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We generalize to some PDEs a theorem by Eliasson and Nekhoro-
shev on the persistence of invariant tori in Hamiltonian systems
with r integrals of motion and n degrees of freedom, r � n. The
result we get ensures the persistence of an r-parameter family of r-
dimensional invariant tori. The parameters belong to a Cantor-like
set. The proof is based on the Lyapunov–Schmidt decomposition
and on the standard implicit function theorem. Some of the
persistent tori are resonant. We also give an application to the
nonlinear wave equation with periodic boundary conditions on a
segment and to a system of coupled beam equations. In the first
case we construct 2-dimensional tori, while in the second case we
construct 3-dimensional tori.
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1. Introduction

In the nineties Eliasson [13] and independently Nekhoroshev [18] proved a theorem on persistence
of invariant tori in Hamiltonian systems with symmetry (see also [3]). Such a theorem interpolates
between Poincaré’s theorem on persistence of periodic orbits and Arnold–Liouville theorem on the
structure of the phase space of integrable systems.

More precisely Eliasson–Nekhoroshev’s theorem pertains a system of r commuting Hamiltonians
H(1), . . . , H(r) in a 2n-dimensional phase space, n � r; assume (i) that there exists one r-dimensional
torus T

r
0 invariant under the flow of each of the Hamiltonians H (l) and (ii) that a suitable non-

resonance condition is fulfilled. Then Eliasson–Nekhoroshev’s theorem ensures that there exists a
2r-dimensional symplectic manifold N on which each system is integrable; in particular N is foli-
ated in r-dimensional tori which are invariant under the flow of each system. An application to some
infinite-dimensional systems was given in [8] where the existence of quasiperiodic breathers in some
chains of particles with symmetry was proved.
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In the present paper we extend Eliasson–Nekhoroshev’s theorem to a suitable class of Hamiltonian
PDEs and give applications to a nonlinear Klein–Gordon equation with periodic boundary conditions
on a segment and to a system of coupled beam equations. In the first case we construct 2-dimensional
tori, while in the second case we construct 3-dimensional tori.

The extension is far from trivial since the case of PDEs involves small denominators. To overcome
such a problem we have to impose (i) a quantitative nonresonance condition that generalizes the
assumption of Eliasson–Nekhoroshev’s theorem and (ii) a further nondegeneracy condition similar to
that used in KAM theory. Moreover, the proof we give here is completely different from the one
of [3] which was based on the use of generalized Poincaré sections. On the contrary the present
proof is based on the Lyapunov–Schmidt decomposition and on the use of a strong nonresonance
condition (see [2]) which allows to avoid KAM-type techniques. Indeed we only use the standard
implicit function theorem.

Related results were obtained in the papers [1,7,19] in which the authors exploited translation
invariance in order to construct some quasiperiodic solutions of the nonlinear wave equation. While
the theory of [1,7,19] is based on the structure of the wave equation, the theory we develop here
applies to the general case of commuting Hamiltonian systems, including the case where all the
Hamiltonians are nonlinear. Our theory however does not apply directly to the wave equation treated
in [1,7,19] since in that case our nonresonance assumption is violated.

We also recall that persistence of invariant tori in systems with symmetries is often studied by
passing to the reduced system and then using continuation techniques for periodic orbits of such a
reduced system (see e.g. [9,17]). Such techniques do not seem to be applicable to the case of PDEs
where often the orbits of the symmetry group are continuous but not differentiable (they are orbits
of a partial differential equation).

Persistence of invariant tori in Hamiltonian PDEs is usually obtained through KAM techniques (see
e.g. [4,5,10–12,14]). The main difference with the previous papers is that we deal here with systems
with symmetry. This allows to obtain persistence of invariant tori using just the standard implicit
function theorem based on the contraction mapping principle. Moreover the flow on the tori whose
existence is proved here is not necessarily ergodic. Actually, in the case of the wave equation we prove
the existence of some tori on which the flow is rational.

The paper is organized as follows. In Section 2 we state the main theorem of the paper, namely
the generalization to some PDEs of Eliasson–Nekhoroshev’s theorem. In Section 3 we give the proof
of the main theorem. Such a section is split into a few subsections. Finally in Section 4 we give the
application to the nonlinear wave and the nonlinear beam equation.

2. Statement of the main result

Fix r � 1; consider the spaces �2
s,σ of the sequences p = {p j} j�r+1 s.t.

‖p‖2
s,σ :=

∑
j

[ j]2se2σ j|p̂ j |2 < ∞, [ j] := max{1, j}, (2.1)

and define the phase spaces as

Ps,σ := U × T
r × �2

s,σ × �2
s,σ � (I, φ, p,q) ≡ z (2.2)

where U ⊂ R
r is open, T = R/Z. We endow Ps,σ with the norm (on the tangent space of Ps,σ )

‖z‖2
s,σ = ‖I‖2 + ‖φ‖2 + ‖p‖2

s,σ + ‖q‖2
s,σ . (2.3)

We will also use the weak scalar product

〈
(I, φ, p,q); (I ′, φ′, p′,q′)

〉 := r∑
j=1

(
I j I ′j + φ jφ

′
j

)+ ∑
j�r+1

(
p j p′

j + q jq
′
j

)
. (2.4)
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The open ball of radius R and center 0 in R
r , Ps,σ or �2

s,σ will be denoted by B R . Define the Poisson
tensor J by

J (I, φ, p,q) = (−φ, I,−q, p). (2.5)

Then, given a Hamiltonian function H on Ps,σ , we will denote by ∇H the gradient of H with respect
to the scalar product (2.4), namely

∇H :=
(

∂ H

∂ I
,
∂ H

∂φ
,
∂ H

∂ p
,
∂ H

∂q

)
, (2.6)

and by XH := J ∇H the Hamiltonian vector field.
In Ps,σ consider r Hamiltonian functions H(l)

μ , l = 1, . . . , r, of the form

H(l)
μ = Il +

∑
j�r+1

Ω
(l)
j

p2
j + q2

j

2
+ μF (l)

μ (z). (2.7)

When μ = 0 the submanifold

N := U × T
r × {0} × {0} (2.8)

is foliated in tori which are invariant under the flow of each of the Hamiltonians. We are interested
in the persistence of such tori as invariant tori of each of the Hamiltonians H (l)

μ , when μ is different
from zero.

Remark 2.1. Consider r commuting Hamiltonians K (1), . . . , K (r) , and assume that there exists a torus
which is invariant under the flow of each of the fields XK (l) . Assume also that the fields XK (l) are
linearly independent on such a torus. Then, working as in the proof of Arnold–Liouville theorem, one
can prove that, on the torus, the flow of each of the systems is quasiperiodic. Moreover, the torus is
invariant under the Hamiltonian flow of any Hamiltonian which is a linear combination of the K (l) ’s.

Remark 2.2. In the above situation, assume also that the invariant torus is elliptic for each flow. If
the phase space is finite-dimensional, then it can be shown [15] that there always exist coordinates
in which the Hamiltonians have the form

K (l) =
r∑

j=1

ω
(l)
j I j +

∑
j�r+1

ω
(l)
j

p2
j + q2

j

2
+ h.o.t., (2.9)

where h.o.t. are terms which are of higher order in I , p, q and depend on φ also. Then, one can
construct linear combination of the K (l) ’s having the form (2.7). So, in this case, it is equivalent to
consider the Hamiltonians (2.9) or the Hamiltonians (2.7). In [16] Kuksin studied in detail the case
of PDEs, showing that coordinates in which (2.9) holds exist also in quite general PDE cases. For this
reason here we will directly assume the form (2.7).

In what follows we will often omit the index μ of the Hamiltonians and of the functions F (l)
μ

provided this does not create ambiguities.
We assume that:

(A.1) For any μ small enough one has

{
H(l1)

μ ; H(l2)
μ

}= 0, ∀l1, l2 = 1, . . . , r. (2.10)
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(A.2) There exist d � 0 and s∗ ∈ R such that ∇ F (l)
μ ∈ C∞(Vs,σ , Ps+d,σ ) for all s > s∗ and for some

fixed σ � 0; here Vs,σ ⊂ Ps,σ is an open neighborhood of N .

Remark 2.3. In (A.2) we are assuming that the nonlinear part of the vector field is smoothing. Pre-
cisely we assume that the nonlinearity allows to gain d derivatives. This is typical when the system
comes from a second order in time equation.

We come now to the nonresonance assumption that generalizes to the case of PDEs Eliasson–
Nekhoroshev’s nonresonance assumption.

For γ > 0, τ ∈ R, and n := (n1, . . . ,nr) ∈ Z
r consider the set N (γ , τ ,n) of the (ε1, . . . , εr) ∈ R

r

such that

∣∣∣∣∣k −
r∑

l=1

(nl + εl)Ω
(l)
j

∣∣∣∣∣� γ

jτ
, ∀k ∈ Z, j � r + 1. (2.11)

(A.3) There exist n ∈ Z
r , τ � d and γ > 0 such that, for any open set O ⊂ R

r , whose closure contains
zero, one has that N (γ , τ ,n) ∩ O has zero as an accumulation point.

Remark 2.4. Assumption (A.3) means that, for some n the set of the frequencies which are suffi-
ciently nonresonant accumulates at the origin from any direction. Moreover we need τ � d, with d
the amount of smoothing of the nonlinear part of the vector field.

Finally we need a nondegeneracy condition. In order to state it we consider the average of the
nonlinearity under a suitable periodic flow. Let n ∈ Z

r be an integer vector. Define

Fn :=
r∑

l=1

nl F (l)
μ

∣∣
μ=0, (2.12)

and

〈Fn〉(a,ψ) := 1

2π

2π∫
0

Fn(a,nt + ψ,0,0)dt. (2.13)

First of all we have the following lemma which will play an important role in the proof of our
main result.

Lemma 2.1. For any n ∈ Z
r the function 〈Fn〉(a,ψ) is independent of ψ .

Proof. The proof is based on a representation formula for the functions F (l)
0 that we are now going to

derive. First remark that assumption (A.1), written explicitly, takes the form

0 = μ

[
∂ F (l1)

μ

∂φl2
− ∂ F (l2)

μ

∂φl1

]
+ μ

{
H(l1)

T ; F (l2)
μ

}+ μ
{

F (l1)
μ ; H(l2)

T

}+ μ2{F (l1)
μ ; F (l2)

μ

}
(2.14)

where we denoted

H(l)
T :=

∑
j�r+1

Ω
(l)
j

p2
j + q2

j

2
.
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Restrict Eq. (2.14) to the manifold N . The terms containing H (l)
T vanish since they are at least linear in

p and q. Thus on this submanifold Eq. (2.14) takes the form

∂ F (l1)
μ

∂φl2
− ∂ F (l2)

μ

∂φl1
= −μ

{
F (l1)
μ ; F (l2)

μ

}
. (2.15)

Evaluating at μ = 0 one gets

∂ F (l1)
0

∂φl2
− ∂ F (l2)

0

∂φl1
= 0. (2.16)

Using the fact that the generators of the first cohomological class of the torus are dφl , l = 1, . . . , r, one
has that there exists a function V on T

r parametrically depending on I , and a set of functions cl(I),
independent of φ, such that

F (l)
0 (I, φ) = ∂V

∂φl
+ cl(I). (2.17)

Inserting such a representation formula in the definition of 〈Fn〉 one gets that such a function is the
sum of two terms, one of which is independent of φ. The other term contains V and is proportional
to

∑
l

2π∫
0

nl
∂V

∂φl
(nt + ψ, I)dt =

2π∫
0

d

dt
V (nt + ψ, I)dt = V (n2π + ψ) − V (ψ) = 0 (2.18)

which implies that 〈Fn〉(I,ψ) =∑l nlcl(I). �
For this reason we will simply write 〈Fn〉(a,ψ) ≡ 〈Fn〉(a).

(A.4) There exists n ∈ Z
r such that (A.3) is fulfilled and

det

(
∂2〈Fn〉

∂a2
(a)

)
�= 0, ∀a ∈ U , (2.19)

and ∂〈Fn〉
∂a : U → R

r is a 1–1 map.

Remark 2.5. In applications the frequencies often depend on an external parameter m. Maybe as-
sumption (A.4) can be substituted by a weak nondegeneracy assumption for such a dependence (see
e.g. [20]). We did not succeed in completing the proof with such a weaker assumption. This is due to
the fact that the solution of Eq. (3.23) below is usually not a Lipschitz function of ε ∈ N .

Fix a set U ′ whose closure is contained in U . Define

A(n) :=
⋃

|μ|<1

⋃
a∈U ′

{
−μ

∂〈Fn〉
∂a

(a)

}
⊂ R

r (2.20)

and assume that this is an open set. Since it has zero as an accumulation point, it has a nonempty
intersection with N := N (γ , τ ,n). For any μ consider the set A(n) ∩ N ∩ Bμ . Moreover, for any
ε ∈ A(n) ∩ N ∩ Bμ define a∗(ε/μ) as the solution of

ε = −∂〈Fn〉
(a∗). (2.21)
μ ∂a
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We use it to define a reference torus

Tε,0 :=
⋃

ψ∈Tr

{
(a∗,ψ,0,0)

}
. (2.22)

Then we have the following theorem.

Theorem 2.1. Fix σ , then for any s > s∗ there exist two constants μ∗ and C such that the following holds. For
any |μ| < μ∗ , any ε ∈ A ∩ N ∩ Bμ , there exists a smooth torus Tε,μ ⊂ Ps,σ which is invariant under the

flow of the Hamiltonian vector fields of each of the Hamiltonians H (l)
μ . Moreover one has

d(Tε,μ,Tε,0) < Cμ (2.23)

where d(.,.) denotes the Hausdorff distance in Ps,σ .

Remark 2.6. As in the first step of the proof of Arnold–Liouville’s theorem one has that the flow of
each of the Hamiltonians on the torus Tε,μ is the Kronecker linear flow.

Remark 2.7. From the proof it will also turn out that the flow of

H̃μ :=
∑

l

(nl + εl)H(l)
μ (2.24)

on Tε,μ is periodic of period 2π and has trajectories homotopic to the curve φ(t) = nt .

In all the applications we know one is interested in the dynamics of one system while the other
Hamiltonians are just the generators of the linear symmetries of the system. In such a case we also
compute the frequencies of the dynamics on the torus.

Precisely assume that there exist r − 1 independent linear combinations K (2), . . . , K (r) of the func-
tions H(l)

μ which are of the form

K (l) =
r∑

j=1

ω
(l)
j I j +

∑
j�r+1

ω
(l)
j

p2
j + q2

j

2
(2.25)

(no nonlinear part) and have the property that the flow of each of these Hamiltonians is periodic
with period 2π . Since these functions have no nonlinear part, the validity of assumption (A.4) im-
plies that

∑
l nl H

(l)
μ and the functions K (l) are independent. It follows that a system of r independent

Hamiltonians in involution is given by H̃μ, K (2), . . . , K (l) . It is thus immediate to obtain the following
corollary.

Corollary 2.2. Given an arbitrary vector α = (α1, . . . ,αr) ∈ R
r consider the Hamiltonian Hα

μ := α1 H̃μ +∑r
l=2 αl K (l) . The flow of Hα

μ on Tε,μ is a Kronecker flow with frequency vector α.

Remark 2.8. In application this property will allow to give a simple proof of the fact that tori corre-
sponding to different values of ε are actually different.
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3. Proofs

Remark 3.1. Fix an integer vector n such that assumptions (A.3), (A.4) hold. Make the change of
variables

Î1 :=
∑

l

nl Il, Î j = I j, j = 2, . . . , r,

and complete it to a canonical transformation. Define

Ĥ(1) :=
r∑

l=1

nl H
(l) (3.1)

=
r∑

l=1

nl Il +
∑

j�r+1

r∑
l=1

nlΩ
(l)
j

p2
j + q2

j

2
+ μFn (3.2)

= Î1 +
∑

j�r+1

Ω̂
(1)
j

p2
j + q2

j

2
+ μ F̂1. (3.3)

Thus the system of Hamiltonians Ĥ(1), H(2), . . . , H(r) fulfills the assumptions (A.3) and (A.4) with
n = e1.

For this reason the proof will be carried out in the case where (A.3) and (A.4) are fulfilled
with n = e1. Moreover, from now on we fix the values of γ and τ , and we will simply write N instead of
N (γ , τ ,e1).

In the following we will denote by Φ
tl
μ,l the time tl flow of the Hamiltonian vector field X

H(l)
μ

.

Moreover, following the standard notation we will use the notation

Φ
(t1,...,tr)
μ := Φ

t1
μ,1 ◦ · · · ◦ Φtr

μ,r . (3.4)

Φt is an action of R
n on Ps,σ .

The first (and main) step of the proof consists in looking for r-tuples (ε1, . . . , εr) and for initial
data z0 such that the function

zμ(t) := Φ
(1+ε1)t,ε2t,...,εrt
μ (z0) (3.5)

is periodic of period 2π . Moreover, we will assume that (3.5) is contained in a neighborhood of order
μ of a suitable reference periodic function.

A function of the form (3.5) is a solution of the Hamiltonian system

H̃ := (1 + ε1)I1 + ε2 I2 + · · · + εr Ir +
∑

j�r+1

Ω̃ j(ε)
p2

j + q2
j

2
+ μ F̃μ(z) (3.6)

where

Ω̃ j(ε) := (1 + ε1)Ω
(1)
j +

r∑
l=2

εlΩ
(l)
j , F̃μ := (1 + ε1)F (1)

μ +
r∑

l=2

εl F (l)
μ ;

so we will actually look for a periodic solution of such a Hamiltonian system.
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We will show that such periodic solutions form a torus, and subsequently we will show that such
a torus is actually invariant under the flow of each one of the Hamiltonian systems H (l)

μ .
To come to a precise statement consider again a∗(ε/μ), namely the solution of (2.21) with n = e1.

Correspondingly we define the reference periodic function

z0,ψ (t) = (a∗,e1t + ψ,0,0) ⊂ N. (3.7)

Then we need to measure the distance between periodic functions. Thus consider the space Hs,σ :=
H1(T;R

r × R
r × �2

s,σ × �2
s,σ ) of the H1 periodic functions of period 2π taking values in the covering

space of the phase space. In such a space we will use the norm

‖ζ‖2
T ,s,σ :=

π∫
−π

∥∥ζ(t)
∥∥2

s,σ dt +
π∫

−π

∥∥ζ̇ (t)
∥∥2

s,σ dt. (3.8)

Then we consider the space of the functions of the form

z(t) = (I(t),e1t + φ(t), p(t),q(t)
)= (0,e1t,0,0) + ζ(t), (3.9)

with ζ(t) = (I(t),φ(t), p(t),q(t)) ∈ Hs,σ . The space of the functions of the form (3.9) will be symboli-
cally denoted by e1t + Hs,σ . Moreover in e1t + Hs,σ we will use the topology induced by the distance
introduced by the norm of Hs,σ .

Lemma 3.1. Fix σ , then, for any s > s∗ there exist two constants μ∗ and C such that the following holds.
For any |μ| < μ∗ , any ε ∈ A(e1) ∩ N ∩ Bμ , and any ψ ∈ T

r , there exists a unique 2π periodic function
zε
μ,ψ (t) ∈ e1t + Hs,σ of the form (3.5) fulfilling

∥∥z0,ψ − zε
μ,ψ

∥∥
T ,s,σ � Cμ (3.10)

and

zε
μ,ψ (0) = (I(0),ψ, p(0),q(0)

)
,

i.e. the initial datum for the component on T
r is exactly ψ . Moreover the map (μ,ψ) �→ zε

μ,ψ ∈ e1t + Hs,σ

is C∞ .

The proof of this lemma consists of several steps and is contained in the next subsection.

3.1. Proof of Lemma 3.1

As usual when dealing with the construction of periodic solutions in systems having some integrals
of motion the situation is quite delicate. Thus, instead of looking for periodic solutions of H̃ , cf. (3.6),
we look for constants βl and for periodic solutions of the system

ż = XH̃ (z) +
r∑

l=1

βl∇I (l)(z), (3.11)

where I (l)(z) := Il . This is possible in view of the following lemma.
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Lemma 3.2. Consider a function z ∈ e1t + Hs,σ , s > s∗ . Then there exists a μ∗ > 0 such that, if z(t) ∈ Vs,σ

(cf. (A.2)), ∀t, and if |μ| < μ∗ , then (z(t), β) is a solution of the system (3.11) if and only if β = 0 and z(t) is a
periodic solution of the system

ż = XH̃ (z).

Proof. Assume that z(t) is a periodic solution of (3.11), and apply dH (l1)(z(t)) to (3.11). One has

dH(l1)
(
z(t)

)
ż = dH(l1) XH̃ +

r∑
l=1

βldH(l1)∇I (l)(z)

= {H(l1); H̃
}+

r∑
l=1

βl
〈∇H(l1);∇I (l)〉

=
r∑

l=1

βl
〈∇H(l1);∇I (l)〉= r∑

l=1

βl
∂ H(l1)

∂ Il

=
r∑

l=1

βl

(
δl,l1 + μ

∂ F (l1)

∂ Il

)
.

Take the integral over 2π of such an equation, and notice that the left-hand side is the time derivative
of H(l1)(z(t)), which by assumption is a periodic function, thus we get

0 =
r∑

l=1

βl

[ 2π∫
0

(
δl,l1 + μ

∂ F (l1)

∂ Il

(
z(t)

))
dt

]
. (3.12)

Then, for μ small enough the square bracket is an invertible matrix, and therefore (3.12) implies
β = 0. �

We look now for β , ε and a periodic solution z(t) ∈ e1t + Hs,σ of (3.11). Write z(t) = (0,e1t,0,0)+
ζ(t) with ζ ≡ (I(t),φ(t), p(t),q(t)) ∈ Hs,σ ; substituting in (3.11) one gets the system:

Lεζ = Θ(ζ, ε,β,μ), (3.13)

where the operator Lε is defined by

Lε

⎛
⎜⎝

I j
φ j
p j
q j

⎞
⎟⎠=

⎡
⎢⎢⎣

d
dt 0 0 0

0 d
dt 0 0

0 0 d
dt Ω̃ j(ε)

0 0 −Ω̃ j(ε) d
dt

⎤
⎥⎥⎦
⎛
⎜⎝

I j
φ j
p j
q j

⎞
⎟⎠ (3.14)

and Θ is a nonlinear operator

Θ : Hs,σ × R
r × R

r × R → Hs+d,σ (3.15)

(ζ, ε,β,μ) �→ ζ ′ ≡ Θ(ζ, ε,β,μ) (3.16)

with ζ ′(t) = (I ′(t),φ′(t), p′(t),q′(t)) defined by
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I ′j(t) = −μ
∂ F̃

∂φ j

(
ζ(t)

)+ β j, φ′
j(t) = ε j + μ

∂ F̃

∂ I j

(
ζ(t)

)
, (3.17)

p′
j(t) = −μ

∂ F̃

∂q j

(
ζ(t)

)
, q′

j = μ
∂ F̃

∂ p j

(
ζ(t)

)
. (3.18)

Remark 3.2. Since Hs,σ is an algebra, by assumption (A.2) the operator Θ is a smooth map from
Hs,σ → Hs+d,σ for all s > s∗ .

We solve the system (3.13) by using Lyapunov–Schmidt decomposition. It is easy to see that the
kernel of L0 := Lε |ε=0 is given by the space of the constant functions of the form (a,ψ,0,0), while
its range is the space Rs,σ of the functions w(t) ≡ ( J (t), θ(t), p(t),q(t)) ∈ Hs,σ with J (t), θ(t) having
zero average.

We project our system of equations on the two subspaces Rs,σ and K . Correspondingly we also
decompose the unknown as ζ(t) = (a,ψ,0,0) + w(t), w ∈ Rs,σ .

Denote by P the projector on Rs,σ , and by Q the projector on K . Explicitly Q acts by putting
equal to zero the p and q components of ζ and by taking the average of the first two components.
Thus the system (3.13) decomposes into the range equation

Lε w = PΘ
(

w + (a,ψ,0,0), ε,β,μ
)
, (3.19)

and the kernel system

0 = −μ

〈
∂ F̃

∂φ j

(
w(t) + (a,e1t + ψ,0,0)

)〉+ β j, (3.20)

0 = ε j + μ

〈
∂ F̃

∂ I j

(
w(t) + (a,e1t + ψ,0,0)

)〉
, (3.21)

where we denoted by 〈.〉 the operation of taking the average, for example

〈 J j〉 = 1

2π

2π∫
0

J j(t)dt. (3.22)

First fix ε ∈ N and an open set U ′′ ⊃ U ′ , with closure contained in U . We fix a ∈ U ′′ , β in a neighbor-
hood of zero and ψ ∈ T

r and we solve the system (3.19) getting a solution wε(μ,a,ψ) which turns
out to be independent of β . Then we substitute in the system (3.20)–(3.21) and we solve it.

Consider (3.19); we have that under the assumption (A.3) the operator Lε admits an inverse which
is bounded as an operator from Rs+τ ,σ to Rs,σ . Precisely the following lemma holds.

Lemma 3.3. Let w ∈ Rs+τ ,σ , fix ε ∈ N then there exists a unique w ′ ∈ Rs,σ such that

Lε w ′ = w, (3.23)

moreover one has

‖w ′‖T ,s,σ � 1

γ
‖w‖T ,s+τ ,σ . (3.24)
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Proof. Notice that the operator Lε is block diagonal. Denote w = ( J j, θ j, p j,q j) and similarly for w ′ ,
expand each of the components of w in time Fourier series, i.e. write

J j(t) = 1√
2π

∑
k

J jkeikt (3.25)

and similarly for all the other components. One has that the system (3.23) is equivalent to the system

ik J ′
jk := J jk, ikθ ′

jk := θ jk, j = 1, . . . , r, k �= 0, (3.26)[
ik Ω̃ j

−Ω̃ j ik

](
p′

jk

q′
jk

)
=
(

p jk
q jk

)
, j � r + 1, k ∈ Z. (3.27)

Notice also that in terms of the Fourier variables the norm takes the form

‖w‖2
T ,s,σ =

∑
k

(
1 + k2)[ r∑

j=1

(| J jk|2 + |θ jk|2
)+ ∑

j�r+1

(|p jk|2 + |q jk|2
)[ j]2se2σ |k|

]
. (3.28)

It is immediate to solve the two equations (3.26). To solve (3.27) one can simply observe that the
matrix defining such a system has eigenvalues and eigenvectors given by

λkj = i
(
k ± Ω̃ j(ε)

)
,

1√
2

(
1
±i

)
. (3.29)

In particular the two eigenvectors are orthogonal to each other and independent of k and j. With this
information it is easy to construct and estimate the solution of (3.27) getting

∥∥(p′,q′)
∥∥

T ,s,σ �
∥∥(p,q)

∥∥
T ,s+τ ,σ

sup
jk

[
1

jτ |i(k ± Ω̃ j(ε))|
]
. (3.30)

If ε ∈ N then the argument of the supremum is estimated by

1

jτ |k ± Ω̃ j(ε)| � jτ

jτ γ
= 1

γ
.

Adding the trivial estimate of J ′ and of θ ′ one gets the thesis. �
According to the previous lemma one can define L−1

ε which is bounded as an operator from Rs+τ ,σ

to Rs,σ . It follows that one can rewrite the system (3.23) as a fixed point problem, namely

w = L−1
ε PΘ

(
w + (a,ψ,0,0), ε,β,μ

)≡ μFε(w,μ,a,ψ) (3.31)

where F , is a map which, for fixed ε ∈ N , is a smooth map from Rs,σ × (−μ∗,μ∗)× U ′′ ×T
r to Rs,σ .

We factorized a μ in front of F , since it explicitly appears in the form of PΘ and eliminated β since
PΘ is independent of it.

So one can apply the implicit function theorem in order to get the following corollary.

Corollary 3.1. Fix s > s∗ and σ , then, for any ε ∈ N there exists a function w(μ,a,ψ) which solves the system
(3.31). Moreover it is C∞ as a map from (−μ∗,μ∗) × U ′′ × T

r to Rs,σ , and fulfills the inequality∥∥w(μ,a,ψ)
∥∥

T ,s,σ � μC (3.32)

for all (μ,a,ψ) in the considered domain.
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Then we substitute such a solution in (3.20)–(3.21) and we solve such a system. Since w does not
depend on β , the solution of (3.20) is immediate. The solution of (3.21) is slightly more difficult since
w does not depend smoothly on ε and moreover it is defined only for ε in the set N . For this reason
we proceed as in [2], i.e. we fix ε ∈ N and we look for a vector a = aε(μ,ψ) which fulfills such an
equation.

We have the following lemma.

Lemma 3.4. There exists a positive μ∗ such that for any |μ| < μ∗ the following holds. For any ε ∈ A ∩ N ∩ Bμ

there exists a unique smooth function α ε
μ
(μ,ψ) such that

a = a∗ + μα ε
μ
(μ,ψ) (3.33)

solves Eq. (3.21).

Remark 3.3. The function α is not smooth in ε/μ.

Proof. First notice that from (3.32) one has

〈
∂ F̃

∂ I j

(
(a,e1t + ψ,0,0) + w(μ,a,ψ, t)

)〉=
〈
∂ F̃

∂ I j
(a,e1t + ψ,0,0)

〉
+ μG(a,ψ,μ)

with G(a,ψ,μ) a suitable smooth function. Thus the above expression is equal to

1

2π

2π∫
0

∂ F̃

∂ I j
(a,e1t + ψ,0,0)dt + μG(a,ψ,μ) = ∂〈 F̃ 〉

∂a j
(a) + μG(a,ψ,μ) (3.34)

where of course

〈 F̃ 〉(a) = 1

2π

2π∫
0

F̃ (a,e1t + ψ,0,0)dt.

Write a = a∗ + μα, thus we have to solve

0 = ε

μ
+ ∂〈 F̃ 〉

∂a j
(a∗ + μα) + μG(a∗ + μα,ψ,μ) =: L(ρ,μ,α,ψ)

for a fixed value of the parameters ρ := ε
μ . Due to the definition of a∗ we have

∥∥L(ρ,μ,α,ψ)
∥∥� Cμ.

Moreover one has that ∂L
∂α � ∂2〈 F̃ 〉

∂α2 is invertible with inverse having norm independent of μ. Then the

implicit function theorem ensures the result.1 �
1 Actually one needs a small variant of the standard implicit function theorem, since we do not know any solution of the

equation L = 0. However the standard proof based on the contraction mapping theorem allows one to prove that the implicit
function exists also in this case.
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End of the proof of Lemma 3.1. Thanks to Lemma 3.4 we have constructed the unique periodic func-
tion of the form (3.5) belonging to e1t + Hs,σ which is μ close to z0,ψ and such that the average of
the angular component φ is equal to ψ . In order to get Lemma 3.1 it is enough to show that there is a
1–1 correspondence between the average and the initial datum for the angular component. This is an
immediate consequence of the trivial relation

φ(0) = ψ + θ(0), (3.35)

and of the fact that θ(0) is a smooth function of ψ and has size smaller than μ. Thus from the
implicit function theorem one can calculate the average ψ as a unique smooth function of φ(0). This
concludes the proof. �
3.2. End of the proof of Theorem 2.1

Fix |μ| < μ∗ and ε ∈ A ∩ N ∩ Bμ . Consider the torus

Tε,μ :=
⋃

ψ∈Tr

{
zε
μ,ψ (0)

}
(3.36)

where zε
μ,ψ (t) is the periodic solution of H̃ constructed in Lemma 3.1. Moreover one has an important

uniqueness property ensuring that there are no other periodic solutions of H̃ close to such a torus.
We exploit now such a uniqueness property in order to prove the following lemma which is the last
step for the proof of Theorem 2.1.

Lemma 3.5. The torus Tε,μ is invariant under the flow of the Hamiltonian vector fields of each of the func-

tions H(l)
μ .

Proof. Fix z ∈ Tε,μ , and a neighborhood U0 ⊂ R
r of zero. Consider the set

S :=
⋃

ϕ∈U0

Φ
ϕ
μ(z). (3.37)

Since Φ
ϕ
μ commutes with the flow of H̃ , all the points of S give rise to periodic orbits of H̃ . Moreover

S and Tε,μ have at least z (and the periodic orbit it generates) in common. But there are no initial
data outside Tε,μ and close to it, which give rise to periodic solutions of H̃ (uniqueness property of
the torus). It follows that S ⊂ Tε,μ. So this property implies the thesis. �
4. Applications

4.1. Two-dimensional tori in a nonlinear wave equation

Consider the nonlinear wave equation

utt − uxx + mu = f (u), x ∈ T ≡ R

2πZ
, (4.1)

where f is a smooth function having a zero of order higher than 1 at the origin. For simplicity we
will consider explicitly only the case f (u) = −u3. We will construct small amplitude invariant tori of
dimension 2 exploiting the invariance of the equation under translations.
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Eq. (4.1) is Hamiltonian with Hamiltonian function

K (1)(U , u) =
π∫

−π

[
U 2 + u2

x + mu2

2
+ u4

4

]
dx (4.2)

where U ≡ u̇ is the momentum conjugated to u. Translations in T are generated by the Hamiltonian

K (2)(U , u) =
π∫

−π

Uxu dx (4.3)

which commutes with K (1) . To fit the scheme of the previous section we have to introduce suitable
variables. First introduce the Fourier basis ê j(x) by

ê j(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos( jx)√
π

if j > 0,

sin(− jx)√
π

if j < 0,

1√
2π

if j = 0.

(4.4)

Notice that ∂xê j = − jê− j and introduce variables u j , U j by

u(x) =
∑
j∈Z

u j√
ω j

ê j(x), U (x) =
∑
j∈Z

√
ω j U j ê j(x), (4.5)

where

ω j =
√

j2 + m. (4.6)

Then we introduce the variables p j,q j by

u j = p j + q− j√
2

, U j = p− j − q j√
2

, j �= 0, (4.7)

and p0 = U0, q0 = u0. It is easy to check that these are canonical variables and that the Hamiltonians
take the form

K (1) =
∑
j∈Z

ω j

p2
j + q2

j

2
+ F , (4.8)

K (2) =
∑
j∈Z

j
p2

j + q2
j

2
(4.9)

where

F :=
π∫

−π

u4

4
dx (4.10)

has to be thought as a function of the variables p,q.
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Then we rescale the variables introducing the small parameter μ by defining p = √
μp̃, q = √

μq̃,
we rewrite the Hamiltonians in terms of such variables, and omit tildes.

We fix two modes of the linear systems and we continue to the nonlinear system the family of
invariant tori formed by the superposition of the linear oscillations involving only such two modes.
Just to be determined (and because the computations turn out to be simple) we take the two modes
with indexes 1 and −1.

Finally we introduce the action angle variables for the two considered modes by defining the
actions

I1 = p2
1 + q2

1

2
, I−1 = p2−1 + q2−1

2
,

and the corresponding angles. So the two Hamiltonians K (1), K (2) turn out to have the form (2.9).
A simple computation shows that the two functions

H(1) = K (1) + ω1 K (2)

2ω1
, H(2) = K (1) − ω1 K (2)

2ω1
(4.11)

have the structure (2.7), suitable for the application of Theorem 2.1. In particular the frequencies are

Ω
(1)
± j = ω j ± jω1

2ω1
, Ω

(2)
± j = ω j ∓ jω1

2ω1
, j � 0, j �= 1. (4.12)

The nonlinearities are F (1) = F (2) = F/2ω1. We fix the domain U to be the open set (0,+∞) ×
(0,+∞). We fix the indexes of the phase space to be some arbitrary σ > 0 and some s > 1/2. Then,
by the Sobolev embedding theorem the nonlinearity fulfills assumption (A.2) with d = 1. We come to
the nonresonance assumption (A.3). It turns out that it is convenient to choose n1 = n2 = 1. We have
the following

Lemma 4.1. There exists an uncountable dense subset S of (−1, 4
3 ), with zero measure, such that, if m ∈ S

then property (A.3) holds with τ = 1 and a positive γ = γ (m). Fix m ∈ S , denote by N0 the intersection of
the set N with a given neighborhood of the origin. Then N0 is uncountable; as (ε1, ε2) ≡ ε varies in N0 , the
quantity ε1 − ε2 assumes uncountably many values, but also rational values.

Remark 4.1. The quantity ε1 − ε2 is important since it will be the ratio between the two frequencies
of motion on the invariant torus.

Proof. One has, for j � 0,

Ω̃± j := (1 + ε1)Ω
(1)
± j + (1 + ε2)Ω

(2)
± j = ω j

ω1

(
1 + ε1 + ε2

2

)
± ε1 − ε2

2
j

=
(

1

ω1

(
1 + ε1 + ε2

2

)
± ε1 − ε2

2

)
j + m

ω j + j
.

Consider first the case ε1 = ε2 = 0. We construct a set S0 such that, if m ∈ S0 then Ω̃ j ≡ ω j
ω1

fulfills

|k − Ω̃ j | � γ

| j| , ∀k, j, with |k|, | j| � J∗, γ = 1

6
(4.13)

and J∗ a large number. We follow closely the construction of [6], proof of Lemma 3.1. Fix
m̄ ∈ (−1,4/3) and δ > 0; we construct uncountably many values of m which are δ close to m̄ and
such that (4.13) holds. Consider ω1(m) := √

1 + m, and ν(m) := [ω1(m)]−1, ν̄ := ν(m̄). Notice that
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there is 1–1 correspondence between m and ν . Consider the continued fraction expansion of ν̄ . Fix
some large integer Q and consider the set Sν of the ν ’s obtained by substituting the terms of index
larger than Q in the continued fraction expansion of ν̄ , with an infinite sequence of 0,1. If Q is
large enough then Sν is contained in an arbitrarily small ball centered at ν̄ . By standard continued
fractions theory one has that if ν ∈ Sν , then

|k − ν j| � γ ′

j
, ∀ j > J∗, ∀k ∈ Z, γ ′ = 1

3
,

where J∗ depends on Q . Denote by S0 the preimage of Sν under the map m �→ ν(m), and assume
that Q is so large that S0 is contained in a ball of radius δ centered at m̄. Thus, taking into account
also the quantity m/(ω j + j), we have that, for m ∈ S0,

|k − Ω̃ j | � γ

j
, ∀ j > J∗, ∀k.

Finally we take out of S0 the set of the m’s such that k − Ω̃ j = 0 for some j � J∗ , k ∈ Z. This is a
finite set since ν is an analytic function of m. Thus the remaining set is contained in a ball of radius
δ centered at m̄, and it is uncountable. The union of such sets over all the points m̄ is by definition
the set S .

We discuss now the case ε �= 0. Fix m ∈ S , denote

ε+ := ε1 + ε2

2
, ε− := ε1 − ε2

2
,

ν+ = ν(1 + ε+) + ε−, ν− = ν(1 + ε+) − ε−,

and notice that

Ω̃± j = jν± + m

ω j + j
, j � 0.

The maps (ε1, ε2) �→ (ε+, ε−) �→ (ν+, ν−) are 1–1. Consider the set N1 of the couples ε1, ε2 such that
ν+ and ν− have a continued fraction expansion [a1,a2, . . .] with a j � 1 for j large enough. Since
the couples of (ν+, ν−) belonging to an arbitrary neighborhood of (ν, ν) are uncountable, the same
property holds for N1. The result on the existence of rational values of ε− = ε1 − ε2 is obtained by
fixing ε+ in such a way that ν(1 + ε+) is of constant type, and by noticing that both ν+ and ν−
remain of constant type when ε− is a rational number. Thus in N1 one has

∣∣k − Ω̃ j(ε)
∣∣� γ

j
, ∀ j > J∗, ∀k.

To deal with the smaller values of j consider the (finite) set of functions

j
(
k − Ω̃ j(ε)

)
, j � J∗, k � K∗,

they are different from zero at ε = 0, so there exists a neighborhood of 0 such that they remain
different from zero. The set N is the intersection of N1 with such a neighborhood of zero. �

Finally we have to prove that the nondegeneracy assumption (A.4) holds. To this end we have to
compute the function Fn and its average.

First of all we need to compute the flow over which we have to average. This is easily done by
going back through the changes of variables we did. Thus one gets
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u(a,nt,0,0) = √
a−1

cos(x − t)√
π

+ √
a1

sin(x + t)√
π

.

Inserting in F , in Fn and computing 〈Fn〉 one gets that such a function is proportional (through a
nonvanishing constant) to

a2
1 + 4a1a−1 + a2−1 (4.14)

which is a nondegenerate quadratic form, and thus property (A.4) holds.
Thus we can apply the general theory and get quasiperiodic solutions in the nonlinear wave equa-

tion. In order to get a slightly more global description it is convenient to scale back the variables
eliminating the parameter μ. We formulate the result for the nonlinear wave equation in terms of
the original amplitudes A = μa.

Consider the set

A∗ :=
⋃

A∈(0,∞)×(0,∞)

{
−∂〈F(1,1)〉

∂a
(A)

}
(4.15)

and, for ε ∈ A∗ , denote by A∗(ε) the unique solution of

ε = −∂〈F(1,1)〉
∂a

(A),

and by Tε,∗ the torus p = q = 0, I = A∗, φ ∈ T
2.

Theorem 4.1. Fix m ∈ S . There exists a positive μ∗ with the following property: for any ε ∈ N ∩ Bμ∗ ∩ A∗
there exists a unique invariant torus Tε such that:

1. The flow on Tε has frequencies

(
ω1

1 + ε1+ε2
2

,− ω1

1 + ε1+ε2
2

ε1 − ε2

2

)
. (4.16)

2. One has

d(Tε,Tε,∗) � C
∥∥A∗(ε)

∥∥2
. (4.17)

Proof. We apply Theorem 2.1. To this end we must use the variables a and the parameter μ. For fixed
ε define μ := ‖A∗(ε)‖, and fix the set U ′ to be the spherical shell ‖a‖ = 1. Then using the notation
of Section 2 one has a∗(ε/μ) = A∗(ε)/μ. Then remark that in this case one has

K (1) = ω1

1 + ε1+ε2
2

(
H̃ − ε1 − ε2

2
K (2)

)
.

Thus the application of Theorem 2.1 and Corollary 2.2 immediately gives the result. �
Remark 4.2. Since the map that associates the frequencies to ε is 1–1 it follows that

ε �= ε′ �⇒ Tε ∩ Tε′ = ∅.

Remark 4.3. The ratio between the two frequencies of motion on Tε is (ε1 − ε2)/2. Since such a
quantity varies in an uncountable set, the flow is dense on many of the tori Tε . But there are also
some tori on which ε1 − ε2 is rational, thus we have also proved the persistence of some resonant
tori, a phenomenon that does not occur when applying KAM theory.
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4.2. A beam vibrating in 2 directions

As a second example we consider the system of coupled equations

utt + uxxxx − mu = −u f
(
u2 + v2

)
,

vtt + vxxxx − mv = −v f
(
u2 + v2

)
,

x ∈ T. (4.18)

This can be thought as a model of a beam which can oscillate in the y and in the z directions.
u represents the displacement in the y direction and v the displacement in the z direction. In the
case of negative m the terms mu and mv can be interpreted as centrifugal forces due to the fact that
the beam is actually rotating with a constant velocity around its axis. To be determined here we will
just consider the case f (s) = s.

(4.18) is a Hamiltonian system with Hamiltonian function

K (1)(U , V , u, v) =
π∫

−π

[
U 2 + u2

xx + mu2 + V 2 + v2
xx + mv2

2
+ (u2 + v2)2

4

]
dx, (4.19)

where U is the momentum conjugated to u and V the momentum conjugated to v . There are two
symmetries, namely the translations in the torus and the rotations in the plane yz. They are generated
by the two Hamiltonians

K (2)(U , V , u, v) =
π∫

−π

(Uxu + V x v)dx, K (3)(U , u) =
π∫

−π

(U v − V u)dx. (4.20)

We have to introduce suitable coordinates. First introduce the Fourier variables (U j, V j, u j, v j) as

in the case of the nonlinear wave equation (with ω j =√
j4 + m), then make the coordinate transfor-

mation (for j �= 0)

u j = P1, j + Q 1,− j√
2

, U j = P1,− j − Q 1, j√
2

, (4.21)

v j = P2, j + Q 2,− j√
2

, V j = P2,− j − Q 2, j√
2

, (4.22)

which transforms the Hamiltonians to

K (1) =
∑
j∈Z

ω j

P 2
1, j + Q 2

1, j + P 2
2, j + Q 2

2, j

2
+ F (u, v),

K (2) =
∑
j∈Z

j
P 2

1, j + Q 2
1, j + P 2

2, j + Q 2
2, j

2
,

K (3) =
∑
j∈Z

P1, j Q 2, j − P2, j Q 1, j,

where we denoted

F (u, v) =
π∫

(u2 + v2)2

4
dx. (4.23)
−π
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Then for all j’s make the further change of variables

Q 1, j = p1, j + q2, j√
2

, P1, j = p2, j − q1, j√
2

, (4.24)

Q 2, j = p2, j + q1, j√
2

, P2, j = p1, j − q2, j√
2

, (4.25)

which gives the Hamiltonians the form

K (1) =
∑
j∈Z

ω j

( p2
1, j + q2

1, j

2
+ p2

2, j + q2
2, j

2

)
+ F (u, v), (4.26)

K (2) =
∑
j∈Z

j

( p2
1, j + q2

1, j

2
+ p2

2, j + q2
2, j

2

)
, (4.27)

K (3) =
∑
j∈Z

p2
1, j + q2

1, j

2
− p2

2, j + q2
2, j

2
. (4.28)

Then we proceed as in the wave equation: we scale the variables, by p = √
μp̃,q = √

μq̃ and we omit
tildes.

We fix now three modes that will be nonvanishing on the invariant torus of the linearized system.
Just to give an example we fix the modes (p1, j,q1, j) with j = 1,2,3. We introduce action angle

variables (I j, φ j), j = 1,2,3, for such modes and look for the linear combinations of the Hamiltonians
having the form (2.7). They are given by

H(1) = K (1) + (ω2 − ω3)K (2) + (2ω3 − 3ω2)K (3)

ω3 − 2ω2 + ω1
, (4.29)

H(2) = −2K (1) + (ω3 − ω1)K (2) + (3ω1 − ω3)K (3)

ω3 − 2ω2 + ω1
, (4.30)

H(3) = K (1) + (ω1 − ω2)K (2) + (ω2 − 2ω1)K (3)

ω3 − 2ω2 + ω1
. (4.31)

Assumption (A.2) holds with d = 2. In order to apply Theorem 2.1 we choose n = e1 = (1,0,0). We
first verify that the nonresonance condition (A.3) is fulfilled.

Lemma 4.2. Fix τ > 1. For any γ > 0 small enough there exists a subset M of (−1,4) whose complement
has measure O (

√
γ ) such that, if m ∈ M then, for any R > 0, the complementary of set N ∩ B R has measure

estimated by C R
√

γ .

Proof. Instead of studying (2.11) we multiply the quantity k − Ω̃ j by ω3 − 2ω2 +ω1 and study the so
obtained quantity. Thus the quantities that have to be estimated are

f jk(m, ε) := (1 + ε1 − 2ε2 + ε3)ω j

+ [(1 − ε2 − ε3)ω2 − (1 + ε1 + ε2)ω3 + (ε3 − ε2)ω1
]

j

± [(3ε2 − 2ε3)ω1 − (1 + ε1 − ε2 + ε3)ω2 + (2 + 2ε1 − ε2)ω3
]

− k(ω3 − 2ω2 + ω1)

where the sign + holds for Ω̃1, j , while the sign − holds for Ω̃2, j .
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In the particular case ε = 0 we thus have to estimate

kω1 − (2k + j ± 3)ω2 + (k + j ∓ 2)ω3 − ω j, (4.32)

where the first sign holds for Ω̃1, j = Ω
(1)
1, j , while the second holds for Ω̃2, j = Ω

(1)
2, j . Consider (4.32)

as a function of m. It is easy to see that it vanishes identically only if (i) ( j,k) = (1,1) and the sign
is + (which corresponds to I1), if (ii) ( j,k) = (2,0) and the sign is + (which corresponds to I2), if
(iii) ( j,k) = (3,0) and the sign is + (which corresponds to I3). Thus all these cases are excluded. In all
the other cases the function (4.32) is nontrivial. This remains true when ε is in a small neighborhood
of zero.

Notice now that f jk can vanish (or be small) only if

C1 j2 � |k| � C2 j2. (4.33)

Thus we consider only such a case. First fix a large J∗ , then exploiting the fact that dω j/dm = (2ω j)
−1

one has ∣∣∣∣∂ f jk

∂m

∣∣∣∣� C |k| � C ′ j2. (4.34)

It follows that there is at most a segment of length Cγ /| j|τ−2 in the m space where f jk is smaller
than γ /| j|τ . Summing over k, taking into account (4.33) one gets that except for an interval of masses
m of length Cγ /| j|τ one has

| f jk| � γ

| j|τ , ∀k ∈ Z.

Summing over j one gets that, provided τ > 1 one has

| f jk| � γ

| j|τ , ∀k ∈ Z, ∀| j| � J∗,

except for the m’s in a set of measure Cγ . And this is true for any value of ε small enough.
It remains to consider the set of j’s smaller than J∗ . But these are a finite number. Therefore

excluding at most a further set of measure of order γ one gets that ∀ε fixed and close to the origin,
f jk fulfills the wonted estimate except for a set of m’s having measure of order γ . Using Fubini’s
theorem one then concludes the proof. �

Finally we have to verify the nondegeneracy assumption. First notice that Fn is proportional to F ,
and that going through the change of coordinates one has

u(a,e1t,0,0) = −√
a1

cos(x + t)√
π

− √
a2

cos(2x)√
π

− √
a3

cos(3x)√
π

, (4.35)

v(a,e1t,0,0) = √
a1

sin(x + t)√
π

+ √
a2

sin(2x)√
π

+ √
a3

sin(3x)√
π

. (4.36)

Thus substituting in F and computing the integrals over x and t one obtains that 〈Fn〉 is proportional
to

a2
1 + a2

2 + a2
3 + 4a1a2 + 4a2a3 + 4a1a3

which is a nondegenerate quadratic form. Therefore also assumption (A.4) holds.
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Applying Theorem 2.1 one thus gets existence of quasiperiodic solutions with three frequencies.
To get a precise result consider the set

A∗ :=
⋃

A∈(0,∞)3

{
−∂〈Fe1 〉

∂a
(A)

}
(4.37)

and, for ε ∈ A∗ , denote by A∗(ε) the unique solution of

ε = −∂〈Fe1 〉
∂a

(A),

and by Tε,∗ the torus p = q = 0, I = A∗, φ ∈ T
3. Thus the following theorem holds.

Theorem 4.2. There exists a positive μ∗ with the following property: for any ε ∈ N ∩ Bμ∗ ∩ A∗ there exists
a unique invariant torus Tε such that:

1. The flow on Tε has frequencies

(
ω3 − 2ω2 + ω1

1 + ε1 − 2ε2 + ε3
, − (1 + ε1)ω2 − (1 + ε1 − ε2)ω3 − ε2ω3

1 + ε1 − 2ε2 + ε3
,

− (2 + 2ε1 − ε3)ω3 − (3 + 3ε1 − ε3)ω2 + (3ε2 − 2ε3)ω1

1 + ε1 − 2ε2 + ε3

)
. (4.38)

2. One has

d(Tε,Tε,∗) � C
∥∥A∗(ε)

∥∥2
. (4.39)

Remark 4.4. Since the set of ε ∈ N ∩ Bμ ∩ A∗ has positive measure, one has that for almost all
allowed values of ε , the flow is ergodic on Tε .
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