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Abstract By its ability to engage in a variety of redox reactions
and coordinating metals, cysteine serves as a key residue in medi-
ating enzymatic catalysis, protein oxidative folding and traffick-
ing, and redox signaling. The thiol redox system, which consists
of the glutathione and thioredoxin pathways, uses the cysteine
residue to catalyze thiol-disulfide exchange reactions, thereby
controlling the redox state of cytoplasmic cysteine residues and
regulating the biological functions it subserves. Here, we con-
sider the thiol redox systems of Escherichia coli and Saccharo-
myces cerevisiae, emphasizing the role of genetic approaches in
the understanding of the cellular functions of these systems.
We show that although prokaryotic and eukaryotic systems have
a similar architecture, they profoundly differ in their overall cel-
lular functions.
� 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Most life on earth exists in an oxidizing environment. If not

properly countered, oxygen would cause most cellular compo-

nents to become oxidized. Living cells have in fact domesti-

cated the oxidizing power of O2, not only for the purpose of

energy generation in the form of ATP through the proton mo-

tive pump in which O2 acts as terminal electron acceptor, but

also in a multitude of enzymatic reactions in which O2 acts

either as a catalyst or as a cofactor. These reactions, many

of which are driven by the redox properties of the thiol group

of cysteine, include the synthesis of desoxyribonucleotides

building blocks of ADN that involves the O2-initiated reduc-

tion of ribonucleotides by ribonucleotide reductase, the oxida-

tive folding of secreted proteins by the FAD-containing thiol

oxidase Ero1, and the mitochondrial import of proteins. To

be controlled, such O2-dependent thiol redox reactions need

to be reversed by electrons that are mostly provided by the

reducing power storage molecules NADH and NADPH and
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ultimately by glucose oxidation. To move from one to another

component, these electrons are usually funneled in the form of

protons through a web of redox wires made of redox-active

cysteine residues, which can alternatively exist in the reduced

thiol (SH) or oxidized disulfide bond (–S–S–) forms. This re-

dox web constitute the thiol redox system made of two distinct

branches, the thioredoxin and glutathione pathway. The thiol

redox system not only controls O2-dependent catalytic disul-

fides, but is also used in the reductive assimilation of sulfate

to sulfite and as an antioxidant system in the reduction of

H2O2.

We consider here the thiol redox systems of Escherichia coli

and Saccharomyces cerevisiae emphasizing on the knowledge

brought about by genetic approaches in understanding their

cellular functions. The role of the thiol redox system in the

secretory pathway will not be considered here. We will show

that despite a similar architecture, a virtually identical mode

of operation using electrons from NADPH to reduce disulfide

bonds by a thiol-disulfide exchange mechanism, and sharing

many targets, prokaryotic and eukaryotic systems have overall

different cellular functions. One of the most striking differences

is the abduction of the S. cerevisiae GSH pathway by iron

metabolism, a feature that has not been described in prokary-

otes. S. cerevisiae presumably serves as a good model for

understanding the mechanism of thiol redox control and

homeostasis in higher eukaryotes.
2. Basic description of cytoplasmic thiol redox control systems

The cytoplasmic thiol redox system consist of the GSH and

thioredoxin pathways that can be thought of as electron flow

pathways operating by virtue of gradients in redox potentials

(see Figs. 1 and 2). Ultimately, the electron source for the sys-

tem is the oxidation of pentose phosphate through the pentose

phosphate pathway that regenerates NADPH from NADP+.

NADPH has an extremely low redox potential of �315 mV

that allows it to act as the primary hydrogen donor for both

systems.

Both thioredoxin and glutaredoxin reduce disulfide bonds by

a thiol-disulfide exchange reaction via two vicinal (CXXC) ac-

tive-site cysteine residues, which either form a disulfide or a

dithiol (for reviews see [1–3]). Oxidized thioredoxin is reduced

to its dithiol form by the FAD-bound NADPH-dependent thi-

oredoxin reductase, Oxidized glutaredoxin is instead reduced
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Components of the E. coli thioredoxin and glutaredoxin
systems. The figure is modified from Ref. [14]. Only a few thiol redox
targets is represented. Black arrows represent electron flows. For
references, see text.

Fig. 2. Overview of the S. cerevisae GSH and thioredoxin pathways.
For references, see the text.
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by glutathione, which, in turn, is reduced by the FAD-bound

NADPH-dependent glutathione reductase. As established in

bacteria, these pathways operate in parallel and the extent to

which electrons flow between them is not clear. Before examin-

ing the thiol redox system in eukaryotes, it is first useful to con-

sider some of its aspects in bacteria since it appears

fundamentally widely conserved.

Through a saga that have lasted about 40 years since the ini-

tial discovery of thioredoxin in 1964 [4] and that is probably

not yet finished, biochemical, enzymatic and genetic ap-

proaches conducted by several laboratories, and in particular

by those of Holmgren and Beckwith, have provided a very de-

tailed and comprehensive view of the E. coli thiol redox system

that constitute the working model of this system in other

organisms. We essentially consider here the genetics of this sys-

tem for the sake of providing a picture of its in vivo function,

bearing in mind that interpretation of genetic data could only

be done with the knowledge provided by biochemistry. Thiol

redox reactions lead to intermediates that are often labile

and therefore difficult to identify biochemically in vivo, leaving

to genetics a significant part to elucidate the in vivo functions

of the thiol redox system. Nevertheless, as we will see recent

biochemical approaches to the in vivo redox state of cysteine
residues and to the identification of the targets of thioltransfe-

rases, often conducted at the proteome-wide level are nicely

complementing the knowledge brought about by genetics.
3. Lessons from bacteria

In E. coli, the glutathione pathway is composed of GSH,

synthesized by the action of c-glutamylcysteine synthetase,

the rate-limiting enzyme encoded by GshA, and glutathione

synthase encoded by GshB [5], of glutathione reductase en-

coded by Gor, and of three glutaredoxins, Grx1, Grx2 and

Grx3 encoded by GrxA, GrxB, and GrxC [6,7] (Fig. 1). Grx4

is a third glutaredoxin of unknown function that differ from

the others as being a monothiol glutaredoxin related to yeast

monothiol glutaredoxins [8,9]. The thioredoxin system consists

of two thioredoxins encoded by TrxA, and TrxC and thiore-

doxin reductase encoded by TrxB [5,10].
3.1. Thiol redox systems constitute electron flow pathways

A genetic demonstration of the notion that thiol redox sys-

tems operate as electron flow pathways came from experiments

by Beckwith and colleagues [11]. They took advantage of the

periplasmic enzyme alkaline phosphatase (AP), which becomes

active when folded by virtue of intramolecular disulfide bonds

formation. When expressed in the cytoplasm upon removing

its periplasmic localization sequence, AP remains inactive as

not being oxidized and properly folded. Through a screen

based upon the enzyme’s requirement for disulfide bonds for

activity, they searched for mutations that would restore the

activity of cytoplasmic AP, identifying TrxB [11]. They then

showed that deleting both TrxA and TrxC completely elimi-

nated the AP activity caused by the trxb mutation [12], indicat-

ing that lack of thioredoxin reductase allows cytoplasmic AP

disulfide bond formation not by virtue of a defect in its reduc-

tion, but by promoting the accumulation of oxidized thiore-

doxin that acts as an oxidant for AP. Therefore, interrupting

the gradient of redox potentials of the pathway upstream of

thioredoxin converts the thioredoxin from a thiol-reduction

catalyst to a thiol-oxidation catalyst. These data are also an

experimental confirmation of the idea that an aerobic environ-

ment tends to oxidize biological systems if not countered. Sim-

ilarly, ectopic expression of thioredoxin in the periplasm

converts this enzyme into an oxidant catalyst capable of

replacing DsbA in the oxidative protein-folding pathway

[13]. This is because as in the previous example, thioredoxin

becomes insulated from its reductant thioredoxin reductase.
3.2. The E. coli GSH and thioredoxin pathways are functionally

redundant

The two branches of the thiol redox system are functionally

redundant in E. coli [14] (Table 1). Neither branch alone ap-

pears to be required for normal aerobic growth. However,

inactivation of both pathways is unviable. What is the cause

of this lethality? Two mechanisms were suspected: either a

toxic accumulation of disulfide bonds in the cytoplasm, a con-

dition often referred to as disulfide stress, or a defect in the

reduction of a protein essential for viability. As we will see,

it has taken decades to formally ascribe the essential function

of the E. coli thiol redox system to the reduction of a unique

disulfide bond that forms in the enzyme ribonucleotide



Table 1
Phenotypes of thiol redox mutants in E. coli

Mutant Phenotype Rescued by Defects

gsha nla

gora nl
trxatrxbtrxc nl
grxa nl
trxagrxa Special growth requirements Organic sulfur Sulfate assimilation
trxagsha Similar to trxagrxa Similar to trxagrxa Similar to trxagrxa
trxbgsha Barely viable DTT or anaerobic Ribonucleotide reduction
trxbgora Like trxbgsha Like trxbgsha Like trxbgsha
trxatrxcgsha Unviable aerobically DTT, anaerobiosis Ribonucleotide reduction
trxatrxcgrxa Unviable aerobically Anaerobiosis Ribonucleotide reduction

Mutations of both thioredoxin and GSH pathways require a source of organic sulfur for growth due to defective sulfate assimilation. For references,
see text.
anl: Normal vegetative growth.
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reductase (RNR). Reduction of ribonucleotides to deoxyribo-

nucleotides (dNTPs) by RNR is balanced by formation of a

disulfide bond in the enzyme that must be reduced for ongoing

catalysis (for a review, see [15]).

Mutants lacking both TrxA and GrxA or TrxA and GshA

are unviable because of a toxic accumulation of 3 0-phosphoad-

enosine 5 0phosphosulfate (PAPS) [16], an intermediate metab-

olite in sulfur assimilation (Table 1). However, this lethal

phenotype is fully reversed by a high concentration of organic

sulfate or by deletion of CysA or CysC, which either represses

or inactivates the sulfate assimilation pathway, and therefore

inhibits PAPS production. PAPS is reduced to sulfite by the ac-

tion of PAPS reductase, which is itself recycled back by

NADPH-dependent reduction by thioredoxin or glutaredoxin

[17]. Therefore, TrxA or Grx1, but not TrxC, Grx2 or Grx3, is

adequate for reduction of PAPS reductase and sulfate assimi-

lation (see Fig. 1).

The trxatrxcgrxa triple mutant is also aerobically unviable

[12], but this phenotype is due to defective RNR reduction,

as the anaerobic viability of the mutant strain suggests. Under

anaerobiosis, E. coli uses an alternate RNR that requires for-

mate as the hydrogen donor, instead of the thiol redox system

[18,19]. Therefore, TrxA, TrxC, or Grx1 but not Grx2 and

Grx3 are required for RNR reduction. Likewise, mutants lack-

ing TrxB and either GshA or Gor, or lacking or TrxA, TrxC,

and GshA are unviable aerobically, but not anaerobically

[12,14]. It is just recently that the essential function of the

E. coli thiol redox system has been formally established by

genetically suppressing the trxatrxcgrxc growth defect [20].

Random mutations in Grx3, a very poor RNR reductant

(see above and Fig. 1), were selected for their ability to restore

growth to the mutant strain, identifying Grx3 mutations that

increased its catalytic efficiency towards RNR reduction.

Extragenic suppressors of the trxatrxcgrxc growth defect were

also sought, revealing further insights into the interaction of

Grx3 with RNR. Three independent suppressor mutations

were selected that resulted in increased expression of RNR,

and which had the effect of allowing reduction of the enzyme

by Grx3. Thus, increasing either the catalytic efficiency of

Grx3 or the abundance of its low-specificity substrate RNR,

allowed sufficient reduction of RNR to rescue the growth of

the trxatrxcgrxc strain.

Interestingly, a mutation allowing the trxbgor strain to grow

aerobically occurs at very high frequencies. Such suppressor

strain is still able to catalyze disulfide bonds in ectopically

expressed AP in the cytoplasm, indicating that disulfide stress
is not lethal per se. Cloning of the suppressor mutation identi-

fied a new source of disulfide-reduction power and a surprising

genetic twist. The suppressor mutation was mapped to the

ahpC gene encoding a peroxiredoxin and is the result of a

reversible expansion of a triplet nucleotide repeat sequence

that convert the AhpC protein from a peroxidase to a disulfide

reductase.

3.3. Functions of the E. coli thiol redox system

Biochemistry and genetics have clearly established RNR and

PAPS reductase as substrates of the thiol redox systems. How-

ever, many other substrates do exist for this system (see Fig. 1),

which do not show up in genetic approaches either because of

lack of an overt phenotype or its masking by a dominant one.

A proteome-wide biochemical identification of in vivo oxidized

protein thiols in E. coli elegantly helped visualize an important

number of known, suspected or unsuspected substrates of thi-

oredoxin [21]. Thus, the thiol redox system is of biological

importance in many other processes, as for instance in cellular

detoxification pathways for various kinds of electrophiles and

other toxics. In most aerobic organisms, thiol redox systems

have also crucial functions in peroxide scavenging by provid-

ing the reducing power to all thiol and selenothiol-peroxidases,

the peroxiredoxins and glutathione peroxidases (GPx) (see be-

low). In contrast, E. coli does not carry GPx enzymes and by-

passes the GSH and thioredoxin pathways by using as major

peroxide-scavenging enzyme a peroxiredoxin, AhpC, which

carries its own specific NADPH-dependent reductase AhpF

[22,23].
4. The S. cerevisiae thiol redox system

The yeast thiol redox system is both very similar to the

E. coli system, also consisting of the thioredoxin and GSH

pathways, but much more complex and carrying important

differences with its prokaryotic counterpart, which makes it

probably closer to higher eukaryotes.
4.1. Description of thiol redox pathways

The yeast GSH pathway consists of GSH, which is synthe-

sized by the action of c-glutamylcysteine synthetase (GSH1)

and glutathione synthase (GSH2) (for a review see [24,25]),

one glutathione reductase (GLR1) and of two classes of glut-

aredoxins (Fig. 2). The catalytic center of the two dithiol glut-
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aredoxins Grx1 and Grx2 consists of the CPYC motif [26,27],

whereas that of the three monothiol enzymes, Grx3, Grx4 and

Grx5, is CGFS [28]. Grx3 and Grx4 carry also an extra N-ter-

minal thioredoxin domain with a WAD/EPCK motif reminis-

cent of the WCGPCK thioredoxin catalytic motif. S. cerevisiae

has two thioredoxin pathways, a cytosolic one consisting of

two apparently redundant thioredoxin isoforms (Trx1 and

Trx2) [29] and a thioredoxin reductase (Trr1) [30], and a mito-

chondrial one consisting of Trx3 and Trr2 [31] that will not be

dealt here.
4.2. The genetics of the S. cerevisiae thioredoxin pathway

Although both single and double TRX1 and TRX2 mutants

are viable, Dtrx1Dtrx2 has an extended S phase that is not seen

in either single mutant [29] (Table 2). This protracted S phase

is due to inefficient RNR reduction. This has recently been

established on the basis of a significant decrease of the dNTP

pools [32,33], an absolute decrease of the RNR reduced form

and an increase of its oxidized disulfide bond form as visual-

ized by its in vivo redox state, and on the effect of the overex-

pression of RNR that accelerates the S phase and restores both

the dNTPs pool and the abundance of the reduced RNR form

[32]. Viability of Dtrx1Dtrx2 thus indicates that the GSH path-

way can operates RNR reduction, but the protracted S phase

also indicates that Grx1 and Grx2 are not as efficient as the

thioredoxins in RNR reduction. The lethality of a quadruple

mutant lacking cytoplasmic thioredoxins and dithiol glutare-

doxins [34] supports the redundant role of both dithiol trans-

ferase pairs in RNR reduction, although the cause of this

lethality has not been formally established. The Dtrx1Dtrx2

is also auxotroph for sulfur amino acids indicating that thiore-

doxin is the exclusive hydrogen donor for PAPS reductase [29].

Nevertheless growth under a very low oxygen tension relieves

methionine auxotrophy [34], indicating that dithiol glutaredox-

ins can substitute for this function, albeit very inefficiently.

Dtrx1Dtrx2 is also unable to use methionine sulfoxide as a

source of organic sulfate [35] because of defective reduction

of this oxidized form of methionine, is hypersensitive to perox-

ides [36] and has a deregulated Yap1 pathway [37,38], pheno-
Table 2
Phenotypes of thiol redox system mutants in S. cerevisiae

Mutant Phenotype R

Dtrx1 nla

Dtrx2 nl
Dtrr1 Slow growth
Dtrx1Dtrx2 Protracted S phase,

Met auxotrophy
R

Dtrr1Dtrx1Dtrx2 Similar to Dtrx1Dtrx2 Si
Dglr1 nl
Dgrx1Dgrx2 nl
Dgrx1Dgrx2Dtrx1Dtrx2 Unviable
Dtrx1Dtrx2Dglr1 Unviable aerobically A
Dtrr1Dglr1 Unviable aerobically
Dtrx1Dtrx2Dgsh1 Unviable aerobically N
Dgrx2Dgrx5 Unviable

Dgsh1 GSH auxotrophy 0.
Dgrx1Dgrx2Dgrx3Dgrx4 nl
Dgrx5 Slow growth G

to
Dgrx3Dgrx4Dgrx5 Unviable
Dgrx3Dgrx4D Slow growth

anl: Normal vegetative growth. All defect presented are hypothetical and ha
types that are related to the role of thioredoxin in reducing

methionine sulfoxide reductase [39,40], the yeast thiol peroxi-

dases and Yap1 respectively (see below). A search for in vivo

substrates of thioredoxin by purification of thioredoxin-inter-

acting proteins and by a directed two-hybrid assay using as

bait a thioredoxin mutant lacking the CGPC motif C-terminal

cysteine residue that stabilizes interaction with substrates,

identified PAPS reductase (Met16), the peroxiredoxins Tsa1

and Ahp1 [41] amongst a few other proteins, confirming some

of the phenotypes of the thioredoxin mutant strain.

Interestingly, cells lacking cytoplasmic thioredoxin reductase

[42], do not carry the cell cycle and sulfate assimilation

phenotypes of Dtrx1Dtrx2 suggesting that they retain some

thioredoxin activity (Spector and Toledano, unpublished

observations). However, they are very slow growing [43] espe-

cially under aerobic conditions and are hypersensitive to per-

oxides (see below). The Dtrr1 slow growth phenotype is at

least in part related to toxic accumulation of oxidized thiore-

doxin, as deletion of both TRX1 and TRX2 in Dtrr1 improves

its growth (Spector and Toledano, unpublished observations).

Thioredoxin reductases, as thioredoxin, are also required for

the response to reductive stress imposed by dithiothreitol [43].
4.3. The genetics of the S. cerevisiae GSH pathway

A major difference with the E. coli system is that strains with

a deleted GSH1 and thus lacking GSH are unviable both aer-

obically and anaerobically, only growing with exogenously

added GSH [44–46] (Table 2). GSH has thus an essential func-

tion not shared with the thioredoxin pathway. In an attempt to

understand this essential function, a search for genetic suppres-

sors of the GSH auxotrophy was conducted, only yielding

mutations that restored biosynthesis of very low levels of

GSH by the abduction of the proline biosynthetic pathway

[47]. The cause of the essential requirement for GSH is very

puzzling; it is not related to oxidative stress, or to defective

DNA synthesis or sulfate assimilation or to disulfide stress

[47], but at least in part to a defect in iron–sulfur cluster

([Fe–S]) assembly as detailed below. The GSH precursor c-

glutamylcysteine can substitute for GSH, although only
escued by Defects

NR overexpression Sulfate assimilation,
Ribonucleotide reduction

milar to Dtrx1Dtrx2 Similar to Dtrx1Dtrx2
Accumulates GSSG

Ribonucleotide reduction
naerobic weak growth Complex

Complex
D Complex

Unknown

5 lM GSH Cytoplasmic [Fe–S] assembly

rx3 and Grx4 targeted
mitochondria

Mitochondrial [Fe–S] assembly

[Fe–S] assembly
Cytoplasmic [Fe–S] assembly

ve not been yet demonstrated experimentally. For references, see text.
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partially [44,48], but not DTT or the overexpression of thiore-

doxin that only have the effect of delaying the time needed for

exhaustion of the cellular GSH pool [47,49,50].

Glutathione reductase in contrast is totally dispensable [51],

despite the essential requirement for GSH, indicating that

GSSG, which accumulates in the Dglr1 strain [36], is not dele-

terious. S. cerevisiae probably carries an alternate GSH reduc-

ing system since reduced GSH represents up to 40% of the

total amount of GSH in Dglr1.

The genetics of glutaredoxins is complex [27,28]. Dithiol and

monothiol glutaredoxins have not only important structural

differences but also distinct functions, the later sharing with

GSH a function in [Fe–S] assembly (see below). Dithiol glut-

aredoxins presumably catalyze disulfide bond reduction, capa-

ble of replacing thioredoxin for RNR reduction, but their

specific in vivo substrates are still unknown. The lethality of

the quadruple mutant lacking both cytoplasmic thioredoxins

and dithiol glutaredoxins [34] indicate that monothiol glutare-

doxin cannot substitute for their dithiol counterparts. Grx5 is

located in mitochondria where it fulfills its Fe–S assembly

function whereas Grx3 and Grx4 fulfill a related function in

the cytoplasm. All single glutaredoxin genes mutants are via-

ble, but Dgrx5 has a unique slow growth phenotype with re-

spect to the other mutants [28]; it is unable to respire, and

accumulates iron and oxidized proteins at very high levels,

phenotypes linked to the function of Grx5 in [Fe–S] assembly.

A strain lacking all glutaredoxins but Grx5 is viable demon-

strating the importance of this enzyme, but strains lacking

Grx5 together with either Grx2 or Grx3 and Grx4 are lethal.

These data suggest that Grx5 has at least two essential func-

tions; one of them, the nature of which is unknown, can be res-

cued by Grx2 and the other, presumably related to [Fe–S]

assembly is rescued by either Grx3 or Grx4. A strain lacking

both Grx3 and Grx4 is also unviable [52,53], demonstrating

that the function of the cytoplasmic monothiol glutaredoxin

is as important as that of their mitochondrial counterpart.

Thus, monothiol glutaredoxins probably can, but only par-

tially, substitute for each other in their respective [Fe–S] assem-

bly function.
4.4. Genetic interplay between the thioredoxin and glutathione

pathways

The existence of a functional overlap between the two

branches of the thiol redox system is difficult to establish, be-

cause, unlike E. coli, ribonucleotide reduction is not the only

unique function that makes the system essential. Further yeast

does not have as E. coli an anaerobic RNR that bypasses the

thiol redox system. As mentioned above, the GSH pathway

can, albeit inefficiently, substitute for the thioredoxin pathway

in RNR reduction, explaining the unviable phenotype of the

quadruple mutant lacking both thioredoxins and both dithiol

glutaredoxins [34]. However, the GSH pathway has also an

exclusive essential function in [Fe–S] assembly unrelated to

thiol redox homeostasis. Furthermore, as detailed below and

unlike E. coli, the thioredoxin pathway has a prominent role

in peroxide catabolism that is not properly compensated by

the GSH pathway, probably explaining that in strains with

an inactivated thioredoxin pathway, the GSH redox state be-

comes significantly oxidized [36,43], which might impinge on

its essential function. In fact, for these reasons all mutants with

inactivation of both pathways are unviable probably due to
collapse of multiple essential defects in RNR reduction, [Fe–

S] assembly, and disulfide stress (Table 2). The essential

requirement of GLR1 in a strain lacking thioredoxin

(Dtrx1Dtrx2) [36] is the unique situation in which the lethal de-

fect can be ascribed to disulfide stress, because of the growth

rescue of the strain under anaerobiosis. This might indicate

that in the absence of thioredoxin, reduced GSH can and be-

comes critically required to compensate for the defect of thio-

redoxin in peroxide catabolism, and conversely that in the

absence of glutathione reductase, thioredoxin is needed for di-

rect or indirect reduction of GSH.
4.5. The yeast thioredoxin pathway has a prominent role in

peroxide catabolism

Cells are permanently exposed to reactive oxygen species

that are produced during respiration or that originate from

exogenous sources. Both superoxide dismutases and catalases,

which scavenge the superoxide anion and H2O2, respectively,

have an autocatalytic mechanism, whereas thiol- and selenoth-

iol-peroxidases require a reducing power to scavenge peroxides

provided by either the thioredoxin or the GSH pathways.

Which of the GSH or the thioredoxin pathways assist the scav-

enging of peroxides in yeast?

Yeast has two thiol-peroxidases family enzymes (for a review

see [54]). The peroxiredoxins (Prxs) consists of five isoenzymes

(Tsa1, Tsa2, Ahp1, nTpx, and mTpx) that are strictly depen-

dent upon thioredoxin for reduction of peroxides [30]. The

GPx-like Gpx1, Gpx2, and Gpx3 enzymes are also strictly thi-

oredoxin-dependent despite their name [55,56]. Peroxides oxi-

dize the methionine residue to the methionine sulfoxyde form

that is catalytically reduced by methionine sulfoxyde reductase

(MSR), which forms a catalytic disulfide that is reduced by thi-

oredoxin [57,58]. Thus, the two S. cerevisiae MSRs, MsrA also

known as Mxr1 and MrsB, must also be considered as perox-

ide-reducing enzymes that are strictly thioredoxin-dependent.

Likewise, the Yap1 transcriptional regulator of the yeast per-

oxide response, which is activated by peroxides by oxidation

and deactivated by reduction by thioredoxin [37,38], must also

be considered. It thus appears that, based on biochemical

activities, the thioredoxin pathway has a prominent role in per-

oxide metabolism in yeast, as it exclusively assists the major

yeast peroxide-metabolism pathways. What about the GSH

pathway?

GSH cannot react with peroxides in vivo because of its very

low reactivity towards these compounds [59] and do not partic-

ipate in peroxide scavenging by GSH-dependent GPx enzymes

due to lack of these enzymes in yeast. Nevertheless, GSH may

indirectly participate to this metabolism by forming S-glutath-

ionylated adducts with protein-sulfenic acids formed by oxida-

tion of thiols with peroxides, thereby protecting them from

irreversible oxidation to the sulfinic or sulfonic acid forms.

This activity might be significant given the abundance of this

redox-active tripeptide in the cell, in the mM range, as suggests

the increase in the GSSG levels and in the glutathionylation of

gluceraldehyde 3-phosphate dehydrogenase and of other pro-

tein thiols in cells exposed to H2O2 [60,61]. The glutaredoxins

Grx1 and Grx2 have been reported to act as peroxide-reducing

enzymes [62], by a GSH-S-transferase mechanism involving

GSH, glutathione reductase and the Ycf1 vacuolar ATP-

dependent GS-X pump. However, the modest catalytic effi-

ciency (Kcat/Km = 2–6 · 104 M�1 S�1) together with a high
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Km for the substrate in the mM range [62] suggest that these

enzymes act as minor peroxidases and only when the intracel-

lular peroxide concentration is very high.

Tolerance phenotypes correlate with biochemical data also

pointing to a predominant role of the thioredoxin pathway

in H2O2 metabolism. Although inactivation of the thioredoxin

[36,63,64] or GSH [44,45,47,65] pathways lead to peroxide sen-

sitivity, mutants of the former pathway are much more severe

phenotypes [64]. In fact, whereas the thioredoxin pathway, by

being actively involved in H2O2 catabolism, is critically re-

quired for growth in the presence of H2O2, the GSH pathway

seems important for survival upon an acute H2O2 challenge

[47], in keeping with its suggested redox buffer function.

The prominent role of the thioredoxin pathway in H2O2

metabolism is also suggested by a proteomic analysis of oxi-

dized protein thiols [66]. This study showed that the S. cerevi-

siae cytoplasm contains as much as 200 proteins carrying one

or more oxidized cysteine residue. Surprisingly, the oxidized

protein thiols proteome of strains lacking either the thiore-

doxin or the GSH pathways were strikingly different. Thiore-

doxin pathway mutants had both a specific increase in the

oxidation of many proteins and the appearance of newly oxi-

dized proteins. Many of these oxidized proteins were H2O2-

metabolizing enzymes such as Tsa1, Tsa2, Ahp1, Ntpx,

Gpx2, and Mxr1, suggesting an important role of the thiore-

doxin pathway in H2O2 metabolism. Interestingly, all new oxi-

dized spots corresponded to proteins expected to be oxidized

according to their function, ruling out random disulfide bond

formation that could have potentially resulted from inactiva-

tion of the thioredoxin pathway. In contrast, inactivation of

the GSH pathway led to a general decrease of protein oxidation

that was not modified by exogenous H2O2, and which was

interpreted as reflecting the irreversible oxidation of protein

thiols, which might have occurred due to the lack of GSH,

in keeping with its general redox buffer function.

4.6. Is the essential function of the yeast GSH pathway related to

iron metabolism?

In contrast to prokaryotes, GSH is essential for growth in S.

cerevisiae and also in all eukaryotes where its requirement has

been looked at. Identifying the essential biological process (es)

in which this redox-active tripeptide takes part is a major bio-

logical question but also a long-standing puzzle.

One answer to this question may lie in the cellular [Fe–S]

clusters biogenesis machinery and iron homeostasis. Chrono-

logically, the first hint to the function of GSH in iron metab-

olism was the observation that GSH depletion elicits a

specific defect in the maturation of cytoplasmic [Fe–S] proteins

and to iron cellular accumulation of [67], and reciprocally cells

with a defect in cytoplasmic Fe–S protein maturation accumu-

late GSH [68]. The second hint came from the phenotypes of

the Dgrx5 that associates defective mitochondrial [Fe–S] pro-

teins assembly, cellular iron accumulation and the inability

to respire [69]. Suppression of the Dgrx5 phenotypes by over-

expression of two genes involved in [Fe–S] cluster-protein bio-

genesis indicated that Grx5 operates as part of this machinery.

The actual role of Grx5 is not yet elucidated but could possibly

be to facilitate the transfer of clusters preassembled on the

Isu1/2 scaffold proteins onto acceptor proteins [70]. A third,

and probably the major piece of this jigsaw puzzle is a recent

discovery tying together monothiol glutaredoxins and GSH

into the same molecular process in [Fe–S] metabolism [71–
74]. Dithiol mammalian mitochondrial Grx2 [72,73] and poplar

cytoplasmic glutaredoxin C1 [71] holenzymes exist as dimers

bridged by a [2Fe–2S] cluster that is ligated by the catalytic cys-

teines of the two glutaredoxins of the dimer and unexpectedly

by the cysteines of two GSH molecules. A glycine residue

located right after the first catalytic Cys residue is crucial for

poplar Grx-C1 to assemble a [Fe–S] cluster. The presence of

a conserved glycine residue in the CGFS motif of yeast mono-

thiol glutaredoxins together with the lack of a role of the Grx-

C1 second active-site Cys residue strongly suggest that Grx3,

Grx4 and Grx5 are all able to incorporate [Fe–S] clusters

[74]. The last important recent discovery is the role of both

GSH and the redundant nucleocytoplasmic monothiol glutare-

doxins Grx3 and Grx4 in iron sensing by the Aft1 transcrip-

tional regulator of iron homeostasis [52,53,75]. Aft1 indirectly

senses iron through the cellular [Fe–S] biogenesis status [75–

78], and is thus activated when [Fe–S] biogenesis decreases as

a result of either cellular iron depletion or a crippled [Fe–S] bio-

genesis machinery. Lack of either GSH or both Grx3 and Grx4

lead to a constitutive activation of Aft1 under iron repletion

conditions, indicating that they are probably needed to signal

to Aft1 the [Fe–S] biosynthetic status [52,53].

How can these data be drawn into a unifying model? It is

first important to consider some basics of the biosynthesis of

[Fe–S] proteins. The mitochondrion is required for maturation

of both mitochondrial and cytoplasmic [Fe–S] proteins (for a

review, see [79]). Maturation of cytoplasmic of [Fe–S] proteins

further requires the mitochondrial export of an as yet uniden-

tified component and the recently discovered cytoplasmic

[Fe–S] assembly system termed CIA [80–86]. Further the

mitochondrial export of the elusive component requires the

mitochondrial inner membrane ATP-binding cassette (ABC)

transporter Atm1, the ERO1-related mitochondrial intermem-

brane space FAD-sulfydryl oxidase Erv1p, and GSH. The elu-

sive component is probably translocated through ATM, but

the function of both Erv1 and GSH in this process is unknown.

Interestingly, Erv1 has recently been shown to function to-

gether with Mia40 in a thiol redox relay that constitutes a spe-

cific IMS import machinery [87].

A speculative model of this pathway is proposed (Fig. 3),

which is based on the existence of the suspected GSH-ligated

[Fe–S] cluster of yeast monothiol glutaredoxins that might

serve as [Fe–S] shuttles within and outside mitochondria. It

thus supposes that all functions of GSH and monothiol Grxs

in iron metabolism are shared through a unique function. In

mitochondria, a GRx5-GSH [Fe–S] cluster would transfer

[Fe–S] cluster from Isu1/2 scaffold proteins onto acceptor pro-

teins, and from mitochondria onto GSH-Grx3 or GSH-Grx4

in the cytoplasm, thus constituting, at least part of both the

missing exported component of the CIA machinery, and the

signal alerting to Aft1 the mitochondrial [Fe–S] biogenesis sta-

tus. The lack of defective mitochondrial [Fe–S] biogenesis in

GSH depleted cells is against an [Fe–S] assembly function of

GSH in mitochondria [75], but in the cells used in these assays,

traces of mitochondrial GSH might have remained in amounts

sufficient to perform this essential function. The combined role

of GSH, Grx3, and Grx4 is strongly suggested by the impor-

tance of the GSH-binding pocket of glutaredoxins in the abil-

ity of the later to signal to Aft1 [52]. The functions of GSH and

monothiol Grx suggested here might underlie their essential

requirement for yeast viability because [Fe–S] biogenesis is

essential for life [79].



Fig. 3. A speculative model of the function of glutathione and
monothiol glutaredoxin in iron–sulfur assembly in yeast. The model is
based on the hypothetical existence of GSH-ligated [Fe–S] cluster of
yeast monothiol glutaredoxins that might serve as [Fe–S] shuttles
within and outside mitochondria. [Fe–S] clusters are synthesized by the
mitochondrial [Fe–S] biosynthetic machinery and transferred to
acceptor proteins. Mitochondria export an unknown component
emanating from the [Fe–S] biogenesis machinery, which requires the
mitochondrial inner membrane transporter, Atm1, the mitochondrial
intermembrane space (IMS) protein Erv1, GSH and an intact [Fe–S]
machinery. This unknown component, which is needed both for [Fe–S]
status sensing by Aft1 and for cytoplasmic [Fe–S] assembly, might
involve at least in part the hypothetical Grx-GSH-ligated [Fe–S]
complexes. In mitochondria, a GRx5-GSH [Fe–S] cluster could also be
involved in the transfer of [Fe–S] cluster from Isu1/2 scaffold proteins
onto acceptor proteins. For references and further explanations, see
text.
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5. Comparison of the E. coli and yeast thiol redox systems

In E. coli the thioredoxin and GSH pathways are function-

ally redundant and therefore not essential individually

(Fig. 1). They also operate in a virtually identical manner,

using electrons from NADPH to reduce by a thiol-disulfide ex-

change mechanism catalytic disulfide bonds, some of which are

essential as in RNR and other are not as in PAPS reductase,

and to prevent the occurrence of unwanted disulfide bonds.

Redundancy is presumably due to the fact that each pathway

can substitute for the other for important or essential func-

tions, which raises the question of why does E. coli carry

two so closely related systems. Notwithstanding, substrate-

specificity exists within and between these branches (see

Fig. 1); specificity is established through the use of sets of

terminal thioltransferases, the thioredoxins and glutaredox-

ins, which differ from each other by their abundance, redox

potential and affinities towards substrates. Remarkably, the

E. coli thiol redox system is only essential under aerobiosis,

and this is uniquely due to its need for RNR reduction

and DNA synthesis. It is dispensable under anaerobiosis

provided an exogenous source of organic sulfate, and this dis-

pensability is not due to relieve of the low levels oxidative

stress of aerobic growth, but to a switch to anaerobic RNR

that uses an alternate reducing power source. Disulfide stress,

or the accumulation of unwanted disulfide bonds, is fully com-

patible with life but might impinge to some degrees on the

essential role of the thiol redox system under extreme condi-

tions.
Although consisting of a GSH and thioredoxin pathways

and fulfilling many of the same functions, the S. cerevisiae thiol

redox system is clearly different from that of E. coli. The two

branches of this system are both critically required under both

aerobiosis and anaerobiosis and are not functionally redun-

dant, each having preferred or exclusive targets some of which

are critical for life. Thus, the S. cerevisiae thioredoxin is the

preferred reductant of RNR and PAPS reductase and has a

prominent role in H2O2 metabolism with regard to the GSH

pathway. The GSH pathway provides the redox buffering

function of GSH, the biological importance of which is not

yet clearly established in yeast. More importantly this pathway

has been abducted to operate an essential function in [Fe–S]

metabolism totally distinct from thiol redox control, thus pro-

viding what could be a [Fe–S] shuttle constituted by monothiol

glutaredoxins and GSH. Whether a similar function of GSH

and glutaredoxin exist in prokaryotes is possible in view of

the functional complementation of the yeast Dgrx5 strain by

the E. coli monothiol Grx4 [88], a protein of yet no known

function that carries the CGSF of poplar Grx-C1 [8].
6. Conclusions

The thiol redox system appears as a highly efficient proton-

shuttle system that helps cell to domesticate the oxidizing

power of O2, but because of its intrinsic reactivity it can also

become a double-edge sword under some circumstances, lead-

ing to unwanted redox reactions. Its role in vivo has been

established mainly by the effect of inactivating one or more

of its components. However, genetics is necessarily fraught

with caveats. Unviability, which is often seen in the genetics

of thiol redox control pathways lead to insoluble biological

cul-de-sacs, as in the case of the biochemical functions of the

GSH pathway. The caveats are also in the interpretation of

data, because removing a thiol redox component of one of

the two pathways will necessarily perturb the overall thiol re-

dox control equilibrium of the cell. However, such perturba-

tions also suggests the interdependence between the GSH

and thioredoxin pathways, especially in yeast in which these

pathways are non-redundant. The dynamic interplay between

redox systems has not been clearly established because of the

cited experimental difficulties, but might be important espe-

cially under oxidative stress, conditions under which a very

important load is applied on the system. A dynamic interplay

necessarily exists as suggested by the presence of an oxidized

GSH redox ratio in mutants of the thioredoxin pathway [43].

The activation the unfolded protein response (UPR) of the

ER in these same mutants [89] also suggest an interplay be-

tween cytoplasmic thiol redox control and the process of oxi-

dative protein folding in the ER. Note also that GSH has an

important function in regulating the thiol redox balance in

the lumen of the ER and hence the functionality of the

Ero1-dependent oxidative protein folding pathway that has

not been considered here. In this cell compartment, GSH acts

as a load against oxidation by Ero1 [90], and as recently shown

is also required for feedback redox regulation of Ero1 activity

[91]. The effects of inactivating the thioredoxin pathway on the

activation of the UPR could thus be mediated by GSH, the

absolute levels of which are significantly increased in these mu-

tants and that is present in both compartments unlike thiore-

doxin.
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The yeast thiol redox system is thus much more complex than

its prokaryotic counterpart, and probably represents a very

good model of this system in higher eukaryotes. The yeast model

should thus be useful to begin to rationalize the lethal pheno-

types associated with the mouse knock-outs of thioredoxin 1

[92], thioredoxin 2 [93], mitochondrial and cytoplasmic thiore-

doxin reductases [94,95] and c-glutamyl synthase [96], and the

defect of monothiol glutaredoxin 5 in human and the zebra fish

that leads to defective heme synthesis, anemia and iron overload

[97,98].
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