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ABSTRACT 
In this paper, performance evaluation for various single model nonlinear filters and nonlinear filters with interacting 
multiple model (IMM) framework is carried out. A high gain (high bandwidth) filter is needed to response fast enough 
to the platform maneuvers while a low gain filter is necessary to reduce the estimation errors during the uniform 
motion periods. Based on a soft-switching framework, the IMM algorithm allows the possibility of using highly dynamic 
models just when required, diminishing unrealistic noise considerations in non-maneuvering situations. The IMM 
estimator obtains its estimate as a weighted sum of the individual estimates from a number of parallel filters matched 
to different motion modes of the platform. The use of an IMM allows exploiting the benefits of high dynamic models in 
the problem of vehicle navigation. Simulation and experimental results presented in this paper confirm the 
effectiveness of the method. 
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1. Introduction 

The synergy of Global Positioning System (GPS) 
[1,2] and inertial navigation system (INS) [1,3] has 
been widely explored due to their complementary 
operational characteristics. The GPS/INS 
integrated navigation system is typically carried out 
through the Kalman filter [1-2] to estimate the 
vehicle state variables and suppress the navigation 
measurement noise. In the Kalman filter or its 
nonlinear version, the extended Kalman filter 
(EKF), the state distribution is approximated by a 
Gaussian random variable (GRV), which is then 
propagated analytically through the first-order 
linearization of the nonlinear system. 

Proposed by Julier, et al. [4], the unscented 
Kalman filter (UKF) is a nonlinear, distribution 
approximation method, which uses a finite number 
of carefully chosen sigma points to propagate the 
probability of state distribution through the 
nonlinear dynamics of system so as to completely 
capture the true mean and covariance of the GRV 
with a limited number sigma points by using the 
Unscented Transform (UT) [5-7]. The basic 
premise behind the UKF is it is easier to 

approximate a Gaussian distribution than it is to 
approximate an arbitrary nonlinear function. When 
the sample points are propagated through the true 
nonlinear system, the posterior mean and 
covariance can be captured accurately to the 
second order of Taylor series expansion for any 
nonlinear system. The particle filter (PF) [8-12] is a 
probability-based estimator. The Bayesian 
estimation is the foundation for particle filters. A 
large number of particles are required to obtain 
reasonable accuracy as the latest measurement is 
totally ignored. Henceforth, many variants of these 
filters are suggested by a number of researchers. 
To improve the estimate accuracy, the EKF or UKF 
can be used to generate the true mean and 
covariance of the proposal distribution. 

The implementation of Kalman filter requires the a
priori knowledge of both the process and 
measurement models. In various circumstances 
where there are uncertainties [13] in the system 
model and noise description, and the assumptions 
on the statistics of disturbances are violated due to 
the fact that in a number of practical situations, the 
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availability of a precisely known model is unrealistic. 
The adaptive Kalman filters (AKF) [14-15] is used 
based on an on-line estimation of motion as well as 
the signal and noise statistics available data. Many 
efforts have been made to improve the estimation of 
the covariance matrices based on the innovation-
based estimation approach, resulting in the 
innovation adaptive estimation (IAE).  

The other approach is the multiple model adaptive 
estimate (MMAE). Proposed by Bar-Shalom and 
Blom, the interacting multiple model (IMM) 
algorithm [12,16-21] has the configuration that runs 
in parallel several model-matched state estimation 
filters, which exchange information (interact) at 
each sampling time. The IMM algorithm has been 
originally applied to target tracking [17-19], and 
recently extended to GPS navigation [20,21]. This 
algorithm carries out a soft-switching between the 
various modes by adjusting the probabilities of 
each mode, which are used as weightings in the 
combined global state estimate. The AKF 
approach is based on parametric adaptation, while 
the IMM approach is based on filter structural 
adaptation (model switching). In the IMM 
approach, multiple models are developed to 
describe various dynamic behaviors.  

The remainder of this paper is organized as 
follows. In Section 2, the nonlinear filters are 
discussed. The IMM filter algorithm is introduced in 
Section 3. In Section 4, numerical simulation and 
experiment on navigation processing are carried 
out to evaluate the performance for various 
nonlinear filters in single-filter framework mode as 
well as in multiple-model framework. Conclusions 
are given in Section 5. 

2. The Nonlinear filters 

Given a single model equation in discrete time 

kkkk wxfx )(1     (1) 

kkkk vxhz )(     (2) 

where the state vector n
kx , process noise 

vector m
kw , measurement vector m

kz ,

measurement noise vector m
kv , kQ  is the 

process noise covariance matrix and kR  is the 
measurement noise covariance matrix. 

2.1 The extended Kalman filter 

The vectors kw  and kv  in Eqs. (1) and (2) are 
zero mean Gaussian white sequences having zero 
cross-correlation with each other: 

ikkikE Qww ][ T ; ikkikE Rvv ][ T ;

kandiallforE ik 0vw ][ T              (3) 

where ][E  represents expectation, and superscript 
“T” denotes matrix transpose. The symbol ik

stands for the Kronecker delta function: 

ki
ki

ik ,0
,1

The discrete-time extended Kalman filter algorithm 
is summarized as follow: 

(1) Initialize state vector and state covariance 
matrix: 0|0x̂  and 0|0P

(2) Compute Kalman gain matrix:  

1T
1|

T
1| ][ kkkkkkkkk RHPHHPK

(3) Update state vector:  

)]ˆ([ˆˆ 1|1|| kkkkkkkkk xhzKxx

(4) Update error covariance 1|| kkkkkk PHKIP

(5) Predict new state vector and state covariance 
matrix

)ˆ(ˆ ||1 kkkkk xfx

kkkkkkk QPP T
||1

where the linear approximation equations for 
system and measurement matrices are obtained 
through the relations 
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2.2 The unscented Kalman filter 

Suppose the mean x  and covariance P  of vector 
x  are known, a set of deterministic vector called 
sigma points can then be found. The ensemble 
mean and covariance of the sigma points are equal 
to x  and P . The nonlinear function )(xy f  is 
applied to each deterministic vector to obtain 
transformed vectors. The ensemble mean and 
covariance of the transformed vectors will give a 
good estimate of the true mean and covariance of y ,
which is the key to the unscented transformation. 

Consider an n  dimensional random variable x ,
having the mean x̂  and covariance P , and 
suppose that it propagates through an arbitrary 
nonlinear function f . The unscented transform 
creates 12n  sigma vectors X  (a capital letter) 
and weighted points W

xX ˆ)0(      (4) 

T
ii n ))((ˆ)( PxX , ,...,ni 1   (5) 

T
ini n ))((ˆ)( PxX , ,...,ni 1   (6) 

where in ))P((  is the i th row (or column) of 

the matrix square root. )P(n  can be obtained 
from the lower-triangular matrix of the Cholesky 
factorization; nkn )(2  is a scaling 
parameter;  determines the spread of the sigma 
points around x  and is usually set as 141e
; k  is a secondly scaling parameter usually set as 
0;  is used to incorporate prior knowledge of the 

distribution of x ; )(m
iW  and )(c

iW  are the weighs 
for the mean and covariance, respectively, 
associated with the ith point. 

)(0 n
W (m)      (7) 

)1( 2
00 WW (m)(c)     (8) 

)(2
1
n

WW (c)
i

(m)
i , n,...,i 21   (9) 

The sigma vectors are propagated through the 
nonlinear function to yield a set of transformed 
sigma points, 

)( ii f Xy , n,...,i 20               (10) 

The mean and covariance of iy  are approximated 
by a weighted average mean and covariance of 
the transformed sigma points as follows: 

i
n

i

m
iu W yy

2

0

)(                              (11) 

T
uiui

n

i

c
iu W ))((

2

0

)( yyyyP                          (12) 

The implementation algorithm of UKF is 
summarized as follows: 

(1) The transformed set is given by instantiating 
each point through the process model 

)( 1,11|, kikkki Xf , n,...,i 20

(2) Predicted mean 

n

i
kki

(m)
ikk W

2

0
1|,1|x̂

(3) Predicted covariance 

1|kkP

1
2

0
1|1|,1|1|,

)( ]ˆ][ˆ[ k
n

i

T
kkkkikkkki

c
iW Qxx

(13) 

(4) Instantiate each of the prediction points through 
observation model 

)( 1|,1|, kkikkki hZ
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(5) Predicted observation 

n

i
kki

m
ikk W

2

0
1|,

)(
1|ˆ Zz

(6) Innovation covariance 

zzP
n

i
k

T
kkkkikkkki

c
iW

2

0
1|1|,1|1|,

)( ]ˆ][ˆ[ RzZzZ

                                                               (14) 

(7) Cross covariance 

n

i

T
kkkkikkkki

c
ixz W

2

0
1|1|,1|1|,

)( ]ˆ][ˆ[ zZxP     (15) 

(8) Performing update  

1
zzxzk PPK

)ˆ(ˆˆ 1|1|| kkkkkkkk zzKxx

T
kzzkkkkk KPKPP 1||

2.3 The particle filter 

Although the EKF and UKF can deal well with 
some nonlinear filtering problems, however, they
always approximate )|( kkp Zx  to be Gaussian, 
where )|( kkp Zx = pdf of kx  conditioned on 
measurements 1z , 2z , …, kz . The particle filter is a 
probability-based estimator. If the true density is 
non-Gaussian, particle filters may lead to better 
performances in comparison to that of EKF or 
UKF. Figure 1 shows the recursive Bayesian state 
estimation, which is based on the Bayes’ rule  

)|(
)|()|()|(

1

1

kk

kkkk
kk p

ppp
Zy

ZxxyZx                     (16) 

Posterior )|( 11 kkp Zx  at step 1k

Prior )|( 1kkp Zx at step k

Posterior )|( kkp Zx at step k

Measurement kz

1kk

Figure 1. The recursive Bayesian state estimation. 

In order to compute )|( kkp Zx , the equation
)|( 1kkp Zx  needs to be found from the 

Chapman-Kolmogorov equation and the marginal 
density function: 

11111 )|()|()|( kkkkkkk dppp xZxxxZx      (17) 

The pdf )|( 1kkp Zz can be obtained to be 

kkkkkkk dppp xZxxzZz )|()|()|( 11              (18) 

The basic PFs combine two principles namely 
the Monte Carlo (MC) principle and the 
Importance Sampling (IS) method where the 
transition prior density )|( 1kkp xx  is taken as the 
importance distribution: 

)|(),|( 11 kkkkk pq xxzxx              (19) 

The weights of these particles are evaluated 
according to: 

)|(1 kkkk zpww x                                             (20) 

and 

)|(
)|(

kk

kk
k q

pw
Zx
Zx                                                  (21) 
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where ),|( 1 kkkq zxx is the importance density 
function, 1kw  are the importance weights of the 
previous epoch particles and kw are the 
importance weights of the current epoch. 

2.4 The extended Kalman particle filter and 
unscented particle filter 

The extended Kalman particle filtering (EKPF) is 
formed when the EKF is used for the importance 
proposal generation [9]; the unscented particle 
filter (UPF) is formed when the UKF is used for the 
importance proposal generation [8]. In a local 
linearization technique, such as the EKPF and 
UPF, each particle is drawn from the local 
Gaussian approximation of the optimal importance 
distribution ),|( 1 kkkp zxx that is conditioned on 
the current state and the latest measurement 

)|(),|( Optimal1 kkNkkk qzq Zxxx                       (22) 

where Nq denotes the Gaussian approximation of 
importance density and is obtained from EKF/UKF.  

An improvement in the choice of proposal 
distribution over the simple transition prior can be 
accomplished by moving particles towards the 
regions of high likelihood, based on the most recent 
measurement. An effective approach to accomplish 
this is to use an EKF or UKF generated Gaussian 
approximation optimal proposal [4,6] 

),(),|(~ˆ 1
i
k

i
kk

i
k

i
k

i
k Nq Pxzxxx                            (23) 

where i
kx and i

kP  are the mean and covariance of 
the ith particle generated by the EKF/UKF, 
respectively. This is accomplished by using a 
separated EKF or UKF to generate and propagate 
a Gaussian proposal distribution for each particle.  

One cycle of the EKPF/UPF (i.e., the PF that uses 
EKF/UKF as proposal distribution) algorithm can 
be summarized as follows. 

(1) Initialization. Assume N
i

i
10}{x  be a set of 

particles sampled from the prior )(~ 00 xpix  at 
0k  and set

][ˆ 00
ii E xx

])ˆ)(ˆ[( 00000
Tiiiii E xxxxP

Nwi /10                                                            (24) 

where Ni ...1
(2) Importance sampling  
(i) Update each particle with the EKF/UKF to 
obtain mean i

kx and covariance i
kP .

(ii) Sample the particles from 

),(),|(~ˆ 1
i
k

i
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i
k

i
k

i
k Nq Pxzxxx

where i
k

i
k Px̂  are the estimation of mean and 

covariance of EKF/UKF, Ni ,...,1 .

(iii) The recursive estimate for the importance 
weights can be written as follows 
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1

1
1

k
i
k

i
k
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k

i
k

i
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k
i
k q
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zxx
xxxz                           (25) 

where N is the number of samples. Normalized 
the importance weights by 

N

i

i
k

i
k

i
k www

1
/                                                     (26) 

(3) Selection or re-sampling. Compute the effective 
weights according to 

N

i

i
k

eff
w

N

1

2)(

1                                                    (27) 

If NNeff , resample particles N
i

i
kx 1}{  and assign 

equal weights to them Nwik /1 .

(4) Output  

N

i

i
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i
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1
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i
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i
kk w

1
)ˆ)(ˆ(ˆ xxxxP                              (29) 



GPS/INS Integration Accuracy Enhancement Using the Interacting Multiple Model Nonlinear Filters, D. J. Jwo et al. / 496 509

Journal of Applied Research and Technology 501

3. The interacting multiple model (IMM) filter 
framework 

The IMM approach carries out a ‘soft switching’ 
among various models by the model probability. The 
algorithm of IMM-nonlinear filters is introduced to deal 
with the noise uncertainty and system nonlinearity 
simultaneously. Figure 2 describes the structure of 
the IMM estimator for the case of r models. 

Let a general system for multiple models in 
discrete time be described by 

),(),(1 kkkkkkk MM xwxfx                  (30)                       

),(),( kkkkkkk MM xvxhz                              (31) 

where )(kf  and )(kh  are the parameterized state 
transition and measurement functions, kx  and kz
are the dynamical state and measurement of the 
system in model kM , and the system itself is a 
Markov chain, kw , kv  are the process noise and 
measurement noise with means kw , kv  and 
covariances kQ  and kR , respectively. 

3.1 IMM-EKF 

3.1 IMM-EKF 

An IMM cycle consists of four major stages. The 
IMM-EKF algorithm is summarized as follows. 

(1) Model interaction/mixing. For given states 
j

kk
j
k 1|11 xx  with corresponding covariances 

j
kk

j
k 1|11 PP  and mixing probabilities ji

kk
|

1|1  for 
every model, the initial condition for the model j  is 

xx ji
kk

r

i

i
kk

j
kk

|
1|1

1
1|1

0
1|1 ˆˆ , rj ,...,2,1               (32) 

The covariance corresponding to the above is: 
r

i

i
kk

ji
kk

j
kk

1
1|1

|
1|1

0
1|1 {PP

}]ˆˆ][ˆˆ[ 0
1|11|1

0
1|11|1

Tj
kk

i
kk

j
kk

i
kk xxxx             (33) 

Calculating the mixing probabilities with mode 
switching probability matrix ij  and the Gaussian 
mixing probabilities are computed via the equations: 

c
i
kij

j

ji
kk 1

|
1|1

1 , rji ,....,1,                         (34) 

Figure 2. The block diagram of the IMM nonlinear filter algorithm (one cycle with r models). 
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where c j is a normalization factor is 

r

i

i
kijj

1
1c

where x̂0 1|1
j
kk and j

kk
0

1|1P̂ are the mixed initial 

condition for mode-matched filter j at time 1k .
Note that, in this context, i and j denote the 
corresponding model index respectively; n is the 
total number of sampling particles.  

(2) Filtering. The state estimate equation and 
covariance equation are used as input to the filter 
matched to j

kM , which uses kz  to yield j
kk |x̂  and 

j
kk |P . The likelihood function corresponding to the 

r  filters 

],|[ 1ZMz k
j
kk

j
k p                                            (35) 

are computed using the mixed initial condition as 

],ˆ,|[ 0
1|1

0
1|1 PxMz j

kk
j
kk

j
kk

j
k p                           (36) 

(3) Model probability update. Model probability   is 
updated according to the model likelihood and 
model transition probability governed by the finite-
state Markov chain: 

j
j
k

j
k c

c1                              (37) 

where 
r

j

j
kjc

1
c                                  (38) 

and j
k  is a likelihood function given by 

j
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2
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(4) Combination of state estimation and covariance 
combination. Combination of the model-
conditioned estimates and covariances is done 
according to the mixture equations 
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3.2 IMM-UKF 

One cycle of the IMM-UKF is similar to that of the 
IMM-EKF except that the EKF used in the IMM-
EKF is replaced by the UKF, as follows. 

(1) Step 1 in UKF. The unscented transform 
creates 12n  sigma vectors X  (a capital letter) 
and weighted points W . For state estimation at 
instant 1k , sigma points are generated 
according to 
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(2) Step 2 in UKF. Time update (prediction steps) 
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(3) Step 3 in UKF. Measurement update 
(correction steps) 
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k 1|ẑZ .
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The samples are propagated through true nonlinear 
equations; the linearization is unnecessary, i.e., 
calculation of Jacobian is not required. 

3.3 IMM-EPF 

The extended particle filter (EPF) with IMM 
framework yields the IMM-EPF. Integrating a bank 
of extended Kalman particle filters with the IMM 
method, an IMM-EKPF is obtained [12]; integrating 
a bank of unscented particle filters with the IMM 
method, an IMM-UPF is obtained. One cycle of the 
IMM-EPF (IMM-EKPF or IMM-UPF) is similar to 
that of the IMM-EKF or IMM-UKF except that the 
filters are replaced by the extended particle filters 
(i.e., EKPF or UPF). 

4. Results and discussion for GPS/INS 
integration

The differential equations describing the two-
dimensional inertial navigation state, where two 
accelerometers and one gyroscope are involved, are: 
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where [ ua , va ] are the measured accelerations in 
the body frame, r  is the measured yaw rate in 
the body frame. The error model for INS is 
constructed by the navigation states augmented by 
the accelerometer biases and gyroscope drift: 
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(57) 

which were utilized in the integration Kalman filter 
as the inertial error model. In Eq. (57), n  and e
represent the east, and north position errors; nv
and ev represent the east, and north velocity 
errors;  represents yaw angle; ua , va , and 

r represent the accelerometer biases and 
gyroscope drift, respectively. The measurement 
model is  
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The GPS-derived yaw angle measurement can be 
obtained through 
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v
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Simulation and experimental tests have been 
carried out to evaluate the navigation performance 
for the proposed approach in comparison with the 
conventional approaches. 

A. Simulation example. The navigation integration 
software was developed by the authors using the 
Matlab  software. The commercial software 
Satellite Navigation (SATNAV) toolbox [22] by 
GPSoft LLC was employed for generating the 
satellite positions and pseudoranges. 

Figure 3 shows the schematic illustration of 
simulated trajectory. The trajectory can be divided 
mainly into six time intervals (or segments) 
according the dynamic characteristics, as indicated 
in the figure. The vehicle was simulated to conduct 
constant-velocity straight-line during the three time 
intervals, 0-45, 135-180 and 225-270s, all at a 
constant speed of 10 m/s. Furthermore, it 
conducted circular motion with radius 450 meters 
during 45-135s (counterclockwise); with radius 900 
meters during 180-225s (counterclockwise) and 
270-450s (clockwise) where high dynamic and 
medium maneuverings are involved. 

Assume that the differential GPS (DGPS) mode is 
used and only multipath and receiver thermal noise 
are considered. The measurement noise variances 

i
r  are assumed a priori known, which is set as

29m . Let each of the white-noise spectral 
amplitudes that drive the random walk position 
states be sec/)sec/(003.0 2 radmS p . Also, let the 
clock model spectral amplitudes be 

sec)10(4.0 18
fS  and 118 sec)10(58.1gS . The 

measurement noise covariance matrix is given by
mmk I15R .

100 particles were used whenever the particle filter 
(for both EKPF and UPF) is used. For the two 
models of the IMM algorithms, two process noise 

covariance matrices are used: 88
small )31( IQ e
k

, smalllarge 5 kk
QQ . The mode transition matrix is 

given by 

99.001.0
01.099.0

                               (60) 

The UKF parameters are: 1 , 0 , 2 .
Figure 4 gives the results for the simulated case for 
various nonlinear filters, in single-model and IMM 
frameworks. The corresponding model probability is 
shown in Figure 5. Table 1 provides the comparison 
of position errors using nonlinear filters and IMM 
nonlinear filters for the simulation case. 

B. Road test. The road test was conducted in 
Hsinchu, Taiwan. The test drive results were 
obtained by post processing of logged sensor 
data using the Matlab  software. The GPS data 
was used as reference trajectory for comparative 
study on navigation performance for various 
dynamic environments using various nonlinear 
with/without IMM framework. The Micro-Electro-
Mechanical-Systems (MEMS) inertial sensors 
used were the BOSCH SMB380 Triaxial 
acceleration sensors and the XV–8000CB Ultra 
Miniature Size Vibration Gyro Sensors. The GPS 
data was collected at 1 Hz and the IMU has a 
data rate of 10 Hz. The driving speed is around 
16~25 km/hr for most of the time. Two process 
noise covariance matrices are used: 

smalllarge
kk

QQ 10

where 

3

2

1
small

0

0

Q
Q

Q
Q
k

, 331 )35( IQ e ,

332 )65( IQ e , 223 )35( IQ e .

In this experiment, Figure 6 shows the trajectory 
for the road test.
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Figure 3. Schematic illustration of simulated trajectory. 

Figure 4. Results for the simulated case. 
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Figure 5. Model probability. 

MSE ( 2m ) Time consumption 
(sec)North East 

EKF 2309.4 2573.9 2.781 

UKF 904.3693 1058.6 3.594 

EKPF 374.1817 326.4786 73.719 

UPF 89.6852 110.9177 297.515 

MSE ( 2m ) Time consumption 
(sec)North East 

IMM-EKF 1158.0 858.1319 9.969 

IMM-UKF 112.0694 96.6876 6.672 

IMM-EKPF 8.4843 15.6924 137.016 

IMM-UPF 2.1015 5.0883 588.000 

Table 1. Comparison of position errors using nonlinear filters and IMM  
nonlinear filters – simulation results. 

Figure 6. The trajectory for road test.
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The results are illustrated in Figure 7. Table 2 
shows comparison of position errors and 
computation time using various nonlinear filters 
and IMM nonlinear filters. When trials with sharp 
turns and abrupt maneuvers are performed, the 
performance enhancement becomes remarkable. 
It can also be seen that the computational load for 
the particle filter has been rapidly increased. The 
number of particles used in the test is 100. The 
number of sigma points in the UKF is 12n , which 
is 17 in this paper.

5. Conclusions 

This paper has presented comparative study on 
navigation performance for various nonlinear 
filters, including EKF UKF EKPF UPF.

Furthermore, the nonlinear filters have been 
incorporated into the interacting multiple model 
framework, resulting in the IMM-EKF IMM-UKF 
IMM-EKPF IMM-UPF algorithms. The problem of 
filter parametric adaptation can be regard as the 
generalization of structural adaptation. To solve 
the possible degradation problem caused by noise 
uncertainty and modeling error, the IMM algorithm 
can be employed for dynamically adjusting the 
process noise, and accordingly enhancing the 
estimation accuracy. However, selection of the 
nonlinear filters in the IMM framework leads to 
different levels of computational burden. The IMM-
PF requires significantly large computational time 
as compared to the other two algorithms. Trade-off 
needs to be made when selecting a suitable 
algorithm for a specific purpose.

Figure 7. Results for the road test. 
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