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1. INTRODUCTION 

In this introduction, we shall try to shed light on some 
basic ideas that lurk behind the title, and on the pur- 
pose of this study. 
We shall indicate the main conclusions, details of 
which will be given in a later chapter. 

1.1. Forecasting 

When speaking about forecasting, one has to make a 
distinction between naive and causal prediction. The 
latter is performed by using a model composed of one 
or more equations, every such equation relating a 
dependent variable to one or more explanatory vari- 
abhs. 
The former only takes time into account as an ex- 
planatory variable, be it explicitly or implicitly by 
relating the series to one or more of its lagged ver- 
sions. 
The assumption behind this is in fact stationarity. One 
presumes the dependent variable to behave in the 
future as it did in the past. 
Defining this reasoning more precisely, the dependent 
variable is in fact correlated with hidden variables, 
that are on their turn correlated with time. The as- 
sumption therefore is that the correlation of these 
unknown variables with time will stay the same. 
As a consequence, naive forecasts will nearly always 
miss turning-points. The advantage of naive models is, 
despite the fact that they don't give information con- 
cerning the underlying structure, that they are, rela- 
tively speaking, computationaUy much easier and 
faster to perform. 
One could however expect causal predictions to out- 
perform naive forecasts. 
We write deliberately "could expect", since building 
a causal model is a difficult and longwinded task, be- 
hind which lurk many risks. 
One has to overcome problems, such as the choice of 
the functional form, specification of the variables and 
often complicated estimation procedures. 
When this matter is carried to a successful conclusion, 
the even more difficult task of  prediction stands to 
be solved. Indeed, one is usually obliged to use fore- 
casts of exogenous variables, that are based on sub- 
jective grounds. It therefore could well be that the 
resulting causal forecasts are worse than the naive 
predictions. However, one should be careful not to 

overlook the advantages of structural analysis. Indeed, 
the knowledge of the impact of the decision or explan- 
atory variables on the dependent variables can some- 
times be of more importance than making a good or 
easy forecast. Naive models are not so much a substi- 
tute for causal models, but imply a totally different 
attitude towards analysing a time series. 

1.2. The purpose of this study-simulation 

As the title indicates, the purpose of this study is to 
compare forecasts made by exponential smoothing, the 
Box and Jenkins procedure and by spectral analysis. 
Bhansali [1] has made a similar study comparing spec- 
tral analysis with a technique called the "Regression- 
Akaike" method. His main conclusion is that the former 
performs quite well, especially when predicting more 
than one step ahead. 
There are, in our opinion, however two drawbacks to 
his paper. First of all, he simulates samples of size 
1.000. Theoretically, in order to prove asymptotic 
properties this is necessary, but conclusions concerning 
prediction, drawn out of such a study are of little im- 
portance to economists, since they will never be con- 
fronted with time series of  that length. 
It is then very much the question whether the spectral 
method will do equally well, using short series, since it 
is a well known fact that spectral analysis needs quite 
large samples. 
Secondly, the underlying generating processes are of 
simple form. Indeed, the processes used are of the auto- 
regressive (AR) and moving average (MA) type. There- 
fore he can make use of a regression technique called 
the "Regression-Akaike Method", which is computa- 
tionally straightforward. If however, as we did, a slight 
complication is introduced, such as autocorrelation 
of the disturbance term in an AR-scheme, a mixture 
of  both previously mentioned types results. These so 
called mixed autoregressive moving average (ARMA) 
processes however, according to Box and Jenkins [3], 
are very often encountered in reality, and do not lend 
themselves to such a simple estimation procedure. 
The Box and Jenkins procedure, which is applicable to 
this kind of models, does in fact involve subjective 
reasoning at some stages. 
This already explains our intention to use the Box and 
Jenkins and the spectral method. 
Both methods are statistically refined, but involve a 
great deal of computation. It could therefore be argued 
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whether the game is worth the candle. That is why we 
have planned to compare these two procedures with 
exponential smoothing, which is, we believe the most 
simple and commonly  used method for forecasting. 
I f  indeed it should turn out  to be only slightly worse, 
then one might question those more complicated 
methods. 
A word has to be said about  the method used for 
comparing these procedures, namely simulation. 
Before resorting to simulation, one has to be certain 
that the problem cannot be solved analytically, since 
the former is expensive and involves a great deal o f  
work. 
It can be shown [3, p. 107] that the constant model 
underlying the first order exponential smoothing, is 
equivalent to an integrated moving average of  first 
order [IMA (1,1)], if the disturbance terms are uncor- 
related. Therefore exponential  smoothing will do 
worse or equally well as the Box and Jenkins proce- 
dure, according to whether  the generating process is 
or is not  an IMA (1,1). 
In the case under study however, the disturbance 
terms are correlated. This being the case, it is impos- 
sible to draw conclusions from analytical arguments. 
As for the Box and Jenkins procedure, compared to 
spectral analysis, it can be shown [1,2] that the 
asymptotic  mean squared error o f  the former is, in 
general, smaller than the asymptotic  mean squared 
error of  the latter, if  the coefficients of  the ARMA 
process are exactly known. In practice however, 
these are rarely known, and are generally estimated 
from the data. 
The above reasoning implies that  for the general case 
no analytical comparison is possible, such that one is 
obliged to resort to simulation. 

1.3. Main conclusions 

Before going over to the study into more detail, we 
would like to state the main conclusions. 
Although we were quite critical with regard to Bhan- 
sali's [1] results, in the particular ARMA (1,1) model 
we tested, having a small sample size and a more com- 
plicated generating process, they seem to remain valid. 
Although we cannot generalize to other models than 
the ones tested, in the light of  Bhansali's [1] study, we 
are inclined to presume that the results hold for other 
simple processes. 
However, only further research can confLrm this as- 
sumption. 
Indeed, we found one of  the two tested spectral 
methods to be the best method to put forward. It was 
superior or at least equivalent to the other methods. 
Only for larger forecasting periods (greater than four), 
proved the Box and Jenkins procedure to be superior. 
Exponential  smoothing is clearly inferior to the other 
methods, since for all tested forecasting periods at 
least one method  proves to be bet ter  or at least equiva- 
lent. 

2. THE EXPERIMENT AND THE FORECASTING 
RESULTS 

2.1. Preliminary remarks 

a. Since there is contradiction in the literature concern- 
ing certain definitions, in order to avoid all misunder- 
standing, we shall define some concepts as they are 
used in this study. 
Let (Yt, t . . . . .  -1,0,1 ... .  ) be a stochastic process with 
discrete time parameter. Assuming that  this process 
has been observed over the period T = {1,2 . . . . .  t ) ,  the 
following definitions can be set forward. 

Forecast error (FE) = x~t + r - Yt + r ; Yt + r being the 

point forecast for period t + r made at time t, Yt + r 
being the observed value of  the stochastic process. 

Expected squared error (ESE) = E(~ t + r - Yt + r )2 " 

.)2 Mean squared error (MSE) = _1_1 ~ (Yt + r,j - Yt + r,j  
n j = l  

The MSE is the simulated value for the ESE. 
We therefore simulate the process n times over a period 
(1, 2 . . . . .  t + r )  and take the average of  the values 
()'t + r - Yt + r) over the n realisations. 

b. (Covariance) stationary time series 
In what follows we shall consider a generating process 
which is (covariance) stationary. 
The stochastic process (xt,  t ~ T )  is called covariance 
stationary, if for m = 1, 2, E (x t ) exists and 

E (Xtl , xt2 , . . . ,  Xtm) = E (Xtl + r ' " "  xt m + r ) 

for all t I . . . . .  tm, r ~ T .  

One could argue whether stationarity of  the data is a 
reasonable assumption, since most economic time 
series are not stationary. 
However, as Box and Jenkins state [3, chapter 4], many, 
ff not most,  series are nonstationary but homogeneous, 
which means that they are non-stationary only in level 
and/or slope, but  that they can be transformed to sta- 
tionary series by simple differencing. 
Even non-stationarity of  the variance can sometimes 
be accounted for by taking a logarithmic transforma- 
tion. 
Anyway, leaving the question undecided, neither of  
the three methods applies to series that  cannot be 
transformed into stationary time series by one of the 
two previously mentioned methods. 
Therefore we can state that non-stationarity is not a 
relevant factor in the comparison between the different 
methods. This being the case, we have not  built in non- 
stationarity in the generating process. 

c. We will not go into the theoretical aspects of  the 
various forecasting techniques. The interested reader 
is referred to the bibliography at the end of this paper. 
The most relevant references are [11, [2], [3], [5], [10] 
and [29]. 
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2.2. The results 

2.2.1. THE EXPERIMENT 

We have applied the three techniques to data gener- 
ated by the following underlying process : 

x t - 0.5 x t _ l  = ut + 0.6 u t _ l  

We thus generated a realisation (x t, t = 1 . . . . .  80 } 
of  the time series {x t, t . . . . .  -1 ,0 ,1  .... }. 
In order to be able to draw statistical meaningful con- 
clusions, one has to have a sample containing several 
o f  such realLsations. 
We generated 50 replicates, each replicate being dif- 
ferent by using a different stream of  stochastic 
vatiates u t- 
From each replicate we used 75 observations to pre- 

dict x76 up to x80. 

Some characteristics 

1. The u t are uncorrelated normal stochastic variates 
with expected value equal to zero, and variance 
equal to one [4 ; 20, p. 90]. 

2. Since, because o f  stationarity, E(xt) = E(x t -1) and 

E (ut) = 0, E(xt) = 0. For every series we have put 
the starting value equal to its expected value 

x 0 =  0. 
3. The variance 

o 2 =  E[x t_  E(xt)]2 ' which after some computation 

gives ax 2 = 2.61. 

2.2.2. EXPONENTIAL  SMOOTHING 

We applied the constant model x t = a + v t to the data. 

2 2 E(xt  x t -1 )  
tr v = o x = 2.61 9 = d= - 0.73 

2 
O x 

It can be shown [27], assuming a ftrst order auto- 
regressive scheme for the disturbance term, that the 
expected squared error for a forecast r periods ahead 
is :  

E S E = E [ Y t ÷ r - Y t + r ]  2=°211+u a + 2 d ( 1 - a ) a  
2 - a  ( 2 - a ) ( 1 - d +  da) 

_ 2d r a .] (1) 
1 - d + d a  

d being the autocorrelation coefficient o f  the disturb- 
a n t e  te r lTlS .  

In the case o f  correlated disturbance terms, it is actual- 
ly possible to find a value o f  a that minimizes the ESE 
for given d and r. 
Using expression (1), with d = 0.73, we found optimal 
a 's  of  approximately 0.83, 0.55, 0.1, 0.1, and 0.1 
for respectively r = 1, 2, 3, 4 and 5. Substituting these 
a's in (1), we find 

ESE = 1.40 r = 1 2.84 r = 4 
2.32 r = 2 2.95 r = 5 
2.62 r = 3 

Since the u t are normally distributed, we assume ~t + r' 

the forecast for x t + r made at time t, to be normally 
distributed. 

2 
50 ( ~ t + r , j - x t +  r , j)  is X2-distributed Then 

j =1 ESE 

with 49 degrees o f  freedom. 

P L~ESE50 Xa-q--,2 49 < 5--O1 j 5 ~  (~t + r , j =  _ x t+  r,j)2 

2 

< ESE 2 
50 Xl-a---  ,49}  = 1 - a .  

2 

In other words, with a probability of  95 Z, in order for 
the model to be appropriate the MSE should fall with- 
in the regions : 

r = 1 0.89 < MSE < 1.98 
r = 2 1.48 < MSE < 3.29 
r = 3 1.70 < MSE < 3.76 
r = 4 1.81 < MSE < 3.99 
r = 5 1.88 < MSE < 4.18 

2.2.3. THE BOX A N D  JENKINS PROCEDURE 

It can be shown [3] that the ESE for a forecast r periods 
ahead is : 

2 02 ESE(r)= ( 1 +  c 2 + ... + Cr_l) u '  

which gives for the consecutive forecasting periods : 

ESE = 1 r = 1 
2.21 2 
2.51 3 
2.59 4 
2.61 5 

Again we can find the 95 Z confidence interval on the 
MSE : 

r = 1 0.64 < MSE < 1.42 
2 1.41 < MSE < 3.14 
3 1.61 < MSE < 3.56 
4 1.66 < MSE < 3.68 
5 1.67 < MSE < 3.71 

After running through the three stages of  the Box and 
Jenkins procedure, we freely computed the MSE, which 
can be found in table 1. 

2.2.4. SPECTRAL A N A L  YSIS 

It can be shown [1, 2] that the distribution o f  the fore- 
cast errors o f  the spectral prediction method is only 
known asymptotically. Therefore, working with a finite 
sample, we cannot set up confidence intervals for the 
MSE. 
Applying the forecasting formula's o f  Bhansali [1, 2], 
we obtained the MSE for both spectral methods (see 
table 1). 
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Given the mean squared errors for the consecutive 
forecasting periods o f  the three considered methods, 
we are now ready to make a comparison between 
them. 

2.3. Comparison of  the results 

2.3.1. INTRODUCTION 

We give the results for the applied methods. 

Table 1. MSE for the various forecasting techniques 

Smooth- Box and Spectral Spectral 
ing Jenkins 1 2 

r= 1 1.96 1.59 0.92 1.55 
r= 2 3.21 2.06 1.01 0.17 
r = 3  3.55 2.28 4.73 2.17 
r-- 4 3.25 2.82 2.49 0.32 
r= 5 3.24 2.82 2.34 4.23 

Clearly we could make a comparison between the 
results in the above table. 
Since the MSE's are random variables however, the 
question arises whether  the observed differences be- 
tween the methods are significant or due to pure 
chancer 
To answer this question, we shall have to apply certain 
statistical techniques. Some problems arise. 

1. For the unbiased forecasting methods, - exponen- 
ti/d smoothing and the Box and Jenkins procedure -, 
the mean squared error is equal to the estimated vari- 
ance of the forecast errors. 2 
This would lead us to believe the F-statistic nsl 

ns~ 
is appropriate for comparing these methods. 
However, since both methods apply a kind of  weighted 
average to past observations to derive the forecasts, it 
is very likely the MSE's will be correlated. 

2 
Therefore MSE1 _ X1 is a ratio of  two correlated 

MSE2 2 
×2 

x2-distributions, the distribution of  which is not 
known. As a consequence we have to look for another 
method of comparison. The Pitman-test [22; 15, pp. 
454463]  is appropriate for setting up confidence inter- 
vals for the distribution of  the ratio of  the variances 
of  two related normal  distributions. 

2. For comparing the spectral technique with other 
methods, another problem arises. Indeed, since the 
forecast errors using the spectral method are biased, 
the MSE is no longer an estimate of  the variance, but 
the variance plus the bias squared. Indeed : 

E (5¢t+ r - Xt+r  )2 = o 2 + [E(fCt+r) - Xt+r  ]2 

Since the MSE is an estimate of  E(~t  + r - Xt+r  )2, it 
is not an estimate o f  the variance. 

Therefore the Pitman-test cannot be applied. In this 
case we shall use the sign test [25]. 

2.3.2. COMPARISON 

In order not to burden the text with unnecessary com- 
parisons, we shall go to work in the following way. 
First we shall compare the Box and Jenkins procedure 
with exponential smoothing using the Pitman-test. I f  
the Box and Jenkins procedure proves to be, as sus- 
pected, superior or at least as good, we drop the smooth- 
ing technique for further competition. 
Secondly, we do the same with the two spectral meth- 
ods, using the sign test. Finally we compare the left- 
over techniques. 

2.3.2.1. Exponential smoothing versus Box and Jenkins 

The Pitman-test provides us with confidence limits on 

1= ° r  ,where 2 02 o i are the variances of  two correlated 

normal distributions. The confidence limits for 
2 2 

OSMOOTH / OB& J are given in table 2 for a = 5 ~,. 

2 2 
Table 2. Confidence limits for OSMOOTH/o B&J 

a = 5 7 .  LOWER LIMIT UPPER LIMIT 

r= 1 0.86 1.77 
r= 2 1.10 2.20 
r = 3  1.17 2.05 
r = 4  0.92 1.44 
r= 5 0.93 1.44 

As one can see, only for r = 2,3 is 02 /02  significantly 

different from 1. 

For these cases the Box and Jenkins procedure is supe- 
rior. But even for r = 4, 5 the lower limit is seen to be 
close to 1, implying that the Box and Jenkins method 
is almost better. 
I f  no general ranking can be made, one thing we can 
certainly state, is that the B&J procedure is superior 
or at least equivalent to smoothing. 
This justifies our dropping of  the exponential smooth- 
ing technique in the search of  the best forecasting 
method. 

2.3.2.2. Spectral method 1 versus spectral method 2 

As explained above, we can no longer apply the Pitman- 
test for this comparison. Instead we used the sign test 
[25]. 
This test compares two methods by counting the num- 
ber of  times one method was closer to the true value 
than the other. Under the hypothesis that the methods 
are equivalent, with 5 7. significance, and n = 50, the 
confidence limits for the number of  times that  method 
2 forecasts closer to the true value than method 1, lie 
within the region [18, 32]. 
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The actual comparison is given in table 3. 

Table 3. Number of  times spectral method 2 was 
closer than method 1. 
Comparison method 2 /method  I 

r = 1 14 worse 
r = 2 38 better 
r = 3 29 equivalent 
r = 4 28 equivalent 
r = 5 10 worse 

One must bear in mind that the sign test does not ac- 
count for the magnitude of  the difference between 
the two methods, only for the sign. 
Therefore we must kind of  subjectively consider the 
information contained in both tables 1 and 3. 

2.3.2.3. Spectral methods versus Box and Jenkins 

Here again we are obliged to resort to the sign test. 
The results are given in tables 4 and 5. 

Table 4. Number of  times spectral method I was 
closer than B &J. 
Comparison spectral 1/B & J 

r = 1 26 equivalent 
r = 2 34 better 
r = 3 16 worse 
r = 4 37 better 
r = 5 17 worse 

Table 5. Number of  times spectral method 2 was 
closer than B & J  
Comparison spectral 2 /B & J  

r-- 1 19 equivalent 
r = 2 43 better 
r = 3 18 equivalent 
r = 4 42 better 
r = 5 14 worse 

2.3.2.4. Summary 

Summarizing the information contained in tables 1, 
3, 4 and 5, we would be inclined to set up the follow- 
ing table. 

Table 6. Summary of  results 

r Best Second best 

1 - -  

2 spectral 2 spectral 1 
3 spectral 2/B&J - 
4 spectral 2/spectral 1 - 
5 B&J/smoothing - 

2.4. Conclusions and final remarks 

2.4.1. CONCLUSIONS 

1) The exponential smoothing technique is clearly in- 
ferior to the other methods,  since for all forecasting 
periods at least one method proves to be better or at 
least equivalent. This possibly results from the fact 
that we assumed, as is commonly  done, a first order 
autoregressive model for  the disturbance term, whereas 
in the Box and Jenkins procedure we do not restrict 
ourselves to such a simple model.  However, to our 
knowledge, more complex models would make the use 
of  exponential  smoothing impossible in practice. 

2) For small forecasting periods the second spectral 
model would seem to us the best method to put for- 
ward. It  is superior or at least equivalent to the other 
methods. 
A drawback however is the fact that  the forecast errors 
are biased. This bias will most  probably decrease, the 
larger the sample at hand, since Bhansali [2] proved the 
forecast errors to be asymptotically unbiased. 
Another  possible improvement  due to a larger sample 
could be the fact that M = number  of  lags we estimate 
the covariance function for would be larger. As a con- 

sequence N = M___= the number  o f  spectral estimates 
4 

and forecasting coefficients would be greater too. 
Bhansali [2] proved that  the asymptot ic  variance of  
the forecast errors decreases for N increasing, as long 

a s N ~  ___M. 
4 

Therefore it seems reasonable that  the MSE would 
decrease too. 
Therefore we suggest the spectral method 2 to be an 
excellent forecasting technique for time series with 
daily data, since a large sample is then already obtained 
with one year of  observations. 

3) For larger forecasting periods (r > 4), we would 
stick to the Box and Jenkins procedure. 

2.4.2. FINAL REMARKS 

1) One must bear in mind that  the conclusions drawn 
are obtained from a simulation study. Therefore these 
conclusions hold only for the model studied. It is not 
possible to make extensions to allow for other generat- 
ing processes. This doesn ' t  mean that a simulation study 
has no value. Indeed, it was mentioned that simple 
ARMA-processes may represent many economic time 
series. Therefore the conclusions drawn are not so 
specific after all. 
But one might investigate the influence on the results 
of  for example other values o f  Ou2, larger ARMA- 

schemes with greater lags, or another starting value. 
All these are parameters that  the experimenter has 
under his control, and might influence the results. 

2) Another  parameter that  has to be supplied is the 
number of  replicates. For some simulation experiments 
stopping rules exist [20]. 
In the study at hand the number  of  replicates only 
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inf luences  the degree o f  accuracy o f  the mean  squared 
error. Indeed,  the mean  squared error (for the un-  

biased cases) is E S E  X29 dis t r ibuted,  the variance o f  - g 7  
which is solely dependen t  on  the n u m b e r  o f  degrees 
of  freedom, and hence on  the  n u m b e r  of  replicates. 
By a desired level o f  accuracy of/3 ~0, we mean  that  
(1 - ct) g ,  e.g. 95 ~., o f  the sampled MSE's  fall wi th in  
the interval  

[E (MSE) - (-~-~-) E (MSE), E (MSE) + (.~7_~_) E (MSE)] 

F r o m  the desired level o f  accuracy,  one can derive the 
n u m b e r  of  replicates needed.  For  50 replicates, 
f l= 207. .  
Taking into account  the expensiveness o f  compute r  
t'h'ne, we have felt the increase in  the level o f  accuracy, 
and  hence the simplif icat ion ob ta ined  for compar ing  
the methods ,  no t  to be offset  by  the increase in  costs 
and  t ime. Indeed,  i f  the level o f  precision was say 80 ~., 
the figures in table 1 wo u l d  be subject  to little or no  
variat ion.  Hence, the f'wares would  be suitable for a 
direct  comparison,  w i thou t  r u n n i n g  any fur ther  statis- 
t ical tests. Run n i n g  the statistical tests made  our  com- 
par ison more longwinded and  the conclus ions  less 
firm, b u t  we saved costs o f  compu te r  t ime. 
As always, a balance mus t  be reached be tween  addi- 
t iona l  costs and addi t ional  revenue.  
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