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Abstract The Type I insulin-like growth factor receptor is a
physiological receptor for insulin-like growth factor II (IGF-II).
To characterize the molecular basis of the receptor’s ligand
binding properties, we have examined the effects of alanine
mutations of residues in the ligand binding site of the receptor on
its affinity for IGF-II. The functional epitope for IGF-II
comprises residues in the N-terminal L1 domain and residues
at the C-terminus of the a subunit. Cysteine rich domain residues
do not appear to be critical for IGF-II binding.
� 2004 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Insulin-like growth factors I and II (IGF-I and II) are

homologous peptide growth factors that are major regulators

of growth in vertebrates [1]. Transgenic experiments indicate

that both peptides exert their physiological effects through

binding to the Type I insulin-like growth factor receptor [1].

This receptor binds both peptides with high affinity although

its affinity for IGF-I has been reported to be 2–5 times higher

than its affinity for IGF-II [2–5].

The Type I IGF receptor is a member of the insulin receptor

sub-class of receptor tyrosine kinases [6]. Recently, the struc-

ture of an N-terminal fragment of the receptor, comprising the

L1, cysteine rich and L2 domains (amino acids 1–460), has

been reported [7]. While this fragment is devoid of ligand

binding activity, a mini-receptor formed by the fusion of this

fragment to a peptide (amino acids 692–702) from the C-ter-

minus of the receptor a subunit binds IGF-I with an affinity

near to that of the recombinant secreted extra-cellular domain

[8]. This indicates that these fragments form the minimal ele-

ments of a major IGF-I binding site of the receptor. We have

recently defined the functional epitope of this IGF-I binding

site using alanine scanning mutagenesis [9]. In the present

study, in order to gain further insight into the molecular basis
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for the differences in affinities of this receptor for IGF-I and II,

we have used alanine scanning mutagenesis to determine its

functional epitope for IGF-II.
2. Materials and methods

2.1. Materials
All oligonucleotides were purchased from DNA technology

(Aarhus, Denmark). Restriction and modifying enzymes were from
New England Biolabs (Beverly, MA). Recombinant IGF-I and IGF-II
(receptor grade) were from Gro Pep (Adelaide, Australia). High per-
formance liquid chromatography purified mono-iodinated insulin-like
growth factor I radio-iodinated on Tyrosine 31 (125I-[Tyr31] IGF-I)
was from Novo Nordisk A/S [10]. Protease inhibitors were from Roche
Molecular Biochemicals (Mannheim, Germany). Medium and serum
for tissue culture were from Life Technologies A/S (T�astrup, Den-
mark). Peak Rapid cells (293 cells constitutively expressing SV40 large
T antigen) were purchased from Edge Biosystems (Gaithersburg, MD).
The mammalian expression vector pcDNA3-zeo(+) was from Invit-
rogen (San Diego, CA). The hybridoma secreting monoclonal anti-
body 24–31 directed toward the IGF-I receptor a-subunit was a
generous gift of Dr. M.Soos and Dr. K. Siddle (University of Cam-
bridge, UK). Protein A-purified IgG from the hybridoma medium was
kindly provided by Dr. P. Jørgensen (Novo Nordisk A/S, Bagsv�rd,
Denmark). The construction and transient expression of alanine
mutants of Type I insulin-like growth factor receptor cDNAs in 293
Peak Rapid cells has been described in detail [1].

2.2. IGF-II binding assays
IGF-II binding assays were performed by a modification of methods

previously used for equilibrium binding assays of the insulin and IGF-I
receptors [9,11]. Secreted recombinant IGF-I receptor was immobilized
from the conditioned media of transiently transfected Peak Rapid cells
in antibody coated 96 well microtiter plates as previously described
[9,11]. 125I-[Tyr31] IGF-I (12 pmol/L) and unlabeled IGF-II (0–100
nmol/L) were incubated with immobilized receptor for 16 h at 25 �C in
a total volume of 100 lL. Bound radioactivity was determined after the
plates had been washed three times with ice cold wash buffer.
Dissociation constants for IGF-II were determined by curve-fitting

using a single site heterologous competition model as described by
Wang [12], written in Excel. Dissociation constants for IGF-I used for
the fitting of data for wild type and mutant receptors were taken from
our previously published study [9].
3. Results and discussion

Wild type secreted IGF-I receptor cDNAs were expressed by

transient transfection in 293 Peak Rapid cells. Initial attempts

to evaluate IGF-II binding were made with either commercial

mono-iodinated IGF-II (Amersham) or HPLC purified mono-

iodinated IGF-II produced at Novo Nordisk A/S. Neither

were of sufficient quality for use in homologous competitive

binding assays with unlabeled IGF-II (data not shown). Thus,
blished by Elsevier B.V. All rights reserved.
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IGF-II binding was evaluated by heterologous competition of
125I-[Tyr31] IGF-I by unlabeled IGF-II. The Kd of wild type

IGF-II determined in this assay was 2.9� 0.2 nM (mean-

s� S.E.M., n ¼ 8); Kd for IGF-I determined in parallel ex-

periments was 0.7� 0.06 nM (means� S.E.M., n ¼ 8). This 4-

to 5-fold difference in affinity is similar to that previously re-

ported for the full length receptor [2–5]. In the experiments

described below, alanine mutations resulting in a Kd for IGF-II

of greater than 5.8 nM were considered to significantly disrupt

ligand receptor interactions [13].

cDNAs encoding alanine mutations of all ligand accessible

residues located in candidate IGF-I binding regions of the

Type I IGF receptor (L1, cysteine rich and L2 domains) and

amino acids of 692–702 have been previously described [9]. In

the N-terminal fragment (L1, cysteine rich and L2 domains),

these are all solvent accessible residues located in the putative

binding pocket of the receptor [7] and are limited to the L1

domain and the cysteine rich domain (CRD) (amino acids

1–284) on the basis of the reported size of the IGF-I molecule

[14–16] and previous mutational analyses of IGF-I–Type I

IGF receptor interactions [9,17]; in the crystal. structure of the

N-terminal fragment of the receptor [7], IGF-I is not large

enough to simultaneously contact the part of the IGF-I func-

tional epitope [9] most distant from the L2 domain (amino

acids Asn11, Leu33, Arg59 and Phe90) and residues of the L2

domain even with bridging by water molecules.

Alanine mutant cDNAs were expressed by transient trans-

fection; cDNAs encoding alanine mutations of Tyr54 and Thr93
Table 1
Effects of alanine mutations on the affinity of the Type I insulin-like growth

L1 domain Cysteine rich domain

Mutanta Kd (nM)b Kd Mut/Kd WTc Mutanta Kd (nM)b

D8 7.5� 0.4 2.6� 0.2 R240 1.4� 0.1
R10 2.9� 0.1 1.0� 0.02 F241 0.5� 0.04
N11 9.5� 1.1 3.3� 0.4 E242 1.2� 0.1
D12 1.2� 0.1 0.4� 0.02 F251 0.8� 0.2
Y28 10.3� 1.1 3.6� 0.4 I255 1.6� 0.2
H30 12.2� 1.8 4.2� 0.6 L256 3.4� 0.2
L32 7.3� 0.5 2.5� 0.2 S257 2.6� 0.4
L33 29.3� 3.9 10.1� 1.3 E259 3.1� 0.2
S35 2.5� 0.2 0.9� 0.1 S260 2.0� 0.4
Y54 ND ND S261 3.8� 0.2
L56 15.5� 1.5 5.3� 0.5 D262 1.9� 0.3
F58 10.9� 0.7 3.7� 0.2 S263 3.3� 0.3
R59 23.6� 2.0 8.1� 0.7 E264 3.1� 0.3
K60 3.5� 0.8 1.2� 0.3 F266 2.6� 0.2
W79 2.2� 0.3 0.8� 0.1 H269 2.1� 0.1
L81 2.9� 0.1 1.0� 0.05 D270 2.3� 0.4
F82 3.5� 0.3 1.2� 0.1 E272 3.1� 0.3
Y83 2.0� 0.2 0.7� 0.1 M274 1.7� 0.3
N84 0.8� 0.2 0.3� 0.06 Q275 4.2� 0.4
Y85 1.0� 0.1 0.3� 0.04 E276 3.3� 0.6
V88 2.6� 0.1 0.9� 0.02 S279 2.2� 0.5
F90 8.7� 1.4 3.0� 0.5 F281 3.2� 1
E91 2.6� 0.3 0.9� 0.1 I282 3.3� 0.4
T93 ND ND R283 1.6� 0.4
R112 2.5� 0.1 0.9� 0.05 N284 3.1� 0.
E114 4.5� 0.2 1.6� 0.06
K115 1.8� 0.3 0.6� 0.1
Y138 2.9� 0.1 1.0� 0.03
V140 4.5� 0.2 1.5� 0.1

ND: mutants not secreted.
*Affinity too low to be accurately determined, see text.
aAmino acids mutated are designated by the single letter code.
bResults are expressed as means�S.E.M. of 3–4 independent determination
cResults are expressed as the ratio of the Kd of the mutant to the Kd of the
were not transfected as we have previously demonstrated that

these mutations are not expressed due to perturbation of pro-

tein folding [9]. Expression of all mutants was confirmed by the

binding of 125I-IGF-II with the exception of the alanine mutant

of Phe701 which failed to exhibit significant specific tracer

binding, even after 20-fold concentration of conditioned me-

dium from transfected cells (data not shown). Expression of this

mutant was confirmed by Western blotting (data not shown).

The results of the Kds of the mutant receptors are shown in

Table 1. In L1 alanine mutations of Asp8, Asn11, Tyr28, His30,

Leu32, Leu33, Leu56, Phe58, Arg59 and Phe90 produce signifi-

cant decrease in affinity for IGF-II. Only mutations of Leu33,

Leu56 and Arg59 produced increases in Kd of 5-fold or greater.

As shown in Fig. 2A, all residues, whose mutation compro-

mises affinity for IGF-II, form a continuous footprint on the

base of the L1 domain of the receptor, consistent with par-

ticipating in a ligand binding site for a small protein.

In the cysteine rich domain, none of the alanine mutations

expressed caused any significant compromise in affinity for

IGF-II (Table 1).

At the C-terminus of the a subunit, alanine mutations of

Phe692, Glu693, Asn694, Phe695, His697, Asn698, and Ile700 pro-

duced 4- to 27-fold increases in Kd (Table 1). As discussed

above the alanine mutant of Phe701 failed to bind IGF-II de-

spite normal expression of this mutant protein, indicating that

its affinity for IGF-II is too low to be measured by the meth-

odology employed in this study. This would suggest that its Kd

for IGF-II is at least a 100-fold greater than that of the wild
factor receptor for IGF-II

a subunit C-terminus

Kd Mut/Kd WTc Mutanta Kd (nM)b Kd Mut/Kd WTc

1.4� 0.1 F692 77.7� 7.0 26.7� 2.4
0.5� 0.04 E693 39.0� 10.1 13.4� 3.5
1.2� 0.1 N694 78.8� 7.8 27.1� 2.7
0.8� 0.2 F695 42.9� 8.3 14.7� 2.9
0.5� 0.06 L696 33.2� 5.9 11.4� 2.0
1.2� 0.1 H697 28.0� 2.0 9.6� 0.7
0.9� 0.2 N698 12.5� 1.7 4.3� 0.6
1.0� 0.1 S699 2.0� 0.1 0.7� 0.04
0.7� 0.1 I700 17.0� 1.5 5.8� 0.5
1.3� 0.1 F701 � �

0.7� 0.1 V702 4.8� 0.5 1.6� 0.2
1.1� 0.1
1.0� 0.1
0.9� 0.1
0.7� 0.04
0.8� 0.1
1.1� 0.1
0.6� 0.1
1.4� 0.1
1.1� 0.2
0.8� 0.2
1.1� 0.3
1.1� 0.1
0.5� 0.1
1.1� 0.1

s.
wild type receptor (Kd Mut/Kd WT).



Fig. 1. Comparison of the functional epitopes for IGF-II and IGF-I.
The effects of alanine mutations of amino acids, which form the Type I
IGF-receptor ligand binding site, on affinity for IGF-II and IGF-I are
compared. Results are presented as ratios of the dissociation constant
of the mutant receptor to that of the wild type receptor. Data for IGF-
I binding are taken from [9]. Results for both ligands represent
means�S.E.M. of 3–4 independent determinations. The amino acids
mutated to alanine are designated by the single letter code. L1 desig-
nates amino acids located in the cysteine rich domain and CRD amino
acids in the cysteine rich domain. For the alanine mutant of Phe701, the
Kd ratios for both IGF-II and IGF-I have been arbitrarily assigned
values of 100 (see text for detailed discussion).

Fig. 2. Comparison of the structures of the functional epitopes of the
L1 and cysteine rich domains for IGF-II and IGF-I binding. The Ca
backbone of the L1 and CRDs is shown as a ribbon representation.
The amino acids forming the functional epitopes for IGF-II (A) and
IGF-I (B) are shown in space-filling representation. Alanine mutations
of amino acids colored green produced a 2- to 5-fold reduction in af-
finity, those colored yellow produced a 5- to 10-fold reduction and
those colored red produced a greater than 10-fold reduction. Amino
acids are designated by the single letter code. This figure was prepared
with the Swiss PDB Viewer [18].

H. Sørensen et al. / FEBS Letters 565 (2004) 19–22 21
type receptor. These results indicate that the majority of the

free energy of the ligand receptor interaction is provided by

this sub-domain of the receptor ligand binding site.

We have previously characterized the functional epitope of

the Type I insulin-like growth factor receptor IGF-I binding

site by alanine scanning mutagenesis [9]. It is of interest to

compare the functional epitopes for both ligands. The results

of this comparison for the L1, cysteine rich and C-terminal a
subunit domains are shown in Fig. 1. Both functional epitopes

are qualitatively very similar but certain residues appear to

participate selectively in the binding of one or other ligand.

The most striking difference between them is that the cysteine

rich domain residues Arg240, Phe241, Glu242 and Phe251, which

together with Trp79 from the L1 domain form a hydrophobic

patch at the base of the IGF-I functional epitope (Fig. 2B and

[9]), make no significant energetic contribution to the binding

of IGF-II. In the L1 domain Trp79, which compromises affinity

for IGF-I, is not involved in IGF-II binding (Fig. 1). In con-

trast, alanine mutation of Leu32, which contributes to IGF-II

binding, has no impact on IGF-I receptor interaction (Fig. 1).

When the L1 residues contributing to the functional epitopes

are compared in the context of the topology of this region of

the receptor (Fig. 1), interesting differences emerge for the two

ligands. Alanine mutations of residues in the first (Asp8 and

Asn11) and fourth turns (Phe90) of the L1 domain b helix are

more disruptive of IGF-I binding than IGF-II binding (Figs. 1

and 2). In contrast, alanine mutations of residues in the second

(Tyr28, His30, Leu32 and Leu33) and third turns (Leu56, Phe58

and Arg59) are more deleterious to IGF-II binding (Figs. 1 and

2).

Differences in effects of alanine substitutions of residues at

the C-terminus of the a subunit on binding of IGF-I and IGF-

II are also observed. Alanine mutation of Phe695 resulted in 15-

fold reduction in affinity for IGF-II but was without effect on

IGF-I binding (Fig. 1). Alanine mutations of Phe692, Glu693,

Asn694 and His697 have more pronounced effects on affinity for

IGF-II than for IGF-I (Fig. 1). The reverse is seen for muta-
tions of Leu696, Asn698 and Ile700 (Fig. 1). The effect of alanine

mutation of Phe701 was so disruptive that it was impossible to

quantitate Kds for either IGF-I or IGF-II.
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In summary, we have defined the functional epitope of an

IGF-II binding site of the Type I IGF-I receptor which is

composed of elements of the L1 domain, and the C-terminus

of the a subunit of the receptor. This contrasts with the

functional epitope of receptor for IGF-I, which contains ele-

ments of the cysteine rich domain in addition to those involved

in IGF-II binding. The differences between the two functional

epitopes indicate that the two peptides utilize different molec-

ular mechanisms to bind to the same ligand binding site of the

receptor. It is tempting to conclude that this difference in the

functional epitopes, particularly the absence of interaction of

IGF-II with the receptor cysteine rich domain, accounts for the

difference in affinities of this receptor for the two ligands.

However, definitive confirmation of this conclusion will re-

quire elucidation of the structures of the peptide–receptor

complexes and detailed analyses of the energetic contributions

of the residues forming the functional epitopes of both ligands

and also of the receptor.
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