i=1

n
j=i+1

(γ − aij)wij ≤ 0, (11)

wij ≤ xi, wij ≤ xj, wij ≥ xi + xj − 1, j > i = 1, . . . , n (12)

wij ≥ 0, xi ∈ {0, 1}, j > i = 1, . . . , n. (13)

This formulation contains n(n − 1)/2 variables and 3
2n(n − 1) + 1 constraints.

Next we consider an alternative linearization. Recall that the original formulation (6)–(8) had a single constraint that can
be written as

n
i=1

xi


γ xi +

n
j=1

(aij − γ )xj


≥ 0. (14)

Let us define a new variable yi for i = 1, . . . , n as follows:

yi = xi


γ xi +

n
j=1

(aij − γ )xj


. (15)
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Let us use the following notations:

ui = (1 − γ )

n
j=1

aij; li = −


n − 1 −

n
j=1

aij


γ , (16)

where ui is the sum of all the positive coefficients and li is the sum of all the negative coefficients for the variables in the
expression in parenthesis of (15). Since all variables are binary, the constants ui and li satisfy the following inequalities:

li ≤ γ xi +
n

j=1

(aij − γ )xj ≤ ui, i = 1, . . . , n, (17)

li ≤ yi ≤ ui, i = 1, . . . , n. (18)

Thus, the quadratic equality (15) with binary variables is equivalent to the following four linear inequalities:

yi ≤ uixi, (19)
yi ≥ lixi, (20)

yi ≥ γ xi +
n

j=1

(aij − γ )xj − ui(1 − xi), (21)

yi ≤ γ xi +
n

j=1

(aij − γ )xj − li(1 − xi). (22)

Therefore, the problemof finding amaximumγ -clique canbe represented as the followingmixed integer linear optimization
problem with 2n variables, n of which are 0–1 variables and n-continuous, and 4n + 1 constraints:

ωγ (G) = max
n

i=1

xi (23)

subject to

n
i=1

yi ≥ 0, (24)

yi ≤ uixi, yi ≥ lixi, i = 1, . . . , n, (25)

yi ≥ γ xi +
n

j=1

(aij − γ )xj − ui(1 − xi), i = 1, . . . , n, (26)

yi ≤ γ xi +
n

j=1

(aij − γ )xj − li(1 − xi), i = 1, . . . , n, (27)

xi ∈ {0, 1}; yi ∈ R, i = 1, . . . , n. (28)

The proposed formulations allow one to use standard optimization solvers to find optimal γ -cliques in graphs that are not
very large.

6. Results of numerical experiments

To provide a preliminary evaluation of the relative practical efficacy of the proposed mathematical programming
formulations, sample numerical experiments have been conducted using a state-of-the-art commercial solver. All
experiments were performed on a Dell Optiplex 980 PC with Intel Core i7 CPU 860 2.80 GHz processor, 8 GB RAM, running
the 64-bit Windows 7 Professional operating system. The proposed formulations were used in conjunction with the FICO
Xpress-IVE Version 1.21.02 solver on a number of instances.

The testbed used included three types of instances: uniform random graphs on 50 and 100 vertices, power-law random
graphs on 100 vertices, and a set of standard test instances available in the public domain. Using random graph models
provides a convenient and flexible framework for generating a wide range of instances allowing one to explore the
capabilities and limitations of the proposed computational approaches. In addition to the commonly used uniform random
graphs, we included a set of power-law random graphs in our testbed, which is motivated by a widely reported observation
that many real-life complex networks appear to have power-law structure [12,3,21]. A uniformrandom graph G(n, p) has
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Table 2
Description of the uniform random graphs used in experiments.

Name n p m ωγ (G) for γ = · · ·

1 0.95 0.9 0.85 0.8 0.75

u50-1 50 0.2 215 4 4 5 5 6 7
u50-2 50 0.2 231 4 4 5 5 6 6
u50-3 50 0.2 242 4 4 5 5 6 6
u50-4 50 0.2 221 4 4 5 6 6 7
u50-5 50 0.2 253 4 4 5 6 6 7

u50-6 50 0.3 355 5 5 6 7 8 9
u50-7 50 0.3 379 5 5 5 6 7 8
u50-8 50 0.3 367 5 5 6 7 8 9
u50-9 50 0.3 340 5 5 6 7 7 8
u50-10 50 0.3 354 5 5 6 7 8 9

u100-1 100 0.05 244 3 3 3 3 4 4
u100-2 100 0.05 248 3 3 3 3 3 3
u100-3 100 0.05 217 4 4 4 4 5 5
u100-4 100 0.05 249 3 3 3 3 4 4
u100-5 100 0.05 280 3 3 3 3 4 4

u100-6 100 0.1 536 4 4 4 4 5 5
u100-7 100 0.1 485 4 4 4 4 5 5
u100-8 100 0.1 500 4 4 5 5 6 6
u100-9 100 0.1 469 4 4 4 4 5 5
u100-10 100 0.1 490 4 4 4 4 5 5

u100-11 100 0.15 737 4 4 5 6 6 7
u100-12 100 0.15 711 4 4 5 5 6 6
u100-13 100 0.15 741 4 4 5 5 6 7
u100-14 100 0.15 746 4 4 5 6 6 7
u100-15 100 0.15 760 5 5 6 6 7 8

u100-16 100 0.2 974 5 5 5 7 7 8
u100-17 100 0.2 934 5 5 6 7 7 8
u100-18 100 0.2 977 5 5 6 6 7 8
u100-19 100 0.2 992 5 5 6 7 7 9
u100-20 100 0.2 1010 5 5 6 7 7 8

n vertices, where each pair of vertices is connected by an edge independently with the probability p, whereas in a power-
law graph the probability that a vertex has degree k is proportional to k−β . Generating test instances of uniform random
graphs with given n and p is straightforward, whereas in the case of power-law graphs one can use the procedure described
in [11], which essentially assigns the probabilities pij for each pair of vertices (i, j) to be connected, using the extended
random graph model for a general degree distribution and then adjusting that model so that the resulting graph follows
the power-law degree distribution. As for standard test instances, we used some of the graphs from the Second and Tenth
DIMACS Implementation Challenges (the corresponding links can be found at http://dimacs.rutgers.edu/Challenges/), as
well as instances from Trick’s graph coloring page (http://mat.gsia.cmu.edu/COLOR04/).

Tables 2–4 present the description of the uniform random graphs, the power-law random graphs, and the standard test
instances used, respectively. In Table 2, the first column specifies the name of the graph, while the second and third columns
labeled by ‘‘n’’ and ‘‘p’’ contain the number of vertices and probability used to generate the corresponding graph G(n, p),
respectively. The next column ‘‘m’’ contains the actual number of edges in the corresponding graph. The remaining columns
show the computed γ -clique number ωγ (G) for γ = 1, 0.95, 0.9, 0.85, 0.8, and 0.75. The only difference in notations used
in Table 3 compared to Table 2 is in the third column, where the parameter β needed to generate a power-law random
graph is used instead of p. Finally, the column labeled by ‘‘ρ’’ in Table 4 contains the graph’s edge density, ρ =

2m
n(n−1) . The

first six graphs in the standard instances set listed in Table 4 are from DIMACS Challenges (with the first graph being from
the Second DIMACS Implementation Challenge and the other five from the Tenth DIMACS Implementation Challenge), and
the remaining instances are from the graph coloring collection. The selection of this subset of well-known graphs, available
in the public domain, which excludes larger-scale instances, was driven by limitations of the proposed solution approaches
and can be justified by computational intractability of the maximum quasi-clique problem.

The running times for the two proposed formulations applied to the above described uniform random graphs, power-law
random graphs, and standard test instances are compared in Tables 5–7, respectively. The first column of these tables, again,
contains the graph name. The remaining eight columns are subdivided into four pairs corresponding to four reported values
of γ ; γ = 1, 0.95, 0.85, and 0.75, respectively. In each of the four pairs of columns, the first column,markedwith ‘‘F1’’, shows
the running time for formulation (10)–(13), and the second column, ‘‘F2’’, reports the running time for formulation (23)–(28).
All running times are reported in seconds. If the MIP gap did not showmuch improvement after 50,000 s, the corresponding

http://dimacs.rutgers.edu/Challenges/
http://mat.gsia.cmu.edu/COLOR04/
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Table 3
Description of the power law random graphs used in experiments.

Name n β m ωγ (G) for γ = · · ·

1 0.95 0.9 0.85 0.8 0.75

pl100-1 100 0.1 312 6 7 7 9 11 12
pl100-2 100 0.1 339 6 7 7 9 10 12
pl100-3 100 0.1 313 6 7 8 9 11 12
pl100-4 100 0.1 334 6 7 7 9 11 12
pl100-5 100 0.1 333 6 7 7 9 10 12
pl100-6 100 0.1 340 6 6 7 8 10 11
pl100-7 100 0.1 323 6 7 8 9 11 13
pl100-8 100 0.1 327 6 7 8 9 10 11
pl100-9 100 0.1 347 6 7 7 9 10 11
pl100-10 100 0.1 325 6 6 7 8 9 10

pl100-11 100 0.2 974 15 20 24 27 31 34
pl100-12 100 0.2 986 16 19 23 26 31 34
pl100-13 100 0.2 985 16 20 23 27 31 35
pl100-14 100 0.2 1021 16 21 25 28 32 35
pl100-15 100 0.2 991 16 20 24 28 31 34

Table 4
Description of standard test instances used in experiments.

Name n m ρ ωγ (G) for γ = · · ·

1 0.95 0.9 0.85 0.8 0.75

Johnson8-2-4 28 210 0.556 4 4 4 4 5 5
Karate 34 78 0.139 5 5 6 6 6 7
Dolphins 62 159 0.084 5 5 6 6 7 7
Polbooks 105 441 0.081 6 7 7 9 10 11
Adjnoun 112 425 0.068 5 5 6 7 8 9
Football 115 613 0.094 9 9 9 10 11 11

Games120 120 638 0.089 9 9 9 10 10 11
Myciel3 11 20 0.364 2 2 2 2 2 2
Myciel4 23 71 0.281 2 2 2 2 2 2
Myciel5 47 236 0.218 2 2 2 2 2 2
Myciel6 95 755 0.169 2 2 2 2 2 2
Queen5_5 25 160 0.533 5 5 5 6 7 9
Queen6_6 36 290 0.460 6 6 6 7 7 9
Queen7_7 49 476 0.405 7 7 7 8 8 9
1-FullIns_3 30 100 0.230 3 3 3 3 5 5
2-FullIns_3 52 201 0.152 4 4 5 5 6 7
3-FullIns_3 80 346 0.110 5 5 6 7 7 8
4-FullIns_3 114 541 0.084 6 7 7 8 9 10
5-FullIns_3 154 792 0.067 7 8 9 10 11 12
1-FullIns_4 93 593 0.139 3 3 3 3 6 7
1-Insertions_4 67 232 0.105 2 2 2 2 2 2
2-Insertions_3 37 72 0.108 2 2 2 2 2 2
3-Insertions_3 56 110 0.071 2 2 2 2 2 2
4-Insertions_3 79 156 0.051 2 2 2 2 2 2
Mug88_1 88 146 0.038 3 3 3 3 4 4
Mug88_25 88 146 0.038 3 3 3 3 4 4
Mug100_1 100 166 0.034 3 3 3 3 4 4
Mug100_25 100 166 0.034 3 3 3 3 4 4
Huck 74 301 0.111 11 11 11 12 13 14
Jean 80 254 0.080 10 11 12 13 14 14
David 87 406 0.109 11 12 13 14 16 17
Anna 138 493 0.052 11 12 12 13 15 16

run was terminated with ‘‘>50,000’’ reported in the respective table entry. One can observe that, in most cases, the running
times for both formulations grow significantly with the increase of graph density and the decrease in γ value. While the
second formulation consistently outperforms the first one for higher values of γ on the considered uniform random graphs,
the first formulation takes over when γ ≤ 0.85 and the graph’s edge density is at least 0.15. The difference becomes
dramatic on the last 10 graphs in Table 5 and the last 5 instances in Table 6, for which the second formulation requires
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Table 5
Comparison of running times for the experiments with uniform random graphs.

Graph Running times, in seconds, for γ = · · ·

1 0.95 0.85 0.75

F1 F2 F1 F2 F1 F2 F1 F2

u50-1 0.7 0.1 2.6 1.5 2.9 3.9 5.0 22.2
u50-2 0.2 0.1 2.7 1.6 3.6 4.5 5.9 48.9
u50-3 0.6 0.2 2.5 1.7 4.0 5.0 6.6 120.3
u50-4 0.2 0.2 2.4 1.5 2.9 3.2 5.4 21.6
u50-5 0.7 0.2 2.6 1.7 3.5 6.5 10.6 108.7

u50-6 0.3 0.4 3.3 3.1 6.3 94.7 34.9 13,047.5
u50-7 1.1 0.6 4.0 2.9 8.4 158.2 61.4 41,796.1
u50-8 1.0 0.2 3.1 3.2 6.9 118.7 38.2 24,760.9
u50-9 1.2 0.3 9.9 2.1 6.6 42.7 39.3 4971.8
u50-10 1.1 0.5 3.1 3.0 6.6 78.4 40.8 12,087.4

u100-1 2.4 0.3 15.5 6.1 146.0 12.8 128.7 36.6
u100-2 2.6 0.3 17.1 5.2 139.6 13.1 135.3 43.1
u100-3 1.1 1.2 17.6 6.1 137.9 9.3 123.1 28.5
u100-4 2.8 0.3 140.1 3.6 152.9 11.7 117.6 36.2
u100-5 2.3 0.5 26.0 6.9 141.8 16.5 106.4 44.5

u100-6 6.8 0.7 152.7 8.8 94.6 99.2 864.2 21,187.1
u100-7 6.3 1.6 139.1 10.7 102.8 72.5 773.8 3925.0
u100-8 3.0 1.9 143.3 8.9 136.3 70.6 816.5 19,596.6
u100-9 4.8 2.2 138.6 8.4 143.4 45.6 689.5 2188.1
u100-10 4.9 1.8 131.3 8.4 111.8 52.9 739.3 >50,000

u100-11 5.6 2.1 98.6 15.9 584.4 2167.1 4600.1 >50,000
u100-12 6.9 2.4 132.7 14.9 560.4 4272.2 3575.9 >50,000
u100-13 6.2 2.5 99.4 17.6 629.0 1750.1 5162.8 >50,000
u100-14 5.9 2.5 106.5 16.5 594.8 1898.3 6203.0 >50,000
u100-15 5.3 1.7 99.1 16.6 616.0 5798.9 5199.7 >50,000

u100-16 6.0 38.8 107.3 23.3 894.2 >50,000 31,544.5 >50,000
u100-17 5.2 2.1 109.7 22.8 801.5 >50,000 34,690.5 >50,000
u100-18 6.3 2.3 114.2 24.1 934.1 >50,000 37,704.0 >50,000
u100-19 5.8 2.2 116.5 27.4 1033.0 >50,000 33,289.7 >50,000
u100-20 6.1 2.3 102.4 30.3 1184.9 >50,000 35,457.6 >50,000

Table 6
Comparison of running times for the experiments with power-law random graphs.

Graph Running times, in seconds, for γ = · · ·

1 0.95 0.85 0.75

F1 F2 F1 F2 F1 F2 F1 F2

pl100-1 2.0 0.1 120.1 7.4 100.5 38.5 84.3 127.9
pl100-2 1.2 0.1 94.0 8.0 104.6 55.0 378.4 165.1
pl100-3 1.5 0.1 94.9 7.0 97.3 27.4 94.9 131.2
pl100-4 2.2 0.1 17.5 8.3 91.7 24.9 240.5 98.5
pl100-5 2.1 0.1 99.5 10.2 114.4 23.6 411.6 201.5
pl100-6 1.8 0.1 112.2 8.5 87.7 34.9 158.3 1401.1
pl100-7 1.6 0.1 106.7 8.0 93.6 29.2 169.1 101.5
pl100-8 2.4 0.1 123.9 7.1 103.3 28.9 299.1 229.1
pl100-9 2.4 0.1 104.0 7.3 92.4 33.5 347.1 301.8
pl100-10 1.9 0.1 123.4 7.8 118.5 25.9 266.7 276.1

pl100-11 1.2 0.1 96.7 289.8 1429.9 >50,000 29,272.6 >50,000
pl100-12 1.1 0.1 80.4 125.4 1649.9 >50,000 26,196.4 >50,000
pl100-13 1.4 0.1 85.4 149.1 1859.4 >50,000 26,335.3 >50,000
pl100-14 1.1 0.1 77.1 130.2 2278.4 >50,000 42,761.2 >50,000
pl100-15 1.5 0.1 104.9 178.7 1581.5 >50,000 39,742.2 >50,000

over 50,000 s in multiple cases, while the first one often finds the solution in much shorter time spans and never takes more
than 40,000 s. Similar conclusions can be made with respect to the results reported for standard instances. Running times
become prohibitively high with an increase in edge density for lower values of γ , especially for the second formulation. In
the most extreme example, the execution of the second formulation for ‘‘johnson8-2-4’’ with γ = 0.75 has not terminated
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Table 7
Comparison of running times for the experiments with standard test instances.

Graph Running times, in seconds, for γ = · · ·

1 0.95 0.85 0.75

F1 F2 F1 F2 F1 F2 F1 F2

Johnson8-2-4 0.1 0.0 0.7 1.1 1.7 752.7 20.0 >50,000
Karate 0.1 0.0 0.6 0.6 0.7 0.5 0.9 0.8
Dolphins 0.4 0.3 5.1 1.6 5.2 3.2 5.3 7.8
Polbooks 2.1 0.3 146.2 10.1 99.8 46.4 749.5 1160.9
Adjnoun 2.5 0.7 132.2 9.7 147.0 46.9 462.0 706.4
Football 2.2 0.4 299.9 12.2 268.1 108.2 2077.0 22,392.4

Games120 2.0 0.5 372.4 16.4 237.8 414.5 2968.8 >50,000
Myciel3 0.0 0.1 0.1 0.2 0.1 0.2 0.1 0.2
Myciel4 0.1 0.1 0.3 1.0 0.3 0.5 0.4 1.0
Myciel5 0.5 0.3 2.7 1.5 3.7 4.4 7.8 84.0
Myciel6 3.8 1.2 65.7 16.3 409.1 13,530.1 2184.9 >50,000
Queen5_5 0.1 0.0 0.4 0.7 0.8 2.4 1.3 602.9
Queen6_6 0.5 0.1 1.4 2.6 3.7 33.3 20.4 15,838.2
Queen7_7 0.8 0.2 4.3 6.0 27.0 4840.6 359.8 >50,000
1-FullIns_3 0.1 0.1 0.6 0.6 0.7 0.7 0.8 0.9
2-FullIns_3 0.3 0.1 3.0 1.2 3.5 3.1 4.4 9.9
3-FullIns_3 0.7 0.1 10.1 4.0 15.0 22.3 27.9 163.9
4-FullIns_3 1.3 0.1 224.2 11.5 203.3 136.7 1502.2 4819.0
5-FullIns_3 3.0 1.1 1115.8 31.3 791.8 2013.4 6829.2 >50,000
1-FullIns_4 1.3 0.3 65.0 10.5 230.8 447.9 1100.5 >50,000
1-Insertions_4 0.6 0.2 6.6 2.5 6.8 4.9 9.9 25.6
2-Insertions_3 0.1 0.0 1.1 0.9 1.0 0.8 1.2 0.6
3-Insertions_3 0.2 0.0 2.9 1.4 3.2 2.0 3.5 2.2
4-Insertions_3 0.6 0.1 8.2 3.0 7.8 4.2 10.1 10.0
Mug88_1 0.7 0.2 9.8 4.7 78.1 6.0 77.6 9.3
Mug88_25 0.7 0.2 7.8 5.0 72.8 5.9 73.6 10.1
Mug100_1 1.0 0.2 15.1 6.8 143.9 5.2 143.3 15.4
Mug100_25 2.1 0.2 14.3 3.8 146.2 4.8 141.7 13.2
Huck 0.7 0.2 8.7 3.6 11.9 13.0 23.4 527.0
Jean 0.7 0.1 9.0 3.5 13.0 8.2 18.3 25.5
David 0.8 0.1 49.3 6.6 45.7 83.6 281.2 957.5
Anna 2.2 0.7 280.1 22.8 418.6 1142.0 652.9 4684.3

after 50,000 s. The graph in question has only 28 vertices, but its edge density is over 0.5. The poor performance of the
considered approaches on dense graphs is the main reason why ‘‘johnson8-2-4’’ was the only instance from the Second
DIMACS Implementation Challenge included in our testbed. The other instances from this collection appeared to be too
challenging for the studied approaches to be able to compute ωγ (G) values for every γ in the considered range within the
50,000 s time limit or have over 0.9 edge density and thus are trivial for γ ≤ 0.9. The largest nontrivial standard instance
from the testbed that we were able to solve to optimality for all considered γ values was ‘‘5-FullIns_3’’ from the graph
coloring collection. This graph consists of 154 vertices and 792 edges.

To provide a deeper insight into the performance of the two formulations, Tables 8 and 9 present a comparison of
upper bounds on ωγ (G) for selected random graphs and standard instances, respectively. The first bound is based on
analytical expression (1) (if the graph is not connected; such graphs are marked with ∗) or (2) (for connected graphs).
The other two bounds are given by the optimal objective function value of LP relaxations for the first formulation (LPRF1),
and the second formulation (LPRF2). Solving times for the LP relaxations are given in seconds. For random graphs, one
representative problem instance from each subtype included in the testbed is used for the comparison. All uniform random
graphs generated for the experiments were verified to be connected, therefore, upper bound (2) applies. On the other hand,
none of the power-law random graphs in the testbed were connected, therefore, bound (1) was used for the corresponding
two instances included in Table 8. The standard instances in Table 9 were selected to illustrate the fact that none of the
bounds is dominated by another. Only two of all the considered standard instances are disconnected, and both of them are
included in the table. One can observe that in most cases both LP bounds are of rather poor quality and could be improved
by adding the constraints corresponding to the proposed analytical bounds. However, adding such constraints results in
even higher running times, as finding high-quality feasible solutions becomes more challenging for the MIP solver. The LP
bounds obtained from theMIP formulations are comparable,with the second formulation being slightly tighter inmost cases.
Moreover, the LP relaxation of the second formulation requires less time to compute. Surprisingly, the first formulation still
comprehensively outperforms the second one on several instances, as reported in Tables 5–7. This is due to the fact that
typically the number of branch-and-bound nodes explored by the solver for the first formulation is significantly lower than
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Table 8
Comparison of upper bounds for selected random graphs. For analytical bound, (1) is used for disconnected
graphs (marked with ∗), and (2) is used for connected graphs.

Graph γ Analytical bound LPRF1 LPRF2

Bound Time Bound Time

u50-1 0.75 22.8895 26.0652 0.187 25.9913 0.032
0.85 21.4513 25.5849 0.187 25.5126 0.032
0.95 20.2550 25.1768 0.218 25.1501 0.031
1 19.7277 25.0000 0.078 25.0000 0.031

u50-6 0.75 30.4112 27.056 0.234 26.9876 0.032
0.85 28.5178 26.1010 0.202 26.0082 0.032
0.95 26.9399 25.3336 0.202 25.2911 0.032
1 26.2437 25.0000 0.093 25.0000 0.031

u100-1 0.75 21.5148 50.4621 0.951 50.4469 0.094
0.85 20.1598 50.2447 0.999 50.2352 0.093
0.95 19.0332 50.073 0.983 50.0698 0.093
1 18.5367 50.0000 0.328 50.0000 0.093

u100-6 0.75 35.9805 51.0966 1.123 51.0581 0.093
0.85 33.7497 50.5881 1.186 50.5538 0.109
0.95 31.8892 50.1763 1.373 50.1637 0.109
1 31.0677 50.0000 0.296 50.0000 0.110

u100-11 0.75 43.0890 51.6616 1.529 51.5565 0.109
0.85 40.4274 50.9068 1.716 50.8102 0.110
0.95 38.2059 50.2771 2.169 50.2385 0.093
1 37.2246 50.0000 0.312 50.0000 0.093

u100-16 0.75 50.1451 52.2528 2.199 52.1858 0.110
0.85 47.0558 51.2018 1.451 51.1319 0.109
0.95 44.4759 50.3610 1.544 50.3319 0.125
1 43.336 50.0000 0.312 50.0000 0.093

pl100-1∗ 0.75 29.3487 50.6982 2.277 50.6889 0.109
0.85 27.5992 50.3720 2.463 50.3572 0.110
0.95 26.1338 50.1110 2.292 50.1048 0.109
1 25.4850 50.0000 0.296 50.0000 0.094

pl100-11∗ 0.75 51.4665 53.2654 4.054 53.7225 0.140
0.85 48.3750 51.7716 3.660 51.8166 0.100
0.95 45.7855 50.5436 3.809 50.5103 0.100
1 44.6390 50.0000 0.310 50.0000 0.100

for the second formulation. For example, for graph u50-1 with γ = 0.75 the first formulation terminates at node 541, while
the second formulation terminates at node 17,459. It should be noted that in the reported preliminary experiments we
used default solver settings. Perhaps more advanced branch-and-bound strategies, tailored specifically for the maximum
quasi-clique problem, may lead to significant speedups.

7. Conclusion

This paper is the first attempt to establish rigorous mathematical foundations for the maximum γ -clique problem
that finds numerous practical applications. We show that the decision version of the problem is NP-complete, develop
analytical bounds on the γ -clique number of a graph, and provide mixed-integer programming formulations for the
problem of interest. In addition, we report the results of a preliminary computational study employing the proposed
formulations in conjunctionwith amodern commercialMIP solver. The lack ofwell-defined structure in γ -cliquesmakes the
problem extremely challenging for exact solution methods. The results of numerical experiments underline the necessity
of developing more advanced techniques in order to be able to solve larger-scale instances to optimality. We hope that the
analytical bounds and MIP formulations proposed in this paper will motivate future research on exact algorithms for the
maximum quasi-clique problem.
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Table 9
Comparison of upper bounds for selected standard instances. For analytical bound, (1) is used for
disconnected graphs (marked with ∗), and (2) is used for connected graphs.

Graph γ Analytical bound LPRF1 LPRF2

Bound Time Bound Time

Johnson8-2-4 0.75 23.9398 17.6842 0.060 17.6842 0.020
0.85 22.4381 15.7355 0.055 15.7355 0.015
0.95 21.1885 14.4762 0.055 14.4762 0.015
1 20.6377 14 0.035 14 0.015

Football 0.75 38.3212 58.5086 7.755 58.5079 0.125
0.85 35.9485 58.0312 8.400 58.0291 0.125
0.95 33.9692 57.6582 8.295 57.6568 0.125
1 33.0951 57.5 0.365 57.5 0.115

Myciel4 0.75 13.2946 12.5244 0.030 12.3947 0.020
0.85 12.4353 12.0637 0.030 11.9553 0.015
0.95 11.7243 11.6699 0.030 11.6317 0.015
1 11.4121 11.5 0.025 11.5 0.015

Queen7_7 0.75 35.6272 27.7114 0.230 27.718 0.035
0.85 33.4179 26.1819 0.170 26.1008 0.035
0.95 31.5753 25.0204 0.185 24.9557 0.035
1 30.7617 24.5 0.075 24.5 0.03

5-Fullins_3 0.75 43.1213 78.056 32.585 77.9992 0.215
0.85 40.4577 77.557 39.365 77.5234 0.255
0.95 38.2346 77.1656 34.585 77.1548 0.220
1 37.2526 77 0.810 77 0.190

Mug100_1 0.75 15.2259 50.2922 0.550 50.2913 0.090
0.85 14.2504 50.1544 0.590 50.1538 0.095
0.95 13.442 50.046 0.575 50.0458 0.090
1 13.0866 50 0.280 50 0.085

Huck∗ 0.75 28.8358 38.3131 0.605 38.3104 0.060
0.85 27.1174 37.8462 0.740 37.6622 0.055
0.95 25.6781 37.3961 1.475 37.1905 0.055
1 25.0408 37 0.160 37 0.050

Jean∗ 0.75 26.5304 40.8676 0.800 40.7582 0.070
0.85 24.9519 40.516 0.810 40.3911 0.065
0.95 23.6298 40.1554 1.325 40.1143 0.070
1 23.0444 40 0.180 40 0.055
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