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1. Introduction

We consider initial-boundary value problems for singularly perturbed partly
dissipative reaction—diffusion systems of the type

. du  3%u ( [ e)
. L~ 9 = u,v,x,I, )
at  9x2 &
ov
E:f(u,v,x,t,e), (1.2)

whereu, v, x € R, ¢ is a small positive parameter. Partly dissipative systems
can be used to model reaction—diffusion processes in different fields (chemical
kinetics, biology, astrophysics) when the effect of diffusion of one of the species
is negligible (see, e.g., [4-7,10-12]).

If we assume that the so-calldégenerate equaticio (1.1)

g(u,v,x,1,00=0 (1.2)

has an isolated simple root with respectitpthen, according to the standard
theory of singularly perturbed systems (see, e.g., [13,14]), this root essentially
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determines the behavior of thesolution component (fast component) of the
initial-boundary value problem under consideration provided some additional
conditions are satisfied.

In this paper we assume that the degenerate equation has two roots with
respect tou which intersect in some smooth surface. Such situation is quite
natural in applications, especially when we look for a positive solution under the
assumptions that = 0 is a trivial solution (see [2,9]).

As a motivating example we consider the following initial-boundary value
problem:

o Ou 92u

e\ T3 =g, v,x,t,e)=—uu—v+x+t+2)+el(x,t),
Jt  0x

2 o Fvx ) =u+2

= u,v,x,1,&) =u )

ot

(x.neQ:={(x,nNeR* 0<x <1, 0<1<T}, T>2
d d

—M(O,t,s):—u(l,t,s):O forO<r<T,

ax ax

u(x,O,e):uO(x)>O, v(x,O,e):vO(x)El forO<x <1, (1.3)

wherel : 0 — R is smooth and positive;® is a smooth function on & x < 1.
Here,u can be considered as the concentration of some reacting speci3)(
while v is some auxiliary variable (sometimes the difference of two species)
which can be positive and negative, the term — v+ x + + 2) /2 characterizes
the reaction rate (very fast reactiod)x, )/ represents the input rate of the
species:.

The degenerate equation to (1.3)

—uu—v+x+t+2)=0
has two roots

u=¢1(v,x,t)=0 and u=gp2(v,x,t)=v—x—t—2 (1.4)
intersecting in the smooth surface

v=sx,t)=x+t+2. (1.5)

Thus, the standard theory of singularly perturbed systems cannot be applied near
this surface.
Any rootu = ¢(v, x, t) of the degenerate equation (1.2) represents a family of
equilibria of the so-calledssociated equatioio (1.1)
du

E :g(u7v7x7t50)5

wherev, x, t have to be considered as parameters. Hence, the assumption of the
existence of two intersecting roots of the degenerate equation implies an exchange
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of stabilities for the corresponding families of equilibria of the associated
equation.

This paper is concerned with the existence and asymptotic behavioofn
the solution of some initial-boundary value problem to system (1.1) in case
of exchange of stabilities. The proof of our results is based on the method of
asymptotic lower and upper solutions. To construct these solutions we exploit
the structure of the solution set of the degenerate equation and their stability
properties as equilibria of the associated equation.

The goal of this paper is to derive conditions which imply the phenomenon
of immediate exchange of stabilities, that is, the behavior of the fast solution
component g-component) is determined at any time by the stable root of the
degenerate equation (1.2). This excludes the occurrence of interior layers (spikes)
as well as a delayed exchange of stabilities whera:tiemponent follows for
someO (1)-time interval the unstable root of the degenerate equation. The results
of this paper are extensions of corresponding results in [2,3,8,9] for ordinary and
parabolic differential equations.

The paper is organized as follows: In Section 2 we formulate our assumptions
and construct the so-callelbmposed stable solutiamhich plays a crucial role
for the formulation as well as for the proof of our main result. At the same time
we consider a simple motivating example where all assumptions can be checked
analytically and where the composed stable solution can be constructed explicitly.
The definition of ordered lower and upper solutions will also be given in Section 2.
Section 3 contains the detailed proof of our result.

2. Formulation of the problem. Assumptions

We study the singularly perturbed nonlinear initial-boundary value problem

o Ou 92u
&\ 57 T ez =g(u,v,x,t,¢),

B _ [e)
— = u,v,x,I1,¢€),
ot

(x,nNeQ:={(x,NeR*0<x<1 0<r<T},
ee€ly={eecR: O0<e<eo K1}, (2.1)

0 d

—u(O,t,s):—M(l,t,s):O forO<r<T,

0x ax

u(x,O,e):uo(x), v(x,O,e):vo(x) for0<x<1 (2.2)

under the following assumptions:

(Ao) f,g€C%D,R),whereD :=R x R x Q x I, u%,v° € C%([0, 1], R).



220 V.F. Butuzov et al. / J. Math. Anal. Appl. 273 (2002) 217-235

If we sete =0 in (2.1), then we get theegenerate system

O0=g(u,v,x,1,0),
dv

E:f(uvvvxvl"O)' (23)
Concerning the solution set of tlikegenerate equation

g(u,v,x,t,O):O (24)
we assume

(A1) Equation (2.4) has exactly two roots= ¢1(v,x,t) andu = ¢2(v, x, 1)
defined for(v, x,t) € I, x Q, wherel, is some open bounded interval,
@1 andgs are twice continuously differentiable.

From assumption (f) we get that the relations
g(pi(v,x,1),v,x,1,0)=0,
3 .
gu(pi(v, x,0),v,x,1, O)%(v,x, N+ gu(i(v,x,1),v,x,1,00=0 (2.5)

hold for (v, x, 1) € I, x Q, and fori =1, 2.

The following assumption expresses the property that the surfaces
o1(v, x, 1) andu = @2(v, x, t) intersect in a smooth surface whose projection into
the (v, x, t)-space can be described by s(x, 1):

(A7) There exists a smooth functien Q — I, such that

o1(v, x, 1) =@2(v,x,t) forv=s(x,1),
p1(v, x,1) > @2(v,x, 1) forv<s(x,t),
o1(v, x,t) < @2(v,x,1) forv>s(x,r).

We note that the case of intersecting roots of the degenerate equation does not fit
into the standard theory of singularly perturbed systems (see, e.g., [13,14]).
The differential equation
du

T =g(u,v,x,t,0), (2.6)

wherev, x, t are considered as parameters, is said to be the associated equation
to (2.1). It follows from hypothesis (8) thatu = ¢; (v, x, 1), i = 1, 2, are families

of equilibria of (2.6). The familieg; are stable (unstable) g, (¢;, v, x, t,0) is
negative (positive). For definiteness we assume the following stability behavior:

(A3) For(x,t) € Q it holds
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8u ((pl(v, X,1),v,x,t, O) <0, gu ((pz(v,x, 1),v,x,t, 0) >0
forv <s(x, 1),

gu((pl(U,X, t)a U,.x, tv O) > 07 gu (‘PZ(U,)C, t)v vav t5 0) < O
forv>s(x,1).

From assumption (4§ we get thatg, (u, v, x, t,0) changes its sign when
the point (v, x, ) crosses the surface = s(x,t) whereu = ¢1(v, x,¢) and
u = @2(v, x, t) intersect. This sign change gf implies an exchange of stabilities
of the families of equilibria of the associated Eq. (2.6). Moreover, we have for
(x,1)€Q

8u ((pl(s(x, 1), x, t), s(x,1),x,t, 0)
=gu (goz(s(x, 1), x, t), s(x,1),x,t, O) =0.

Assumptions (A)—(Az) express our key hypothesis: the roots of the degenerate
equation (2.4) intersect transversally which implies an exchange of stabilities of
the families of equilibria of the associated equation (2.6).

Now we consider our example (1.3) and verify the hypothesgs-(Az3). Itis
obvious that the assumptionsdand (A) are fulfilled. From (1.4) and (1.5) it
follows that the inequalitie®1 (v, x, t) > ¢2(v, x, t) ande1 (v, x, t) < @2(v, x, t)
hold forv < s(x, ) andv > s(x, t), respectively, that is, assumptionf)As valid.

From (1.3) and (1.4) we get

8u ((pl(v, x,t),x,t, O) =v—x—t—-2=—g, ((pz(v,x, 1), x,t, 0).

Obviously, we have fotx, 1) € O

8u ((pl(v, X,1),x,t, O) <0, gu (gaz(v,x, 1),x,t, 0) >0
forv <s(x, 1),

8u ((pl(v, x,t),x,t, O) >0, 8u (gaz(v,x, 1),x,t, 0) <0
forv>s(x,1),

i.e., assumption (4) holds.

In the sequel we construct the so-calledmposed stable solutioto the
degenerate system (2.3) which will be used to construct lower and upper solutions
to the initial-boundary value problem (2.1)—(2.2).

The functiong (v, x, t) defined by means of the stable roetgv, x, r) and
p2(v, x,1),

p1(v,x,t) forv<s(x,t),

@2(v,x,1) forv=s(x,1), (2.7)

go(v,x,t):{

is called thestable root of Eq(2.4)in I, x Q.
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If we replaceu in the second equation of the degenerate system (2.3) by
(v, x, t) we get thaeduced equatioto system (2.1)

d
8—1;=f(<p(v,x,t),v,x,t,0), (2.8)
wherex has to be considered as a parameter.

In what follows we consider for Eq. (2.8) the initial value problem

v(x,0) = vo(x), (2.9
where we assume®(x) # s(x, 0) for 0 < x < 1. First we consider the case

W2(x) < s(x,0) for0O<x <1 (2.10)
Then, according to (2.7), the reduced initial value problem (2.8), (2.9) reads

0

3—1; = f(er(v.x.0),v.x,£,0),  v(x,0)=0"(x). (2.11)

Concerning this initial value problem we suppose

(A4) There exists a function € C2([0, 1], (0, T)) such that for € [0, 1] the ini-
tial value problem (2.11), wheré (x) satisfies (2.10), has a unique solution
v =uv1(x,t) defined on X r < 7.(x) with values inl, and satisfying

vi(x, 1) <s(x,t) forO<t <t.(x),
vi(x, ) =s(x,r) fort=r.(x). (2.12)

Assumption (A) says that the surfaces= v1(x, ) andv = s(x, ¢) intersect in
a curve whose projection int@ can be described by= 7.(x). We denote this
curve byC which decomposeg into the subsetg); and Q> whereQ1 consists
of all points(x, t) € Q satisfyingr < 7.(x), Q2 = 0\ Q1 (see Fig. 1).

Next, for 0< x < 1, we consider the initial value problem

?}—: = f((pz(v,x, 1), v, X, 1, 0) fort.(x) <t <T,
v(x,tc(x)) =s(x,tc(x)). (2.13)

Concerning (2.13) we assume

(As) For x € [0, 1], the initial value problem (2.13) has a unique solutioa:
v2(x, 1) defined orr.(x) <t < T with values in/, such that

vo(x,t) >s(x,t) for(x,t) € Qo (2.14)
Now we define the functio(x, ) by

1) = {vl(x, 1) for(x,1) € Q1. (2.15)
’ va(x,t) for(x,t) e O0>. '
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A

T

-
0 1 x

Fig. 1. Decomposition 00 into 01 and Q2 by the curveC.

Remark 2.1. The case®(x) > s(x, 0) can be treated analogously. In that case
we have to use the functiopy(v, x,t) to constructvi(x, ) and the function
¢1(v, x, 1) to constructva(x, ). The case wher®(x) = s(x, 0) for somex re-
quires a special treatment.

Furthermore, we introduce the functiéqx, ¢) by

ﬁ(x,t):w(ﬁ(x,t),x,t)
_ {col(ﬁl(x, D.x.0)=y1(x. 1) for (x,1) € O, (2.16)
@2(02(x,1),x,1) =Y2(x,1) for (x,r) € Qa.

The pair of functionsu(x, 1), v(x, 1)) defined by (2.16), (2.15) is referred to as
thecomposed stable solutiarf the degenerate system (2.3).
From assumption (4 and from the identities

vl(x, tc(x)) = s(x, tc(x)) = vz(x, tc(x)) for0<x<1

we obtain

Vi(x,t) =v2(x,t) onC. (2.17)

Let usillustrate the composed stable solution by means of example (1.3). Note
that 1= vo(x) <s(x,0=x+2forx e[0,1] and f(¢1(v, x,t),v,x,t,0) = 2.
Therefore, the initial value problem fog (x, t) reads

d
%:2’ O<Z<T, Ul(x,o):]--

It has the solution
vi(x, 1) =2+ 1.
The equation
vi(x, 1) =s(x,t), e, Z+1l=x+r+2
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defines the curvé:
t=t.(x):=x+1
Itis obvious that
vi(x, 1) <s(x,t) forO<t <t.(x),

i.e., assumption (4) is fulfilled.
From f(g2(v, x,t),v,x,t,0) =v —x —t andvi(x, f.(x)) = 2x + 3 it follows
that the initial value problem far(x, ¢) reads

d
%:vz—x—t, v2(x, 10 (x)) = 2x + 3.
Its solution is

v, )=expt—x—1+x+t+1
It is easy to check that
va(x,1) >s(x,t) fort.(x) <r<T(ie. inQ7).
Therefore, assumption ghholds and the composed stable solution has the form

- _ ) vix,0)=0 in 01,

U, = {wz(x,t)sexp(t—x—l)—l in 0o, (2.18)
N _Jukx,n=2t+1 in 01,
v(x’t)_{vz(x,t)zexr(t—x—l)—f-x-i-t-i-l in Q2. (2.19)

Let us return to the composed stable solution defined in (2.15), (2.16). The
function v(x, ¢) is obviously continuously differentiable with respectrtoBut
u(x,t) is in general not smooth on the cur@esince we get from (2.12), (2.14)
and (2.15)

du _ dve
at at

For the sequel it is convenient to introduce the following notation: the symbol
overg and f or some derivative of and f denotes that we have to consider the
argumentsu, v, &) at (i (x, t), v(x, 1), 0).

It follows from assumption (4) that

onC.

g(x, 1) ::g(ﬁ(x,t),ﬁ(x,t),x,t,O)EO in 0, (2.20)
by assumption (4) we have

gu(x,t) <0 inQ\C, (2.21)

gu(x,1)=0 onC. (2.22)

In what follows we prove that under the hypotheseg)#As) and under some
additional assumptions (see {A(Ag) below) problem (2.1), (2.2) has a unique
solution(u(x, ¢, ), v(x, t, ¢)) satisfying
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lim u(x,t,e)=a(x,r) inQ\{r=0, 0< x <1},

e—0

Iimov(x, t,e)=0(x,t) inQ. (2.23)
£—>

Concerning the initial condition®(x) for u(x,t,&) we assume as in the
standard theory:

(Ag) Forx € [0, 1], u%(x) lies in the basin of attraction of the equilibrium point
01(%(x), x, 0) of the associated equation (2.6) fioe= v2(x), t = 0.

Assumption (A) implies that for 0< x < 1 the initial value problem

Z_Z =g(u,v°(x),0,0), u(x,0)=ux)

has a unique solutiom = u(x, 7) defined forr > 0, and such that
lim u(x,7)= gol(vo(x), X, O).
T—>00
Finally, we assume

(A7) Guu(x, 1) :=guu(@(x, 1), 0(x,1),x,1,0) <0onC.
(Ag) go(x,1)>00nC.

Concerning assumption ghwe would like to mention that the sign @£ (x, 7)
onC plays an important role (see [1-3]).
Let us return to example (1.3) and verify the hypotheses)<@0\s). The
associated equation (2.6) to (1.3) reads in aase®(x) =1,7 =0
du

—=—uu+x+1, >0
dt

It is easy to see that for € x < 1 the solutioniz(x, 7) of this equation with the
initial condition
i(x,00=u(x)>0

exists forr > 0 and tends tap1(v°(x), x,0) = 0 ast — co. Hence, assump-
tion (Ag) is fulfilled. B
Assumptions (A) and (Ag) are obviously satisfied since we haveort) € Q

gu=-2<0, ge=1(x,1)>0.

Our approach to prove the asymptotic behavior of the solution of problem (2.1)
is based on the concept of ordered lower and upper solutions. Before we recall its
definition (see, e.g., [10]), we introduce the following notation. Let the operators
L, andM, be defined by



226 V.F. Butuzov et al. / J. Math. Anal. Appl. 273 (2002) 217-235

9 92
(Lyw)(x,t,8):= 82(3_1;) _ Wuz)) —g(w,v,x,t,8), (2.24)
Jw
Myw)(x,t,e):=— — f(u,w, x,t,8). (2.25)

ot

Definition 2.1. Let the vector-functiona(x, 7, ¢) := (a"(x, 1, ¢), a"(x, ¢, &)) and
Bx,t,e):=(B"(x,t,¢), B¥(x,t, &) be defined for(x,z,e) € Q x I, €1 < €0
and satisfy the smoothness conditiatis g € C2-2(0 x I.,)NCr%2(Q x I.,),

X,t,& X,t,&
al, BV € CS;i’f(Q x Igy) N CS;?’S(@ x I,). Thena(x,t,¢)) andB(x, 1, ¢)) are
called ordered lower and upper solutions to the initial-boundary value problem
(2.1), (2.2) inQ for ¢ € I, , respectively, if they satisfy for € I, the conditions

a'(x,t,e) < B (x,t,¢), a’(x,t,e) < B(x,t,¢)
for (x,1) € O, (2.26)
(Lya")(x,1,8) <O (LyB")(x,t,8)
for (x,H) € 0, " <v < B, (2.27)
(Mya')(x,t,6) <O (M, BY)(x,1,¢€)
for (x,1) € O, o" <u < B, (2.28)
00 0.r.6)20> 006, <0<
0x 0x 0x 0x
forO<r<T, (2.29)
a"(x,0,8) <ul(x) <B“(x,0,8),  a’(x,0,6) <vO(x) < BYx,0,¢)
forO<x <1 (2.30)

This definition can be obviously adapted to any subdomai@ oft is known
(see, e.g., [10]) that the existence of ordered lower and upper solutions to (2.1),
(2.2) implies the existence of a unique solutiorn(x, ¢, €), v(x, t, €)) of (2.1),
(2.2) satisfying forx, ,¢) € Q x I,

o' (x,t,8) <u(x,t,e) < B"(x,t,¢),
a'(x,1,8) <v(x,1,8) < BU(x,t,¢€).

The goal of the following investigations is to characterize the asymptotic be-
havior of the solution of (2.1), (2.2), in particular, we prove the limit behavior
(2.23) by constructing lower and upper solutions to the initial-boundary value
problem (2.1), (2.2).

3. Existence and asymptotic behavior of the solution

In this section we will prove that the initial-boundary value problem (2.1),
(2.2) has a unigue solution. Taking into account an initial layer correction we can
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tA

T

~ -

0 a\ Qc

Fig. 2. Decomposition 0D.

show that for smalk the solution of (2.1), (2.2) is close to the composed stable
solution(ii(x, 1), v(x, t)).

In order to be able to formulate our main result we decompose the daghain
and introduce a function which represents an approximation of the initial layer
correction.

First we decompos@. Let tmin be the minimum of the function(x) in [0,1],
let v be any small positive number such that= fmin — v is positive. LetQ. be
the domain defined b@. := {(x, 1) € R% 0<x < 1,11 <t < T} (see Fig. 2).

Next we introduce an initial layer correction. According to [14] we define the
zeroth-order initial layer functioflp(x, ) (t = t/¢2) as the solution of the initial
value problem where € [0, 1] has to be considered as a parameter

% = g(l//l(x, 0) + Mo, v°(x), x, 0, O), T >0,
Mo(x, 0) = u®(x) — Y1(x, 0). (3.1)

By (2.16) we havey(x, 0) = ¢1(1°(x), x, 0). Thus, from assumption
and from (2.21) it follows that the initial value problem (3.1) has a solution
which satisfies the estimatélp(x, )| < cexp(—«t), T > 0, for some positive
constantg andx.

Concerning our example (1.3) the initial value problem (3.1) reads

dIly

— =—Ilo(ITp+x+1), >0,
dt

Mo(x,0) = u®(x).
Its solution can be found in the explicit form
Mo(x, ) = u®) (x + D[u() (L — exp(—(x + D)) +x +1]
x exp(—(x + 7).
Now we formulate our main result.
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Theorem 3.1. Assume hypothesé8g)—(Ag) to be valid. Then, for sufficiently
small ¢, the initial-boundary value problerf2.1), (2.2)has a unique solution
(u(x,t, &), v(x,t,¢)) satisfying

_Jalx, )+ Ho(x,7)+ O(e) for (x,r) € Q\Q,

nont e = {ﬁ<x,r>+ 0(/e) for (x,1) € Qc. 32
] o(x, )+ O(e) for (x, 1) € O\Q.,

vix 1, 8) = {ﬁ(x,t)+0(ﬁ) for (x,1) € Q.. (3-3)

Coroallary 3.1. From (3.2), (3.3)it is obvious that the relation&.23)hold.

Proof of Theorem 3.1. The proof consists of two steps. In the first step we
consider the initial-boundary value problem (2.1), (2.2) in the subdop&a®. .

From our assumptions it follows that the exchange of stabilities takes plagze in
Therefore, we can apply the standard theory [14] to solve the initial-boundary
value problem inQ\ Q.. We get the following result.

Lemma 3.1. Assume hypothesésg)—(Ag) to be valid. Then, for sufficiently small
¢ (¢ € I; C L), the initial boundary value probler(2.1), (2.2)has a unique
solution(u(x, ¢, ), v(x, t, €)) in Q\ Q. satisfying

u(x,t,e)=u(x,t)+ o(x, t) + O(¢),

v(x,t, &) =0(x,1)+ O(e). (3.4)

Letul(x, &) :=u(x, 11, &), vi(x, ) ;= v(x, 11, €). Now we consider the initial—
boundary value problem for (2.1) i@, with the initial conditions

u(x,n,8)= ul(x, g), v(x,r1,8)= vl(x, g) forO<x <1 (3.5)
and the boundary conditions

d d

Moo= 1ne=0 forn<t<T (3.6)

dx ax

for sufficiently smalle. Our approach to study this problem is based on the method
of ordered lower and upper solutions. We construct these solutions for (2.1), (3.5),
(3.6) by means of the composed stable solutini, 1), 9(x, ¢)) defined in (2.15),
(2.16).

As we noticed above, in generiaix, ¢) is not smooth on the cun@. In order
to be able to usé(x, r) for the construction of lower and upper solutions we have
to smoothii(x, ) near the curv€. To this end we extend smoothly the functions
V1(z, x) andyra(z, x) into the regiong)» and Q1, respectively. Using the function

)= 1 Eex 2d
w(§ _«/_E/ P(—s)ds,
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where
5:: (t_tc(x))/ga5 ae(l/25 1)5
we introduce the functiof by

u(x, 1, ) :=y1(x, Nw(=§) + Y2(x, D (). (3.7)

Let Q, be defined byD, := {(x,1) € Q: |t —t.(x)| < v, 0< x < 1}, wherev
is any sufficiently small positive number such tigat has no common point with
t =T (see Fig. 2).

It is easy to show thal is smooth inQ. and satisfies

a(x,t,e)=1u(x,t) +n(x,t,e), (3.8)
where
_JoE for (x,t) € Q,,
166002 G-y fo o)< 810 59

(see [1]).
Now we construct lower and upper solutions for the initial-boundary value
problem (2.1), (3.5), (3.6) i®. by using the smooth functiai as follows:
B (x,t,8):=1(x,t,€)+eyh(x, 1) +&%(x, ),
a'(x,t,8):=ii(x,t,8) —Jeoh(x,t) —%z(x, &),
BU(x,t,8) = D(x,1) +Veoh(x,1),

a’(x,1,8):=0(x,1) — Ve h(x, 1), (3.10)
where

h(x, 1) :=exp(A(t —1.(x))),

z(x, &) := exp(—kx /&) + exp(—k(1 — x) /&) (3.11)

are positive functions inQ. x I, v,0, ), k are positive numbers. We will
determine these numbers in such a way thaind 8 will be ordered lower and
upper solutions, i.e., they will satisfy all conditions of Definition 2.10p.
It is obvious that for any choice of, o, A andk we have
a“(x,t,e) < B (x,1,¢), a'(x,t,e) < BY(x,t,¢)
for (x,t,6) € Q¢ x Iy;

hence, the relations (2.26) are fulfilled.
Taking into account the exponential decayl@f(x, t) we get from (3.10),
(3.4) for sufficiently smalk
o (x, 11, 8) Sulx, i1, &) =ut(x, &) < B(x, 1, &),
o’ (x,11,8) <v(x,11,8) =vl(x, &) <B'(x, 11, ).
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Consequently, the inequalities (2.30) for the initial data hold.

Now we check tha&" (x, 7, ) andB“(x, t, ) satisfy the inequalities (2.27) in
0, for sufficiently smalls.

From (2.17) we obtain

Y2(x, 1) = Y1(x, 1) = O (|t — 1:(x) ).

Using this relation it can be shown (see [1,3]) that

o 0% 0(?~%) for (x,1) e Q
2 £ X S
el ’ v 3.12
¢ <8t 8x2> { 0(s?) for (x,1) € O\ Q,. (3:12)
From (3.11) we get
dh  9%h
2.1/2 5/2
2.1 (E_ﬁ):0(8 /2 for (x,1) € Q.
dz 92
Thus, because of/2 < a < 1, we obtain from (3.10)—(3.13)
e 2B
Q2 0B BTN 0> %) =o0(e) for(x,1) € Q. (3.14)
at dx2
Jat 32 u
2< ;‘t _ WO[Z) =02 % =o0(s) for(x,t) e 0,. (3.15)

To treat the expressiag(B“(x,t,¢€),v, x,t, ¢) in L,B"* we use the relations
a(x,t,e)=u(x,t)+ 0" for(x,1) € 0,
which follows from (3.8) and (3.9), and
e(x,e)=0(%) for(x,1) e Q,

due to (3.11). Moreover, we note that the set ofvadlatisfyinga (x, 1, ) < v <
BY(x,t, &) can be represented in the form

v="0(x,1) + Veolh(x, )0, 0] <1.

Thus, we have

g(B (x,t,8),v,x,1,¢)
=g(i(x, 1)+ Veyh(x, 1)+ 0,0+ Veolh(x, 10, x, 1, €)
=20+ Ve [2u(x.0)(y + 0 YD) + 2y (x. )0 %0]h(x. 1)

1., . A
+ 58 (6, 072 + 2 (6, 0y 020 + Gun (x, N0 022 (x, 1)

+ 88 (x, 1) + 0(e). (3.16)
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Our goal is to provez(8*(x,t,&),v,x,t, &) = —ce + o(e) for (x,t) € 0, and
some positive constant
From (2.5) we get

Go(x, 1) = =8y (x, )Py (x, 1), (3.17)
where

- _Joenax, 1), x,1) for(x,t) e O,
Pulx, 1) = {gozv(vz(x, 1), x,t) for(x,t) e 0o.

Sinceg, (x, 1) is uniformly bounded inQ, 18| < 1, we have by (3.17) and (2.21),
(2.22) for any fixedr» and for sufficiently large/

8, Dy + 0 Y3 + gu(x, 0%
=&u(x, D[y + 0" %) = §y(x,n0%0] 0. (3.18)

According to assumption (A there is a positive constamat such that for
sufficiently smallv

guu(xvt)g_cv <0 in Q. (319)
Hence, for sufficiently large, we have forx, r) € Q,
Y [8uu (6, DY + 2800 (x, D070 + 1 00 (v, N5 %67] < =2y, (3.20)

wherec is some positive constant.
Now we seth = 1/v. Then, by (3.11), it holds

e t<h(x,t)<e for(x,1)e0,. (3.21)

Under our smoothness assumption there is a positive conrgtanth that

|8e(x, )| <cg for(x,1) € Q. (3.22)
By (2.20), (3.17)—(3.22) we get from (3.16)
g(B"(x,t,8),v,x,1,8) < —(yée 2 —cg)e + o(e). (3.23)

Taking into account (3.14) and (3.23) we have for sufficiently smalhde and
for sufficiently largey

8,3” B 82/314

ot 9x2 ) —g(B"(x,t,8),v,x,1,¢)
> (yce ? —cg)e +o(e) >0
for (x,t) € Oy, a’(x,t,8) <v < BY(x,t,6),

i.e., the inequality (2.27) holds f@* in Q,,.
Now we verify the inequality (2.27) fa#* in Q,. Using (3.10), (3.15), and a
representation fog(«* (x, t, €), v, x, t, &) Ssimilar to (3.16) we get

(LyB")(x,1,€) sez<
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ot 92t

ot axz)‘g(“u(xahs),v,x,t,g)

=Vegu(x. 0o+ 02 + 4y (x. )00 |h(x. 1)

Lyo"(x,t,6) = 82<

1 2 ra .
- 50 & 8uu(x, 1) — 28y (x, )00

+ 8uv(x, %02 |h?(x, 1)
—&8:(x, 1) +o0(e). (3.24)
There is a sufficiently smattg such that for O< o < o9
1+o0¢,(x,1)0 >1/2 for(x,t) € Q,, 16| <1.

Thus, because af— 1/2 > 0 and taking into account (2.21), (2.22) and (3.11),
we have for sufficiently small

gu(x, )0 + 02 + Gy (x, 000 ]h(x, 1) <O. (3.25)

By assumption (8) there is a positive constat, such that for sufficiently
smallv

—8e(x,1) < —kg <0 for(x,1) € Qy.

Now we chooseg so small that for G< o < o9

1,5, . .
508 (x.1) = 28un (x. 00 + 2o (x. N0 202 [h?(x. 1) < kg /2
for (x,1) € Q,. (3.26)
Therefore, for O< o < oo, and for sufficiently smalk we get from (3.24),
(3.25), and (3.26)
(Lya)(x,t,6) <0 for(x,1) € Q,
o’(x,t,8) <v< BU(x, t,8),
i.e., inequality (2.27) is satisfied fo# in Q,,.
Now we will prove thate and g* satisfy the inequalities (2.27), (2.28) in
0:\Qy. From (3.16) we get
g(B (x,t,8),v,x,1,¢)
= Ve [2ux, Dy + 8o (x, N0 20]h(x, 1) + (Ve ). (3.27)
It follows from (2.21) that there is a positive constantuch that for sufficiently
largey
Su(x, 1)y + go(x, 1020 < —c1 for (x,1) € 0.\ Q.. (3.28)

Therefore, by (2.24), (3.14), (3.27), and (3.28) we havefaufficiently large
ande sufficiently small
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(LyB)(x,t,6) =20 for(x,t) € Q:\Qy, a’(x,t,8) <v<BY(x,t,8).

Analogously, we get from (3.24) fer ande sufficiently small

(Loa")(x, 1, 8) = V/egu(x,1)(0 + Pu(x, D 0)h(x, 1) + 0(v/) <O
for (x,1) € Q\Qy, a’(x,t,e) <v<BY(x,t,8).

Thus, the inequalities (2.27) fa*, 8* hold in 0.\ Q..
Now we verify the inequality (2.28) i®.. Foru we use the representation

u=1u(x,t)+/sch(x,t)+0(EY, —o<k<y.
By (2.25) and (3.10) we have

35) — f(u, B (x,1,8),x,1,¢)

~ 2
=0 e
at v
- f(ﬁ(x, 1) + Jexh(x, 1) + 0(%),
ﬁ—i—«/&r%(x,t),x,t,s). (3.29)

Using the representation

(Muﬂv)(-xa tv‘?) =

@G, t) +exh(x, 1)+ 0", b+ eo?h(x, 1), x,1,¢)
= f(ﬁa ﬁvxv ts O)ﬁ[fu(xv t)K + fv(xv I)O'Z]h(_x, t) +0(\/E)

and taking into account

v A _
E—f(u,v,x,t,O):O
we get from (3.29)
2
(Muﬂv)(xatv‘?):\/g[%_fu(-x5t)K_fv(xvt)gz}h(xvt)+0(\/g)'

(3.30)

To givens > 0 we choose so small such that

2
Fé—ﬂujw—ﬁuxw1an>q for (x,1) € Qc,
Vv
wherec; is some positive number. Thus, for sufficiently smahlve have

(Muﬂv)(x,t,8)>0
for (x,1) € Qc, a’(x,t,8) <u < B (x,t,¢).

Similarly we can verify the inequality (2.28) for*.



234 V.F. Butuzov et al. / J. Math. Anal. Appl. 273 (2002) 217-235

Finally, we verify the inequalities (2.29). If we differentigsg with respect
tox atx =0 andx = 1, we get from (3.10)

9" _da -
E(OJJ)— 5(0,1,8) k+0(Ve),
9" o

o A,t,¢e)= 8x(l,t,g)+k+ 0(Ve).

Using (3.7) it can be shown that there exists a positive consgastch that

oul _
‘—(x,t,e) <c3z for(x,1)e Q.
0x

Consequently, the inequalities (2.29) f&/f in Definition 2.1 are satisfied if we
choosek sufficiently large. The inequalities (2.29) faf* can be verified in a
similar way.

From our considerations above it follows that the functiais, 7, ¢), B(x,
t,e) fulfill all conditions in Definition 2.1, and we can conclude that for
sufficiently small ¢ there exists a unique solutiotu(x,t,¢),v(x,t,¢)) of
problem (2.1), (2.2) satisfying fap, 1) € O,

a'(x,t,e) <u(x,t,e) < B(x,t,8),
a’(x,1,8) <v(x,1,8) < BU(x, 1, 8).

From these inequalities and from (3.10) it follows that the representations (3.2)
and (3.3) foru(x, z, &) andv(x, t, &) in Q. are valid. This completes the proof of
Theorem 3.1. O

Remark 3.1. We have considered (2.1), (2.2) in the case wheandv are scalars.
Our approach can obviously be extended to the casetlsah scalar and is a
vector.
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