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Abstract 

Depression is a serious worldwide public health problem, and its diagnosis still remains a challenge in the medical community. 
The difficulties of detecting depression are largely due to its high comorbid factor. Given the reciprocal relationship between 
depression and physical illness, mental health professionals have called for a diagnostic approach that identifies and evaluates 
each disorder, concurrently. This paper reports the findings of a study based on data collected in Nigeria to investigate the 
simultaneous identification of depression and co-occuring physical illness using a multi-dimensional Bayesian network 
classification approach. The predictive model would be useful to clinicians of all categories in Nigeria in overcoming the 
challenges of depression diagnosis caused by its frequent co-occurence with physical illnesses. The benefits of this approach are 
demonstrated with anonymised multi-dimensional depression dataset comprising 1090 instances, 22 symptoms, and two class 
attributes. The results, are also described. 
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1. Introduction 

Depression is an important disease to study because of its virulence. Its detection, though highly relevant, still 
remains a major challenge in the medical community in Nigeria and other developing countries despite the high 
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accuracy values being achieved by various classification algorithms on different depression datasets in the literature. 
Fahrer and Grassi 1 and Golberge 2 noted that depression is frequently comorbid with a variety of physical illnesses, 
which are often undetected. The prevalence rates of depression in comorbidity with physical illnesses, according to 
the studies, is over 22%, with varying rates for specific illnesses. A breakdown of the dataset for this study, shown 
in Table 2, is a replication of these important findings. Depression comorbidity refers to the occurrence of 
depressive disorders and other disorders (physical or mental) in the same person, either simultaneously or 
sequentially 2. Depression comorbidity has become a major concern for mental health (MH) researchers, MH 
professionals and multi-purpose clinicians (MPC) because of its close link with compromised quality of lives, 
morbidity and mortality3. Similarities in symptoms of depression and physical illnesses make its diagnosis 
complicated 4. Compared to the volume and variety of machine learning (ML) techniques used for the diagnosis of 
depression, there is a gap in literature on how the same techniques could be used to simultaneously identify 
depression and comorbid physical illnesses. Methodological limitations, such as lack of access to adequate primary 
depression datasets in comorbid population 5 and lack of combined expertise in both MH and computer science 6, 
have been identified as some of the reasons for this gap. Evidently, there is a need for a more comprehensive multi-
dimensional classification (MDC) learning approach that exploits the correlations, identifies and evaluates 
depression and co-occuring physical illnesses, concurrently. As noted by Batal et al 7, in MDC problems, the class 
variables usually exhibit conditional dependence relations among themselves. Such dependencies must be modelled 
in order to learn about not just what is possible, but what is probable. Probability theory provides the framework for 
considering such multiple possible outcomes 8. This study investigates the needed MDC learning with a probabilistic 
framework, which given symptoms, can be used to compute the probabilities of the presence of various diseases. 
Specifically, the study has, as its contribution, the construction and description of a multi-dimensional predictive 
model, which uses a multi-dimensional Bayesian network classifier (MBC) that provides reliable and clinician-
interpretable diagnostic results with respect to simultaneously determining the presence of depression and physical 
illnesses from symptoms, correctly. 

The rest of the paper is organized as follows: as a follow-up to the introduction in sub-section 1.1, the 
relationship between machine learning, multi-class classification, multi-label classification and multi-dimensional 
classification is briefly discussed, followed by a description of the methods of handling the tasks that fall within 
them. Section 1.2 describes the identification of depression as a multi-dimensional problem and its proposed 
solution using multi-dimensional Bayesian network classifier. In section 2, we discuss the dataset for the study and 
the method of data collection. Section 3 describes our experimental design and the environment where it was 
performed. Section 4 presents the results of our experiment and its analysis while section 5 outlines the evaluation 
metrics for our model. In section 6, we discuss a few studies that are related to ours while section 7 concludes the 
study with a plan for future work. 

1.1. Machine Learning Algorithms for Multi-Label Classification Problems 

ML, a subfield of artificial intelligence, provides the techniques that are able to exploit the correlations among 
large datasets and classify them into a manageable and easily human-interpretable format. ML tasks can be broadly 
divided into five main classes: Association, Classification, Regression, Clustering and Optimization tasks 9. 
Classification, which is the primary concern of this paper, is the task of learning a model using a set of previously 
classified instances and applying the obtained model to a set of previously unseen examples. 

In medical diagnosis, ML techniques have proved to be useful in classification tasks. Data of previously 
diagnosed patients, called training instances, are used to build a classification model, which is then used to classify 
previously unseen data. The resulting classification is evaluated for accuracy. As depicted in Figure. 1, classification 
problems can be categorized according to the number of class labels that can be assigned to a particular input 
instance. Multi-label classification (MLC) is the supervised ML problem where the classification algorithm learns 
from data instances, and each instance has multiple class-labels, but each class-label has binary values 10. In MLC, 
instance may have different sets of labels. This is different from the traditional Single-label classification (SLC), or 
multi-class classification (MCC), which is concerned with learning from data instances that are associated with a 
single label from a set of disjoint labels, and involves only a single nominal target variable 11 12. In MLC each class 
label |Yj| = 2 (i.e. only two classes) for all j = 1,……,d (i.e. binary classification where a label is either relevant (1) 
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or not (0). In MDC, each class variable |Yj| = Kj for any positive integer Kj 
12 (d is the number of class variables and 

K is the number of values each of these variables may take). This is illustrated in Table 1. 

Table 1. Class label divisions 

 
 

 
 
MDC (also called multi-target classification (MTC) or multi-output classification (MOC)) being a generalization 

of MLC, is concerned with learning from examples, in which each data instance has multiple target variables, and 
each variable takes multiple values 13. MDC has found application in a wide variety of real-world domains, 
including medical diagnosis, bioinformatics, robotics, text, vision, and audio processing13. In medical diagnosis, for 
instance, MDC deals with a situation where a patient may be suffering from multiple diseases and assumes each 
instance is associated with d discrete-value class variables . The aim is to learn a function that assigns to 
each instance represented by its feature vector (symptoms) , the most probable assignment of the 
class variables (target or output variable)  . That is, MDC is a function that maps X into Y or 

 This large number of possible combination increases the 
complexity of MDC problems, making them more difficult to solve than SLC problems, where one such variable is 
associated with a data instance. 

 To solve this problem of class label combination and its resultant computational complexity, Read et al 12 and 
Tsoumakas and Katakis 14 in their works, proposed two methods: problem transformation (PT) and algorithm 
adaptation (AA) . some of the commonly used algorithms in the two methods are shown in Figure 1 while their 
strengths and weaknesses are well discussed in the work of  Madjarov et al. 15. 

 
 

 

Fig. 1. Framework of the study 

 K = 2 K  > 2 
d = 1 Binary Multi-class 
d > 1 Multi-label Multi-dimensional 
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1.2. Depression Diagnosis as a Multi-dimensional Classification Problem 

Classification problems in which instances (described by a number of features or symptoms) are assigned to 
multiple classes (diseases) simultaneously are solved by MDC approach 13. Given that a depression patient may also 
be suffering from other diseases, the identification of depression and co-occuring physical illnesses (classes or 
targets) from symptoms (features or attributes) is an MDC task 16. Here, the multiple diseases, which are 
simultaneously determined, are used to explain the symptoms 17. As noted earlier, the class variables usually exhibit 
conditional dependence relations among themselves. Such dependencies must be modelled in order to learn about 
not just what is possible, but what is probable. Probability theory provides the framework for considering such 
possible multiple outcomes. Having been extensively used as classi ers in the machine learning eld due to its 
ability to maximize the accuracy of each class variable at the same time, Bayesian networks, an appealing tool for 
probabilistic MDC, is proposed for this study. Bayesian networks compactly represent the joint probability 
distribution of class and feature variables P(x, y). However, traditional Bayesian network classifier cannot handle 
such an MDC problem since its class variable is restricted to one 18.  

Multi-dimensionality has been introduced in Bayesian network classifiers to provide for modelling of the MDC 
problem and ensuring interactions among all variables 19. Multidimensional Bayesian network classi ers (MBC) are 
the generalization of the traditional single-class-oriented Bayesian network classi ers to domains with more than 
one class variable. MBC models the probabilistic relationships between the variables by directed acyclic graphs, 
partitioning the set of class and feature variables into three different subgraphs: class subgraph representing the 
dependence relationships between class variables; bridge subgraph representing the dependence relationships 
between class and feature variables, and feature subgraph representing the dependence relationships between feature 
variables. In learning the MBC from data, several approaches have been offered, including Tree-Tree method 19, 
Polytree-Polytree method 18, Pure Filter and Pure Wrapper methods 13 and Class-Bridge decomposable MBC 
method 20. These approaches can be used to solve two problems identified by Alessandro et at. 21 and Corani et al. 22: 
learning from data the structure of the MBC model and performing predictive inference on the learned model in 
order to classify instances. 

Inspired by the work of Borchani et al 20, this study uses the class bridge decomposable MBC, extending it to 
detecting depression and comorbid physical illness from a primary depression dataset. The MBC is defined thus: An 
MBC is a Bayesian network B = (G, ) where the structure G = (V, A) has a restricted topology. The set of n 
vertices V is partitioned into two sets: Vc = {C1,……,Cd}, d 1, of the variables and Vx = {X1,……,Xm}, m 1, of 
feature variables (d + m = n). The set of arcs A is partitioned into three sets Ac, Ax and Acx, with the following 
properties: 

 is composed of the arcs between the class variables having a subgraph  called 
class subgraph of G induced by Vc 

 is composed of the arcs between the feature variables having a subgraph  called 
feature subgraph of G induced by Vx. 

 is composed of the arcs from the class variables to the feature variables having a subgraph 
 called bridge subgraph of G connecting class and feature variables 

The Bayesian network B of an MBC codifies a joint probability distribution P(x, c) which factorises according to  

 
where pa(c) represents the parent of C and pa(X) represents the parent of X in the structure of the Bayesian network. 
In essence, a multi-dimensional classifier actually serves to find the most probable explanation (MPE) or the 
maximum a posteriori (MAP) of a given data instance with feature vector X= {x1,….., xm), which is the mode of the 
joint probability distribution of the classes C given the features X 21. This is computed to get:  

 
where Ci is the array of class variables, c* is the actual class and x is the feature. 
 



1298   Blessing Ojeme and Audrey Mbogho  /  Procedia Computer Science   96  ( 2016 )  1294 – 1303 

In prediction tasks, if the target variables (Y) consist of continuous/numeric variables, then the task at hand is 
multi-target regression. Similarly, if the target variables (Y) consist of discrete/nominal variables (as shown in Table 
2), then the task is called multi-target classification. 
 

Table 2. Depression dataset with multiple target variables  

Descriptive variables Target variables 

 Age 
(X1) 

Sex 
(X2) 

Sad 
mood 
(X3) 

Suicid
al 
(X4) 

…… Employme
nt status 
(X22) 

Depression 
disorders 
(Y1) 

Physical 
illness 
(Y2) 

1 34 F Yes Yes No Severe 
depression 

Heart disease 

2 58 M Yes Yes PT Moderate 
depression 

Stroke 

3 44 F No No FT No 
depression 

? 

4 21 M Yes Yes  FT ? ? 
5 15 F Yes No  PT ? Peptic ulcer 
.              .            .             .              .                .            .                     .                        . 
.              .            .             .              .                .            .                     .                        . 
. 
1090 42 M Yes No  PT Mild 

depression 
hypertension 

 

2. Data Collection and Description of Dataset 

Due to the centrality of data collection in the data analysis stage, much attention was given to the process. The 
researcher employed the use of workshops (in the form of seminars), semi-structured interviews and record 
extraction from previously diagnosed cases for the collection of data. The dataset (shown in Table 2) consisted of 
anonymised records of 1090 data instances, (484 male and 606 female cases from 12 to 92 years old with a mean 
age of 41.95 and standard deviation of 16.07). It had 22 main attributes   (age, sex, sad mood, suicidal, loss of 
pleasure, insomnia, hypersomnia, loss of appetite, psychomotor agitation, psychomotor retardation, loss of energy, 
feeling of worthlessness, lack of thinking, indecisiveness, recurrent thought of death, impaired function, weight gain, 
weight loss, stressful life events, financial pressure, depression in family and employment status) and two class 
attributes (depression diagnosis and depression comorbid with) collected in a comorbid population, from the 
University of Benin Teaching Hospital (UBTH) and primary care centres in Nigeria. All depression cases selected 
fulfilled clinical criteria for depression as defined in DSM-5 23 and ICD-10 24. Further validation of the data was 
done by a group of eight mental health professionals, made up of three Psychiatrists, one Child/Adolescent 
Psychiatrist, two Clinical Psychologists, one Clinical Social Worker and one Nurse Psychotherapists. A control 
group (No depression) of 36 cases were also collected. All ethical clearances for data collection were obtained from 
the appropriate authorities.  

Table 3 shows the distribution of depression cases in co-occurence with physical illnesses. The data clearly show 
that persons diagnosed with moderate and severe depression are much more likely to suffer also from comorb 
physical illnesses. The 29 comorb physical illnesses case included: cerebrovascular accident (cva), hypertension 
(htn), benign prostatic hypertrophy (bph), diabetes, human immunodeficiency virus (hiv), non hodgkin’s lymphoma 
(nhl), liver disease (ld), chronic liver disease (cld), erectile dysfunction (ed), poor sight (ps), tuberculosis (tb), 
pneumonia, cannabis, infertility, esophageal stricture (es), peptic ulcer disease (pud), malaria, toxic diffuse goitre 
(tdg), appendicitis, heart disease, alcohol use disorder (aud), cataract, arthritis, hypertensive heart disease (hhd), 
enuresis, diabetes mellitus (dm), hydrocele, b essential tremors (bet), epilepsy, and seizure. 

As noted earlier, there are some correlations among depression and physical illnesses. Many symptoms of 
depression are similar to those of physical illnesses, including depressed mood, loss of pleasure, helplessness, 
fatigue, weight loss, weight gain, hypersomnia, psychomotor retardation, decreased concentration, and cognitive 
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impairment1. Due to the difficulties this poses to the diagnosis of depression in patients with physical illnesses, this 
study adopts the inclusive approach suggested by Fahrer and Grassi 1, where all of the symptoms are included in the 
assessment for depression, irrespective of the fact that these symptoms may be attributable to physical illnesses. 

Table 3. Description of dataset   

S/N Depression 
Diagnosis 

Frequency Percent No. of cases with 
Comorbidity  

Percent No. of cases without 
Comorbidity 

Percent 

1 Mild 47 4.3 6 0.6 41 3.8 

2 Moderate 530 48.6 95 8.7 435 40 

3 Severe 477 43.8 77 7.1 400 36.7 

4 Not depressed 36 3.3 Nil 0 36 3.3 

 Total 1090 100 178 16.4 912 83.8 

 

3. Experimental Design 

Since each classifier has its own inductive bias, testing out multiple classifiers and selecting the best model can 
be a good idea. The experiment was conducted using Bayesian classifier chains (BCC), probabilistic classifier 
chains, (PCC), Super class classifier (SCC), Bagging, ensemble of classifier chains (ECC), pruned sets and classifier 
chains (CC). In order to make our experiments reproducible, the algorithms were implemented in multi-label 
extension to Weka (Meka, version 1.9.0) 25 using default parameters of the Explorer panel in the graphical user 
interface (GUI). Meka is an open source ML framework which provides an extensible support for developing, 
running and evaluating multi-label and multi-target classifiers-the main focus of the study. The data shown in Table 
3 were pre-processed and reformatted to yield a suitable input for the Meka tool and our classifier. 
 

4. Results and Analysis of the Performance of the Proposed Technique 

Using the experimental set up in section 3, and the dataset described in Table 3, the result is displayed in Table 4. 
From the obtained results we can conclude that, for this problem, our classifier showed a noticeable performance in 
considered performance metrics (Hamming score, Exact-match and Hamming loss) for this dataset, and hence may 
be used to establish baseline performance. 

 

Table 4. Results of the methods used 

Method Hamming score Exact-match Hamming 
loss  

BCC 0.91 0.826 0.09 

PCC 0.91 0.826 0.09 

SCC 0.921 0.854 0.079 
Bagging 0.923 0.852 0.077 
ECC 0.908 0.822 0.092 
Pruned sets 0.921 0.921 0.079 
CC 0.91 0.826 0.09 

 
The findings of this study need to be interpreted in light of the methodological limitations on the performance of 

the model. The most important limitation was the small size of the dataset (N = 1090). Another limitation that could 
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have degraded the model performance was the presence of irrelevant, redundant and noisy features, which are 
common occurrences in medical datasets 26. For a given instance size, there is a maximum number of features above 
which the performance of a classifier will degrade rather than improve. The MDC algorithms were evaluated on 
their ability to predict the presence of depression and physical illnesses based on previously diagnosed cases. Some 
of the predictors were found to be very good. For instance, the Hamming score for the BCC method (0.91) is 
comparable to the results obtained in the study by Fernandez-gonzalez et al 27 and Ibrahim 28. Fernandez-gonzalez et 
al 27 achieved a Hamming score of  of 0.801 and Exact-match of 0.25 while Ibrahim 28, achieved the highest 
Hamming score of 0.77 (significantly less than ours). The probabilistic methods are marked in boldface in Table 4 
for visualization purpose 

 

5. Evaluation Procedure 

In this work we utilized the Hamming score, Hamming Loss and Exact-match to evaluate the performance of 
depression and physical illnesses diagnosis. Hamming score gives the accuracy for each class correctly predicted, 
averaged across all classes. Hamming loss gives the percentage of data predicted incorrectly on average (The best 
performance is reached when hamming loss is equal to 0. The smaller the value of hamming loss is, the better the 
performance is). Exact -match (also called global accuracy) gives the percentage of test dataset predicted exactly 
same as in the training dataset. To obtain a fair accuracy estimation, the dataset used to train the classi er must be 
independent from the dataset used to test it 29. Meka provided the platform that ensured this independence by using a 
10-fold cross-validation procedure to partition the dataset into 10 disjoint subset. In other words, Meka helped to 
ensure that our limited and unbalanced dataset got a good balance between the size and representation of the training 
and test sets. And since the joint probability distribution p(x, y) was unknown and the accuracy of the class variables 
estimated from data, the partitioning of the dataset also helped to reduce the variance of the estimates and improved 
the estimation of the generalization  performance of the classifier algorithms 30. Each subset was utilized once as a 
test set and nine times as part of a training set in order to ensure a valid and robust results. This technique was used 
for all the algorithms under study and the average results are reported.  
 
Hamming score is stated thus: 
 
  

 
Mathematically, Hamming loss is stated thus: 

 

 
 
where N is the total number of instances in the data, Ti is the set of true labels for the ith instance and Pi is the set of 
predicted labels by the classifier for the ith instance.
 
Exact match is expressed: 
 

                                                                        (4) 

 

where    is a function that outputs 1 if Ti = Pi and 0 otherwise. 
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6. Related Work 

A number of studies on the possibility of automating conventional depression diagnosis with machine learning 
algorithms have been done in the past. Some of these studies that are related to the identification of depression 
disorders and co-occuring physical illnesses are reviewed. 

Bielza et al 13 proposed a class-bridge (CB) decomposable MBC for a multi-dimensional classification problem. 
When the learning algorithms were experimented with three datasets (Emotions dataset, Scene dataset and Yeast 
dataset) taken from the literature on multi-label classification problems, the results were encouraging, outperforming 
state-of-the-art algorithms for multi-label classification. The study used accuracy and F1 measure as performance 
evaluation measures. 

In Rodriguez et al 31, the authors used a multi-objective learning approach and multidimensional J/K 
dependencies Bayesian classifier for predicting the progression of multiple sclerosis (MS) in patients that had been 
recently diagnosed. The dataset used consisted of DNA and clinical information of 605 (86 features and 2- class 
variables) unrelated Dutch Caucasian patients selected from natural history literature. Using a k-fold cross-
validation evaluation method, the algorithms returned different tradeoff solutions to the multi-dimensional 
classification problem with different accuracy (59%, 64%, 77%, 80%, and 90%) values for the different class 
variables. 

Kessler et al 32 presented a report of machine learning models developed from self-reports about incident episode 
characteristics and comorbidities among respondents with lifetime major depressive disorder (MDD) in the World 
Health Organization World Mental Health (WMH) survey. The machine learning predicted accuracy was compared 
with observed scores assessed 10–12 years after baseline and that of conventional logistic regression models. Area 
under the receiver operating characteristic (ROC) curve based on machine learning (0.63 for high chronicity and 
0.71–0.76 for the other prospective outcomes) was consistently higher than for the logistic models (0.62–0.70) 
despite the latter models including more predictors. 

The closest to this study was by Lueken et al 33.The study investigated the impact of comorbid depression in 
panic disorder (PD with agoraphobia (AG) on the neural correlates of fear conditioning. Using tree ensemble in 
leave-one-out cross-validation framework, 59 PD/AG patients including 26 (44%) with a comorbid depressive 
disorder (PD/AG + DEP) underwent functional magnetic resonance imaging (fMRI). The results showed that 
comorbidity status was correctly predicted in 79% of patients (sensitivity: 73%; speci city: 85%) based on brain 
activation during fear conditioning (corrected for potential confounders: accuracy: 73%; sensitivity: 77%; 
speci city: 70%). These ndings demonstrate the relevance of comorbidity patterns when investigating 
neurobiological substrates of anxiety disorders. The limitation of the study was the unavailability of primary 
depressed patients; only medication-free patients were used. 

However, these studies do not have a primary depression dataset with comorbid physical illnesses; do not use 
cross-validation; and do not evaluate the models with metrics described in this study. Though a different approach 
was used to address a similar problem, with a different dataset for evaluation in Lueken et al 33, our MBC model 
outperformed their method by  obtaining a higher true detection rate. 

7. Conclusions and Future Work 

We have demonstrated that the class-bridge MBC predictive model has the potential to offer good performance. 
Though the results do not show significant boost over non-probabilistic methods in terms of prediction performance, 
it showed a noticeable performance in considered performance metrics, which would be useful to both mental health 
professionals and clinicians in practice and facilitate the adoption of objective, effective and reliable computer-based 
diagnosis tool. Given a large amount of suitable data with relevant features, the technique used in this study is 
general-purpose and can be used for MDC problems with other diseases.  

A number of areas can be identified for further research, some relating to methodological advances, and others to 
the application of the methods used in this study to other aspects of depression detection. In future work, we will 
explore the possibility of improving the model performance by sourcing for more data and using unsupervised 
method such as the principal component analysis (PCA)34 and latent Semantic Indexing (LSI) 35 to ensure that 
optimal subset of features is being used for training and prediction, since irrelevant and redundant features in dataset 
can result in reduced classification accuracy and increased computational burden in practice. Finally, of practical 
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interest to us would be to further investigate whether our learning algorithms can be as useful in other application 
domains. 
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