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We prove a de Montessus de Rallore type theorem for rarional fwctions R,, of 
type (x.4) formed by best approximation over the whole piane to functions J(z) 
meromorphic in the plane with exactly 4 poles. This resolves a question raised 
by I-ubinsky and Shisha (.I. .4ppro-x Them-J 36 (1981). 277p293 j_ < 1988 4cadcmac 

RX.% inc. 

1. INTRODUCTION 

In [4], Lubinsky and Shisha considered best approximations of complex 
functions j(z) by rational functions formed by minimizing a metric which 
involves values of ,f(z) throughout the plane. They proved existence, non- 
uniqueness, and that sequences of best approximations converge in planar 
Lebesgue measure under general conditions. They also raised the question 
as to whether there is an analog for these approxim,ations of the classical de 
Montessus de Ballore theorem for Pade approximations (see Baker [I ]. 
Wallin [S]). It is the purpose of this paper to answer their question in the 
affirmative. 

I shall now state a special case of our main result, for meromorphic 
functions of finite order. Let gny denote the class of rational functions with 
numerator and denominator of degrees at most ?I and 9, respectively. Let 
8)(=. LI) denote the chordal metric on the Riemann sphere, that is, 

and let 

(1.3) 

where I = x + iMv for measurable functions ,< g: C -+ @. 
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THEOREM 1.1. Let f be a meronzorphic function of finite order in C, with 
exactly q poles (counting multiplicity). For each posititle integer n, let R& be 
a rational satisfiing 

Then 

PAL R&4) = min{p,(J; RI: R E %,>. (1.3) 

lim R,*(z) = f(z) II - 5 
uniformly in compact subsets of @ not containing the poles of J: Further, 

lim sup p,(f, R,*) l;‘n’ogn < 1, 
n 4 cc (1.4) 

and uniformly in compact subsets of C not containing the poles, we have 

limsup If(z)-R,T,(zj)‘i”‘og’r< 1. 
n-l: (1.5) 

We remark that exp( -exp(lzl)) in (1.2) can be replaced by 
exp( -Q(lzl)), where Q(r) is any positive, continuous function defined on 
[0, co) such that 

lim Q(r) r pa = m 
r-5 

for al! c( > 0. 

Regarding the proofs, use is made of a lemma by Goncar [2] establishing 
uniform convergence of a sequence of analytic functions given that they 
converge in one dimensional Hausdorff measure. 

In Section 3, we prove a lemma which relates the uniform norm of a 
polynomial in a disc to the size of the set on which the absolute value of 
the polynomial is bounded by 1. Use is also made of Cartan’s lemma on 
small values of polynomials, of standard measure-theoretic techniques, and 
of the elements of complex analysis. 

The paper is divided as follows: Section 2 clarifies the notation used in 
this paper, and lists the main results. Section 3 proves lemmas needed for 
the major results of this paper. Section 4 proves the theorem on uniform 
convergence, while Section 5 proves a theorem relating to the rate of con- 
vergence. 

2. NOTATION AND STATEMENT OF RESULTS 

(1) Throughout, meas will denote planar Lebesgue measure, and p 
will denote a measure on the finite complex plane C, normalized so that 

(2.1) 
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Further, we shall assume that we are given a function Q(r), defined in 
[!I, x8), such that 

:JP=) y positive in [0, CG) and Q’(Y)/~ is non-decreasing an 
) ‘X . {%.Z) 

The measure p will be assumed to have density function e-e. More 
precisely, we assume that for every measurable set E in the plane 

p(E) = jj exp( - Q( /z/ )) & do. (2.3) 
E 

where z = x + iy. Note that from (2.2) and (2.3) 

p(E) < meas (2.4) 

for any measurable set E. Further if EE {z: /zI 6 Y}, 

p(E) 3 e pQ(r) measf E). 

(2) Throughout> as in Lubinsky and Shisha [4], D(z, U) will denote 
a fixed function, defined and continuous on @ x @, satisfying 

D(z, u) = D(u, z) (2.6) 

D(G u)=ooz=zL 

We also assume that for each z E Cc, 

D(z, ,co) = lim D(s,, u) 
IZL 4 m q - 1 

exists and is positive, (2.1) 

and we set 
D(rxj, ~m)=O. 

Finally, we shall need three more restrictions on D: Given a compact set 
KG e, there exist positive constants C, and M such that 

Further, we shall assume that there exist positive constants C, and fi such 
that 
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Given a bounded set KE C, 

lim inf min{D(z, MI): z E K} > 0. (2.9) /H’J - cc 

We note that (2.6), (2.7), (2.8A), (2.8B), and (2.9) are satisfied by the chor- 
dal metric in ( 1.1). 

(3) Corresponding to D, we define a distance between (Borel) 
measurable functions f, g: Cc + C u {co 1 by 

(2.10) 

(4) Throughout C, C,, C,, C, ,... denote positive constants indepen- 
dent of n and z. The same symbol C may denote different constants from 
line to line. {r, >;= r will denote a sequence of positive numbers such that 
r,Jn increases as n increases, and 

lim r,ln = 1~0. wu n-m 

The most important example is 

r, = n log n, n = 2, 3, 4 )...) 

which arises in considering meromorphic functions of finite order. 
(5) Given non-negative integers n and q, the class of rational 

functions with complex coefficients and numerator and denominator 
degrees at most n and q, respectively, will be denoted by S&. 

We can now state our main results. The following is an analog of the de 
Montessus de Ballore theorem for Padt approximants (Baker [l, p. 1391). 
The distinguishing feature of such a result is that without any a priori 
assumptions about the poles of the rational functions we obtain uniform 
convergence of these functions. 

THEOREM 2.1. Let q be a non-negative integer. Let f be meromorphic in 
@ with exactly q poles, counting multiplicity. Let pD be a distance function 
satisfying (2.1)-(2.10), and let (l’,,} satisfy (2.11). Let there be given 
rational functions R,, E &, n = 1, 2, 3 ,..., such that 

lim sup p,(f, Rng)lirn < 1. 
II + cc 

(2.12) 
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Thei the only limit points of the poles of {RE,>,~= i are dw po!cs off and 

un[formly in compact subsets of @ not containing the poles off. 
The next result shows that, under certain additional assumptions, one 

can find a sequence of rational functions satisfying (2.12). 

THEOREM 2.2. Let f(z) = g(z)/P(z), where P(z) is a manic poivnomiai s,f 
degree q, and g(z) = x,j C a,zj is entire, with 

Assume further that 

lim inf Q(p Prn’“)/r,i > 0, (2.15) 
II * % 

for all 0 < p < 1. Let 

the?1 (2.12) holds. 

Remarks. (i) The condition (2.15) can be substantially weakened. but 
we omit the more cumbersome formulation. 

(ii) Theorem 1.1 is an easy consequence of Theorem 2.1 and 
2.2-see Section 5. 

(iii) It is easy to see that for a given function j(z) that is 
meromorphic in C with exactly q poles, one can always represent f in the 
form f = gJP, as in Theorem 2.2, and one can find ixFx j and Q satisfying 
(2.2), (2.11), (2.14), and (2.15). Hence, Theorems 2:l and 2.2 may be 
applied in a wide variety of situations. 

(6) In some proofs, we shall use the concept of one dimensional 
Hausdorff content. Given E G C, we-set 

m,(E)=inf ( f d(B;): EG 5 Bi\- 
i=i j=, i 

Here the inf is over all countable sequences of balls (Bi} with diameters 
(d(B,)} whose union covers E. Given functions$ ,fL9 fz...~, and a bounded 
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measurable set K, we say that f,, converges to .f in ml-measure in K if for 
each E>O 

m,{zEK: If,(z)-f(z)/ >E} -+O as n-+co. 

Further we say that f, converges to f almost everywhere with respect to m, 
in Kif 

3. PRELIMINARY LEMMAS 

LEMMA 3.1 (Cartan’s lemma for planar Lebesgue measure). Let P(z) be 
a manic polynomial of degree n 2 1. Let H > 0. Then the inequality 

IP( > H” 

holds outside at most n balls, whose union has planar measure at most 4zeH’. 
Further, the sum of diameters of these balls is at most 4neH. 

Proof See Baker Cl, p. 1941. 1 

LEMMA 3.2 (Goncar). Suppose that the sequence {fn} converges to the 
function f in m, measure inside the domain 52. Assume also that each of the 
functions f, (n = 1,2,...) is meromorphic in D and has at most q ( < cc j poles 
in Q. Then 

(a) f is meromorphic and has at most q poles in Q. 
(b) If f has exactly q poles in Q, then for n large enough, we have that 

f, also has exactly1 q poles in Q, and the poles of the functions fn tend to the 
poles z, , z2 ,..., zq (taking account of multiplicity) ofJ and the sequence { f,,) 
converges untformly on the compact subsets of Q’ = Q/{z,)~, I. 

Proof See Goncar [2, p. 5071. 1 

LEMMA 3.3. Let 0 <E < 1 and r > 0. Assume P(z) is a polynonzial of 
degree at most II, satisf$ing 

meas{z: JzJ,<r and IP(z)ldl)>~. (3.1) 

Then for Izj dr. 

IP( < (c max{ 1, r)/E)“, (3.2) 

where c is independent of n, P, E, and r. 
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PM$ We note that the result is trivial if P E 0. So assume P & 0. Ther: 
we may write 

where 6 > 0, 0 <m 6 rz’ <n, zI, z2 ,..., P,, lie in (z: /i/ < 2r] and z,,,+ i7 . . . . z:; 
lie in (z: 151 > 2~). Suppose first yn = 0. Then 

IP(z)l =d fi jl -z/zil 
i= 1 

3 h/2”’ for /zj <r. 

Since the set in (3.1) is non-empty, we deduce 

d/2”‘< 1 

so that, by (3.4), for 121 6 I, 

lP(z)l62”’ fi 11 -z,/zil 
i= 1 

d 2”‘( 3/2)“’ 

< 3”. 

This establishes (3.2) in the case rn =O. Suppose next m> 0. By (3.3): for 
IZI d r7 

IP( 26 fi Iz--,“il (fy”, 
i= I 

so that, by (3.1), 

Therefore. 
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where c is independent of n, P, E, and r. Then, by (3.3) for IzI < I’, 

IP( 6 (C/E)” (3r)” (3/2)“‘-” 

d (c max{ 1, Y}/E)“. 1 

4. PROOF OF THEOREM 2.1 

We divide the proof of Theorem 2.1 into a series of lemmas. Throughout 
this section we assume thatfand {&} are as in Theorem 2.1, and that, in 
particular, (R,,,} satisfies (2.12). 

LEMMA 4.1. Let r> 1, {zi};, , be the poles of J: Let 0 <q <min 
{ 1, m2/(2q)}. Then there exists 0 < ~5 < 1 < S such that for all n large enough, 

meas{z: IzI dr and Iz-zzil ZV, i = 1, 2,..., q 

and If- R,,I (z) 2 ~5~) < Sprn. (4.1) 

ProoJ By (2.10) and (2.12), there exists 0 < 6’ < 1 such that for large 
enough II, 

D(L R,z,) du < em. (4.2) 

Let K> 1 be such that KfI < 1, and let 

CC!&= {z: IzI 6r and Iz-zzil a~, i= 1, 2 ,..., q 

and D(f(zh R,,,(z)) 2 (WT’}. 

Now, by (4.2), 

Therefore, 

Hence, by (2.5) and (4.3), 

meas(q!,,) d eQc’)~($) 

6 (K’)-L 

for n large enough, where K’ > 1. Now let 

F= {z: (z/ dr and Iz-zzil 29, i= 1, 2 ,..., q}. 

Then f(F) = {f(z): z E F} is bounded. 

(4.3) 

(4.4) 



A THEOREM FOR RATIONAL APPROXIMATION I 3 i 

Further, if z E F\$‘,, then for any E > 0, we have 

D(f(zj, R,,(z)) < (Ki3)rn < & (4.5 ‘; 

for n large enough. It follows from (2.9) that there exists a positive constart 
C and a positive integer n, such that 

IR,&)l d c, ZEF:,,?~,,, iz>xO. 

Then by (2.M). there exists C, and N > 0 independent of n such that 

CL If(z) - R,,(z)l” G W(z), R&)j, ZEF\,9,,. n>n,. 

Hence, by (4.5), for n >, n, and z E F\Sf,. 

where 5 E (0, 1). Finally, if 

ZE W,,= (z: (21 dr and /z-zj/ 3~ i= I, 2:..., q, 

and If- &,,I (;) > 6”;. 

then z E F. But : q! F;‘Sm by (4.6). Hence, 

W,,GFn$*. 

In particular, it follows from (4.4) that 

meas(W,)dmeas(Y,),)<(KPF~. 

Hence the result. 1 

(4.6 ! 

LEMMA 4.2. Under the conditions qf Lemma 4.1 there exists 0 < 6’ < 
I < s’ stich that, for aN n /arge enough, 

meas{:: 1:) < r and )z - zil > q, i = 1, f ,..., q, 

and lR ,2+i,y(:)-R,~,Y(zJI b(6’irnj<(S’)--? (4.7) 

Proof. If 

IR,,, ,&) - R,,.,(z)1 2 2~3’,~ 

then either 

IS(z) - R,,(r)l b b-‘” 
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or 

If(z) - R,, &)I 2 ~3’~~‘. 

Hence, by Lemma 4.1 

meas(z: IzI dr and lz-zzil a:, i= 1, 2 ,..., q, 

and IR,+I,q(~)-Rny(z)j >2SL)d2S-rn. 

The lemma follows by choosing suitable S’ and S’. m 

LEMMA 4.3. Assume the conditions of Lemmas 4.1 and 4.2. Further, write 

R,,(z) = f’n(zVQ,,(z), (4.8 1 

where P, and Q, are polynomials of degree at most n and q, respectively, and 
Q, is normalized so that 

Qn(z)= n (Z-Zz,i) n (l-Z/Zrzi)t 
I=nil < 2r I+;J > 2r 

and znl, zn2 ,..., zlty are the zeros of Q,. Let A > 1 and 

E,,= z: 
i 

,znE2r IZ-Zz,il <Hw44l, n= 1, 2, 3 ,.... 

Then there exists 0 < 6 1 < 1 such that .for n large enough, 

IR n+ I,&) - &&)I 6 S? for IzI<r,z$E,vE,+, 

ProoJ For n large enough, let 

H,(z) = P,,. l(z) Q,(z) - P,(z) Q,, l(z) 

=(R n + &) - R&H Q,(Z) Q,+ I(Z). 

From (4.9), and as r > 1, 

lQ,(z)l d WY, for 111 ,< r. 

Therefore for IzI < r, 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

IJf,(z)l f W12’ I&,+ ,Jz) - R&)l. 

From Lemma 4.2, 

meas(z: IzI <r and lz-zil >y~, (i= 1,2 ,..., q) 

and 1H,Jz)l > (3r)24 (6’)rn} d (s’)-G. 



A THEOREM FOR RATIONAL APPROXMATION 

Let 6’ < ci” < I. Then for n large enough, 

meas(z: 1;) <r and IH,(z)I G(P)&] >k-qq-(~‘)~~~~ 

3 ;rr”;:2 - (S’ ) - i-n 

>$, 

as 44 6 nr’i2 and if n is large enough. Applying Lemma 3.3 to t 
polynomial 

P(z) = H,(z)(b”) -rn9 

which is of degree at most n + q + 1, we obtain 

max(jH,(z)l: Iz/ dr)6(6”)rn (c2T)n+‘+y, (4.14; 

where c is independent of n. Next, if Iz,J 3 2r and Iz/ d I’, 

Then (4.13), (4.14), and (4.15) show that for /z( <r and z$E,,uE,+~. 

IR ,I + l,q(z) - R,,(z)l < @“y-n (c2r)” + i +q 2%1‘yn + 1 p. 

Clearly (4.1 I ) follows with a suitable choice of 6 i. 

LEMMA 4.4. Assunze the conditiom qf Lemmas 4.1, 4.2, und 4.3. Therz 
there exists a fmction g, defined etlerywhere except possibly on a set F oj 
m,-measure zero, such that Rllq comerges to g ln PI,-measure irz /zj < r GS 
n -+ 3~8, at?d 

lim R,,,(z) = g(z), ; $ F. 
,1 + % 

ProoJ For n large enough, let 

F,,= (j Ek. 
k=n 

(4.16j 

Now by Cartan’s lemma (Lemma 3.1), and by (4.10), 

m , (E,, ) d 4em ~ ‘. 
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m,(F,j64en f k-” 
k=n 

+O as n + CO, since A > 1. 

Now if IzI 6r, z$F,,, then by (4.11), 

f IR k+ &) -&,q(Z)I Q f SF. 
k=n k = ,t 

Hence, for lzl<r, z$F=npz,Fk, 

exists. Note that for all k = 1, 2, 3 ,... 

m,(F)dm,(Fk)+O as k-+a 

by (4.17). Hence m,(F)=O. Further, uniformly for 1~1 <r and z#Fn, 

I&-R&l = f (&c&-&&j) 
k = ,I 

(4.17) 

(4.18) 

Hence, R,, + g in ml-measure in IzI d r, as n -+ CG. 1 

Proof of Theorem 2.1. We first show that the poles of R,, tend to the 
poles of$ Let r > 1, and g be as in Lemma 4.4. By Lemmas 4.4 and 3.2(a), 
g(z) must be meromorphic in IzJ < r, with at most q poles there. Now (4.1) 
shows that R,, converges in planar Lebesgue measure to f in compact sub- 
sets of {L: Iz( < r} not containing the poles off: Further, every subsequence 
of a sequence which converges in planar Lebesgue measure contains a sub- 
sequence converging almost everywhere with respect to planar Lebesgue 
measure. 

From Lemma 4.4 we deduce that f = g in 1~1 d r, except possibly on a set 
of planar Lebesgue measure zero. As f and g are meromorphic in Iz( < r, we 
deduce that f(z) = g(z) .in Iz/ <r. Since r > 1 is arbitrary and both f and 
R,, have at most q poles in @, Lemma 3.2(b) yields the result. 

We next establish (2.13). Let r > 1 and let K be a compact subset of 
{z: (z( <r} not containing the poles of$ Now the poles of R,, tend to the 
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poles off as 71 -+ ~1. Further, the set E,, &fined by (4.10). is contained in 
at most q circles of radius nPA centered on the poles of IQq. It foollows that 
for M large enough, E,, does not intersect K, and hence F,,, defined by 
(4,!0), does not intersect K. Then (4.18 j shows that for z E K and for ‘1 
large enough, 

If(z) - R,,(s)1 d f Sxp 
k=n 

<26? 

for n large enough. This proves (2.13). i 

5. PROOF OF THEOREM 2.2 

LEMMA 5.1. Let f(z) = g(z),‘P(s), Ii+we P(z) k o .w???k po/~xonzic;f qi‘ 
degree q arid g( z ) = x:,“= ,, a,$ is enrire, with 

lim sup la,/ “r, < 13 < 1. (5.1) 
/-x 

Let 0 < E < 1 < r arld 

I?,, = or*1 nl II = 1, 2 . . . . . (5.2) 

Let fi be as in (2.8B) atzd R,,, as irl (2.16). Then there esisrs C and I?!-, 
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Next, by (2.16) and (5.5 ), for z E E,, 

(by (5.1) for n large enough, say for n 3 12~ j. Now, by (2.11) 

rj/ j > r,,/fl for j 3 II, 

=-[i-r,,2f,l(j/n- l)=(T,,/nj(j-n). 

Hence, by (5.8 ), for z E E,, 

(5.8) 

(5.9) 

by (5.2), for y1 satisfying (5.4). By (2.8B), for z E E,, 

WPh L/id) 6 c2 If(z) - R&,l” 

d C*(E-‘fFnr”)~ (1 -Tj,,i.)” 

for rz>n, and rlnr< 1, by (5.9). Hence, by (2.1), 

SI D(fi R,,) du < CZ(~-‘Qr~r’z)B (1 - q,,r))P (5.10) 
El 

for n large enough. Next, by Cartan’s lemma (Lemma 3.1) 

meas( Ez j 6 (4nej &Ii4 

and then by (2.4) 

p( E,) d (4ne) E’ y. 

Finally (5.7) (5.10), and (5.11) yield the result. fl 

(5.11) 

LEMMA 5.2. Let r > 0. The?1 there exists C independent of r such that 

~(2: IzI >rj<Cexp(-Q(r)). (5.12) 
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Proof. By (2.3) and converting to polar coordinates, we obtain 

p{z: /z/ >P> =2n s 171 s exp( -Q(s)) ds 
# 

= 271 Tic (s/Q’(s)) exp( -Q(s)) Q’(s? cls “r 

G (27dQ’(r)) lrx exp( -Q(S)) Q’(S) cis ib (2.W 

~(2~/Q'(lj)exp(-Q(r)j. 

Proqf of’ Theorenz 2.2. With the notation of Lemma 5.1, let 

rn = v, ‘9, n=l7 9 L?... > (5.13) 

so that 

qnr, = ij1” -+ 0 as II -+ 8x 

by (5.2) (2.11), and as 0 < f3< 1. Then (5.4) holds for B= rn and ia large 
enough. Further, by (5.2) and (5.13), 

r; = e -rd. (5.14) 

Then by (5.3), (5.12) and (5.14) with Y=Y,, 

p,(f, R,,)G cl(E-*efqfi (1 -n;yfi 

+C,~“~+Cexp(-Q(r~,~!~I)j. (5.15) 

We note that the choice of r = I’, is possible as the constants in (5.3) are 
independent of Y and E. Now let 

E = E,, = ern:‘4. (5.lhj 

By (5.2) and (2.15) with p = 0P1:2, there exists C2 >O such that 

Q(v,"~) 2 C2r,,, n large enough. (5.17) 

Then by (5.15) (5.16) and (5.17) there exists C3 such that 

Pn(~ R,~~) d c,(erqB + c3ern!14q) + c, exp( -c,r,). 

Then (2.12) follows. 1 

Proof of Theorem 1.1. Let f be meromorphic in c, of finite order, with 
poles of total multiplicity q. Let P(z) be the manic polynomial of degree q 
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whose roots are the poles of f, taking account of multiplicity. Then 
g(z) =J‘(s) P(z) is entire, and by the elementary theory of meromorphic 
functions (Hayman [3]), g has the same order asJ: Further, we can write 

g(z) = f aiz’, 
j=O 

where, as g has finite order, 

lim sup Iail wogj) < 1. 
j- x 

If we choose 

(5.18) 

r,=jiog j, j=2,3 )... 

then (2.14) follows fro (5.18). We can apply Theorem 2.2 provided we can 
verify (2.15). In our case, Q(z) = exp )I, so (2.15) is equivalent to 

hz$f exp(p-‘“g’zj/(n log n) > 0 

for all 0 < p < 1. This is easy to verify. Hence R,, given by (2.16) satisfies 
(2.12). Consequently if Rn*, is a best approximation (as in (1.3)) (2.12) 
implies (1.4). Finally (1.5) is implied by (2.13). # 
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