KNOTS IN SPATIAL EMBEDDINGS OF THE COMPLETE GRAPH ON FOUR VERTICES

Makoto YAMAMOTO

Department of Applied Mathematics, Osaka Women's University, 2-1 Daisen-cho, Sakai, Osaka 590, Japan

Received 12 December 1988
Revised 2 March 1989

Let \(c_1, \ldots, c_7 \) denote the seven cycles in the complete graph, \(K_4 \), on four vertices. For a tame embedding of \(K_4 \) in Euclidean 3-space, let the ordered 7-tuple \((k_1, \ldots, k_7) \) denote the associated list of knot types of \((c_1, \ldots, c_7) \). The purpose of this paper is to show that any ordered 7-tuple of knot types can be realized as the associated list of knot types of \((c_1, \ldots, c_7) \) with a tame embedding of \(K_4 \) in Euclidean 3-space.

AMS (MOS) Subj. Class.: 57M25, 57M15, 05C10

1. Introduction

We call a tame embedding of a graph in Euclidean 3-space \(R^3 \) a spatial embedding of the graph. Let \(K_n \) denote the complete graph on \(n \) vertices. Throughout this paper, all knots are oriented.

It is an interesting problem what types of spatial embeddings of a graph exist. Conway and Gordon [1] showed that every spatial embedding of \(K_7 \) contains a nontrivially knotted Hamiltonian cycle. This shows that every spatial embedding of \(K_n \) contains a nontrivially knotted cycle for \(n \geqslant 7 \) since \(K_n \) contains \(K_7 \) as a subgraph if \(n \geqslant 7 \). For an integer \(n \) greater than one, the \(\theta \)-curve of order \(n \) is the graph consisting of two vertices and \(n \) edges joining the vertices and it has \(\frac{1}{2} n(n - 1) \) cycles. Kinoshita [2] showed that any ordered \(\left(\frac{1}{2} n(n - 1) \right) \)-tuple \((k_1, \ldots, k_{n(n-1)/2}) \) of knot types can be realized as the associated list of knot types of the cycles with a spatial embedding of the \(\theta \)-curve of order \(n \). Recently, Shimabara [4] studied the spatial embeddings of the complete bipartite graph \(K_{5,5} \) and several other graphs (see Sachs [3] also). In this paper we prove the following:

Theorem 1.1. Let \(c_1, \ldots, c_7 \) be the seven cycles in \(K_4 \). For any ordered 7-tuple \((k_1, \ldots, k_7) \) of knot types, there is a spatial embedding of \(K_4 \) such that the associated list of knot types of \((c_1, \ldots, c_7) \) is \((k_1, \ldots, k_7) \).
Although K_5 and K_6 can be embedded in \mathbb{R}^3 so that all cycles are trivial knots, it is still unknown whether similar claims to Theorem 1.1 for K_5 and K_6 are true or not.

2. Proof of Theorem 1.1

To prove Theorem 1.1, we need a certain canonical diagram of a knot, where a *diagram* is the image of a regular projection together with an over/under information at each double point and such a double point is called a *crossing*. Let σ_1, σ_2, σ_3 and σ_4 denote the upper, left, lower and right sides of a rectangle respectively. By γ_0, we denote $\sigma_1 \cup \sigma_2 \cup \sigma_3 \cup \sigma_4$ and we give γ_0 the counterclockwise orientation. Let $\gamma_1, \ldots, \gamma_u$ denote trivial circles such that the diagram of $\gamma_0 \cup \gamma_1 \cup \cdots \cup \gamma_u$ is given as in Fig. 1. We divide σ_3 into $2u+1$ subarcs $\alpha_1, \beta_1, \alpha_2, \beta_2, \ldots, \alpha_u, \beta_u$ and α_{u+1}.

Lemma 2.1. Let $\gamma_0, \ldots, \gamma_u$ be as above. For any knot K of the unknotting number at most u, there is a diagram of K represented by $\gamma_0, \ldots, \gamma_u$ and mutually disjoint strips S_1, \ldots, S_u in \mathbb{R}^3, satisfying the following conditions:

1. $\gamma_0 \cap S_i = \gamma_0 \cap \partial S_i = \beta_i$,
2. γ_i meets S_i in an arc δ_i of ∂S_i,
3. γ_i does not meet S_j if $i \neq j$,
4. ∂S_i does not cross $\gamma_0, \ldots, \gamma_u$ other than α_i in the diagram, and
5. $K = (\gamma_0 \cup \cdots \cup \gamma_u \cup \partial S_i \cup \cdots \cup \partial S_u) - \text{Int}(\beta_1 \cup \cdots \cup \beta_u \cup \delta_1 \cup \cdots \cup \delta_u)$,

where $i, j = 1, \ldots, u$.

We call the diagram (5) of K the *canonical diagram* of K. An example of our canonical diagram is illustrated in Fig. 2.
Proof of Lemma 2.1. Suzuki [5, Lemma 1.1] showed that there is a diagram represented by circles $\gamma_0, \ldots, \gamma_u$ and strips S_1, \ldots, S_u like ours, but, in his diagram, $\gamma_1, \ldots, \gamma_u, \gamma_0 \cap \partial S_1, \ldots, \gamma_0 \cap \partial S_u$ are not arranged as ours. Although he said nothing about the orientation of γ_0, we may assume that γ_0 is counterclockwise oriented. For, if otherwise, the one obtained from the mirror image of the diagram by changing all crossings is also a diagram of the knot and the circle corresponding to γ_0 is counterclockwise oriented. Then we need to show that we can change the order of γ_i and γ_j and that of γ_i and β_j with respect to the orientation of γ_0 for $i \neq j, i, j = 1, \ldots, u$, keeping the conditions (1), (2), (3) and (5) satisfied. Allowing to intersect the strips S_i and S_j in an arc α contained in $\text{Int } S_i$, we can change the order of γ_i and γ_j and that of γ_i and β_j. Then we deform S_j so that $S_i \cap S_j = \emptyset$ by moving α on S_i and across β_j, see Fig. 3. Repeating this, we have a diagram of K satisfying (1), (2), (3) and (5) from the diagram of Suzuki [5]. In the diagram, ∂S_i may cross

Fig. 3.
If S_i crosses $\gamma_0 - \alpha_i$, we can deform S_i isotopically so that S_i does not cross $\gamma_0 - \alpha_i$, $\gamma_1, \ldots, \gamma_u$ and crosses at most $\alpha_i, S_1, \ldots, S_u$.

The motivation behind Lemma 2.1 is to prove the following.

Lemma 2.2. For any nontrivial knot, there is a diagram of the knot such that the diagram has two nonempty sets A and B of crossings which satisfy the following; the sets A and B are mutually disjoint and for any set of A, B and $A \cup B$, the knot is deformed into the trivial knot when we change all crossings of the set.

Proof. We show that the canonical diagram is the desired one. We may assume that each strip has even number of half twists, for we can add or subtract a half twist from a strip S_i, without changing the knot type of K, by changing both crossings of γ_0 with γ_i, see Fig. 4. Let a_i be one of the two crossings of γ_0 with γ_i for $i = 1, \ldots, u$. It is obvious that the crossing changes at a_1, \ldots, a_u make K trivial. Then, let A be the set $\{a_1, \ldots, a_u\}$.

![Diagram](image)

We can also make K trivial by crossing changes which deform so that S_i crosses over S_j and γ_0 for $j = i+1, \ldots, u$ if S_i crosses S_j and γ_0 respectively, and S_i is unknotted and untwisted, see Figs. 2 and 5, where the knot of Fig. 2 and the knot at the left of Fig. 5 are of the same knot type. Then, let B be the set of all such crossings. It is clear that A and B are mutually disjoint.

If we change the crossings of B first, the diagram is deformed into a canonical diagram of the trivial knot since only over and under roles of crossings of the strips and γ_0 are changed. Then, if we change the crossings of A next, the resultant diagram is a diagram of the trivial knot. Therefore K is deformed into the trivial knot when we change the crossings of $A \cup B$.

We construct the canonical diagram of the composite knot $k_1 \neq k_2$ of k_1 and k_2 as follows: Let σ_j denote the corresponding side of the canonical diagram of k_i to σ_j of that of K in Lemma 2.1 for $i = 1, 2$. Identifying σ_{14} with σ_{22} and deleting the interior of the identified side, we have a diagram of $k_1 \neq k_2$ which satisfies (1), (2), (3), (5) and may not satisfy (4). As in the proof of Lemma 2.1, we can deform the
diagram into the canonical diagram isotopically. The canonical diagram of the composite knot $k_1 \# \cdots \# k_n$ is constructed inductively as $(k_1 \# \cdots \# k_{n-1}) \# k_n$.

The following is immediate from Lemma 2.2 and the construction of the canonical diagram of a composite knot.

Lemma 2.3. In the canonical diagram of a composite knot $k_1 \# \cdots \# k_n$, there are sets of crossings $A_1, B_1, \ldots, A_n, B_n$ such that they are mutually disjoint and the diagram is deformed into that of $k_1 \# \cdots \# k_{i-1} \# k_i \# \cdots \# k_n$ when we change the crossings of any of A_i, B_i and $A_i \cup B_i$ for $i = 1, \ldots, n$.

If two distinct edges of a graph are incident with a common vertex, then they are **adjacent at the vertex**. We say that three distinct edges e_1, e_2 and e_3 of a graph are **successive** if e_1 and e_2 are adjacent, e_2 and e_3 are adjacent and e_1, e_2 and e_3 are not incident with a common vertex.

Lemma 2.4. Let G be a graph. Let $C = \{c_1, \ldots, c_n\}$ denote a set of cycles of G which satisfies that each c_i has successive three edges e_{i1}, e_{i2}, e_{i3} such that c_i is the unique cycle in C containing e_{i1}, e_{i2}, e_{i3}. If there is a spatial embedding of G such that all knot types of c_1, \ldots, c_n of the embedding are trivial, then for any ordered n-tuple (k_1, \ldots, k_n) of knot types, there is a spatial embedding such that the associated list of knot types of (c_1, \ldots, c_n) is (k_1, \ldots, k_n).

Proof. We denote a knot of the knot type k_i by k_i also. By renumbering if necessary, we may assume that c_1, \ldots, c_m are all cycles of C such that $e_{12} = \cdots = e_{m2}$, where $1 \leq m \leq n$. We denote the edge $e_{12} = \cdots = e_{m2}$ by e and the vertices of e by v and v'. We may also assume that e_{i1} and e_{i2} are adjacent to e at v and v' respectively, i.e., $e_{i1} \cap e = \{v\}$ and $e \cap e_{i3} = \{v'\}$, for $i = 1, \ldots, m$.

For the embedding of the graph G such that all knot types of c_1, \ldots, c_n of the embedding are trivial, every edge contained in c_1, \ldots, c_n is embedded locally unknotted, i.e., there is no 3-ball B^3 such that ∂B^3 meets the embedded G in two points of the edge and the pair of B^3 and the intersection of B^3 with the edge is a knotted ball pair. We replace the edge e with an edge with knot type $k_1 \# \cdots \# k_m$; that is, the knot types of c_1, \ldots, c_m are that of $k_1 \# \cdots \# k_m$, e.g., in Fig. 6, one edge is knotted in the composite knot of the trefoil knot and the figure-eight knot and the knot types of the cycles containing the edge are that of the composite knot. We assume that the knotted edge, denoted by e again, is obtained from the canonical diagram of $k_1 \# \cdots \# k_m$ by deleting the interior of the arc of k_1 and the vertex v is the point $\sigma_{11} \cap \sigma_{12}$ of k_1.

Let $A_1, B_1, \ldots, A_m, B_m$ denote the set of crossings of the canonical diagram satisfying Lemma 2.3, where $A_i = B_i = \emptyset$ if k_i is the trivial knot. We denote the crossings of A_i by a_{i1}, \ldots, a_{iu_i}. We denote the crossings of B_i by b_{i1}, \ldots, b_{iu_i}, where the second index j of b_{ij} is given so that we meet b_{1j}, \ldots, b_{uj} in this order when we walk along the edge e from V' to v. We note that a crossing of an edge with itself can be replaced by crossings of the edge with the adjacent edges at a vertex of the edge, see Fig. 7. We replace the crossing a_{ij} of e with itself to the crossings of e with all adjacent edges at the vertex v and change the crossings except that of e with e_{i1} for $(i, j) = (1, 1), \ldots, (1, u_1), (2, 1), \ldots, (2, u_2), \ldots, (m, 1), \ldots, (m, u_m)$. We
replace the crossing b_j of e with itself to the crossings of e with all adjacent edges at the vertex v' and change the crossings except that of e with e_{i3} for $(i,j) = (1,1), \ldots, (1,x_1), (2,1), \ldots, (2,x_2), \ldots, (m,1), \ldots, (m,x_m)$. Then, the knot type of c_i is k_i since we have changed the crossings of A_j, B_j or $A_j \cup B_j$ for $j = 1, \ldots, i-1, i+1, \ldots, m$ of c_i and by Lemma 2.3. The knot type of any cycle of c_{m+1}, \ldots, c_n is unchanged since, if a cycle of c_{m+1}, \ldots, c_n contains e, we have changed the crossings of A_j, B_j or $A_j \cup B_j$ for $j = 1, \ldots, m$ of the cycle and by Lemma 2.3. Although the knot types of other cycles containing e_{i1}, e_{i2} and e_{i3} may be changed, such cycles are not in C. In Fig. 8, an example is illustrated, where $G = K_4$, the cycle consisting of the edges e_1, e_2, e_3 is knotted in the trefoil knot, the cycle consisting of the edges e_1, e_2, e_4, e_5 is knotted in the figure-eight knot and the other cycles are trivial. Repeating the same constructions on edges $e_{m+1,2}, \ldots, e_{n,2}$, we have the embedding such that the knot type of c_i is k_i for each $i = m+1, \ldots, n$ without changing the knot types of the other cycles of C. Therefore we have the desired embedding.

Fig. 8.

Now we can prove Theorem 1.1 immediately. In K_4, every cycle has successive three edges such that the cycle is the unique one containing the three edges. We can embed K_4 in Euclidean 3-space so that the knot type of every cycles of K_4 is trivial since K_4 is a planar graph. This completes the proof of Theorem 1.1 by Lemma 2.4.

Acknowledgement

The author would like to thank Professor Shin'ichi Suzuki and Dr. Kouki Taniyama for their helpful comments.
References