
Alexandria Engineering Journal (2015) 54, 447–455
HO ST E D BY

Alexandria University

Alexandria Engineering Journal

www.elsevier.com/locate/aej
www.sciencedirect.com
ORIGINAL ARTICLE
High performance ACS for Viterbi decoder using

pipeline T-Algorithm
* Corresponding author.

E-mail addresses: vaithi_d@rediffmail.com (D. Vaithiyanathan),

nargisjaraab@gmail.com (J. Nargis), seshasayanan@annauniv.edu

(R. Seshasayanan).

Peer review under responsibility of Faculty of Engineering, Alexandria

University.

http://dx.doi.org/10.1016/j.aej.2015.04.007
1110-0168 ª 2015 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
D. Vaithiyanathan a,*, J. Nargis b, R. Seshasayanan a
a Department of Electronics and Communication Engineering, Anna University, Chennai, India
b Department of Electronics and Communication Engineering, Aalim Muhammed Salegh College of Engineering, Chennai, India
Received 22 August 2014; revised 27 February 2015; accepted 15 April 2015
Available online 7 May 2015
KEYWORDS

Viterbi decoder;

T-Algorithm;

Add Compare Select (ACS);

Pipelining;

Field Programmable Gate

Arrays (FPGAs)
Abstract Viterbi algorithm is the most popular algorithm used to decode the convolution code,

but its computational complexity increases exponentially with the increasing constraint length

due to the large number of Trellis transitions. However, high constraint length is necessary to

improve the accuracy of the decoding process for the high rate convolution code. In particular,

the Add Compare Select (ACS) module of the Viterbi Decoder will have large numbers of trellis

states and trellis transitions with increased constraint lengths, which give rise to high hardware com-

plexity and large power consumption. As the performance of Viterbi decoder mainly depends on its

efficient implementation of ACS module, in this paper, we propose a modified pipelined architec-

ture for the ACS of Viterbi decoder. This is derived by employing the technique of re-timing; further

the architecture is also reconfigured to support various wireless standards. The architecture has

been implemented in Xilinx Vertex 6 FPGA device to make the comparison between our architec-

ture and the existing architecture. From the analysis done on ACS implementation, it is found that

the resource requirements, delay and power consumption are optimized significantly for the

proposed architecture compared to existing pipelined architecture. The results obtained from the

analysis show that frequency of the system is increased up to 165 MHz with reduced area. The cell

level performance is also obtained using Cadence Encounter (R) tool with TSMC 180 nm CMOS

technology.
ª 2015 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Convolution codes are widely used in a variety of applications
such as mobile communication, radio communication, and
digital radio. Though convolution coding adopts a very simple

procedure, decoding the code requires higher level of complex
procedures. Hence Viterbi algorithm is adopted to decode the
convolution codes. Thus the Viterbi decoder attains a high

impact in decoding the convolution codes. For the convolution
code with large constraint length, the hardware complexity and

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aej.2015.04.007&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:vaithi_d@rediffmail.com
mailto:nargisjaraab@gmail.com
mailto:seshasayanan@annauniv.edu
http://dx.doi.org/10.1016/j.aej.2015.04.007
http://dx.doi.org/10.1016/j.aej.2015.04.007
http://www.sciencedirect.com/science/journal/11100168
http://dx.doi.org/10.1016/j.aej.2015.04.007
http://creativecommons.org/licenses/by-nc-nd/4.0/

448 D. Vaithiyanathan et al.
the power consumption of the Viterbi decoder are very high
and this is the practical difficulty in the implementation of
Viterbi decoder. More research works have been done on

designing an area and power efficient Viterbi decoder to
improve its efficiency and support for different applications
[3–25].

Some specific techniques that the researchers have devel-
oped to reduce the computational load are M-Algorithm [1],
T-Algorithm [2] [3], over scaling of the supply voltage [5].

M-Algorithm requires the sorting process for optimal path
metric computation while the T-Algorithm needs to compute
only the minimum value, so the T-Algorithm is found to be
very much effective in achieving low power design. In the tech-

nique of supply voltage scaling, the entire system needs to be
considered for the voltage scaling. According to T-
Algorithm, the states which have the difference between opti-

mal path metric and the corresponding state metric, lesser than
the threshold would survive, while others would be discarded.
By using this algorithm, power reduction can be achieved by

reducing the number of states which are least likely to appear.
But the optimal path has to be computed from the newly
updated path metric and this limits the speed of ACS of

Viterbi decoder. In [10,11,15,16] authors have contributed
for the efficient implementation of T-Algorithm, but only the
estimated optimal path metric is calculated. To overcome this
problem, the technique incorporating the pre-computation

architecture along with T-Algorithm is proposed by He et al.
[17,18], in which optimal path metric is precomputed using
previous path metric values and this results in improved clock

speed. In our work we have analyzed the precomputation algo-
rithm used in [17,18] and found a systematic way for further
optimization by adopting some transformations on the loca-

tion of delay elements.
Another perspective of this paper is the design of reconfig-

urable ACS architecture for the Viterbi decoder. Today’s wire-

less devices are incorporated with many wireless standards.
Each and every standard will have its own configuration
parameters such as the constraint length and coding rate.
This happens to be a major problem in the implementation

of decoder within a single device. This leads to high cost design
and large silicon area requirement. To overcome this problem,
T: T-Flip Flop

T

X3
X2
X1

T T

Figure 1 Rate 3/4 co

Figure 2 Functional block d
we need a flexible reconfigurable architecture which should
adapt to different wireless standards of different configuration
parameters. In this work, we proposed the high performance

ACS architecture for Viterbi decoder. The advantages of the
proposed techniques are validated with the FPGA implemen-
tation results and are reported for both existing and proposed

techniques.
The rest of this paper is organized as follows. In Section 2,

the theoretical background information of the Viterbi decoder

is given. Section 3 provides the ACS design for rate 3/4 convo-
lution code based on precomputation architecture along with
T-Algorithm. Section 4 describes the proposed ACS architec-
ture of the Viterbi decoder. Comparison of the results taken

in the existing and proposed technique is discussed in
Section 5. Finally our work is concluded in Section 6.
2. Background

2.1. Functional description of Viterbi decoder

The process of convolutional encoding the data is achieved
using a cascaded connection of flip flops and associated com-

binatorial logic that performs modulo-two addition. The enco-
der used for analysis is rate 3/4 convolution encoder with the
constraint length of 7 is shown in Fig. 1. This encoder is chosen

to illustrate the effectiveness of the proposed architecture for
such high rate codes. When a convolutional encoded symbol
is transmitted over the channel, it might get corrupted by

noise. To recover the data from such a corrupted symbol,
Viterbi decoder is used, whose functional block diagram is
shown in Fig. 2 that comprises of Branch Metric Unit
(BMU), Add-Compare-Select Unit (ACSU), Path Metric

Unit (PMU) and Survivor Memory Unit (SMU). The branch
metric unit’s function is to calculate branch metrics, which
are normed distances between the ideal code word and the

received symbol. The Add Compare Select Unit (ACSU) adds
the BMs to the corresponding previous PMs, compares the
new PMs, and then stores the survivor PMs in the Path

Metric Memory. At the same time, the ACSU stores the asso-
ciated survivor path decisions in the Survivor Memory Unit
Z3
Z2
Z1

Z0T T T

nvolution encoder.

iagram of Viterbi decoder.

High performance ACS for Viterbi decoder 449
(SMU), and then either Register exchange mechanism or Trace
back Algorithm is employed to the SMU to regenerate the
decoded sequence.

2.2. Problem description of Viterbi decoder

To prove the fact that the computational complexity of Viterbi

Decoder is high for large constraint length convolution codes,
comparison is made between the low rate 1/2 code and the high
rate 3/4 code and it is discussed below. Rate 1/2 convolution

encoder with constraint length as 3 has four states and two
incoming paths for every node. Thus the rate 1/2 coder has
totally 8 (4 · 2) paths in every ACSU cycle. Rate 3/4 convolu-

tion encoder with constraint length as 7 has sixty-four states
and eight incoming paths for every node. Therefore rate 3/4
coder contains 512(64 · 8) paths in every ACSU cycle. This
demonstrates that the high rate convolution code has large

amount of computation which leads to high hardware com-
plexity, more delay and large power consumption. In order
Figure 3 Architecture of 2-step pre-computatio

Figure 4 Functional block diagram of Viterbi
to reduce the computational complexity and high power con-
sumption, we proposed a modified pipelined version of
ACSU architecture.

3. T-Algorithm with 2-step precomputation architecture

3.1. T-Algorithm

In high rate convolution codes, the probability of transitions is

very high which gives rise to the large dynamic power dissipa-
tion. To solve this problem, the number of transitions has to be
reduced which can be done by reducing the number of states.

This principle is the basis of T-Algorithm [17] in which the
least likely states are discarded; those states cannot participate
in next cycle computations. To find the least likely states, this

algorithm compares the difference between the state metric
and the optimal path metric of every state with the threshold,
states whose difference greater than the threshold are consid-
ered as the least likely states. The straight forward
n T-Algorithm for rate 3/4 convolution code.

decoder with pre-computation architecture.

Figure 5 Proposed pipelined architecture for rate 3/4 convolution code.

450 D. Vaithiyanathan et al.
implementation of T-Algorithm requires three stages of 4-in-
put comparator, one adder for branch metric computation,
one 4-input comparator and one 2-input comparator for the
calculation of best path metric from 8 incoming path metric,

one adder for adding the threshold with the optimal path met-
ric, one 2-input comparator for the purge unit. The critical
path achieved from this conventional Viterbi decoder is

expressed as Eq. (1),

T ¼ 2Tadder þ 4T4�i=p comp þ 2T2�i=p comp ð1Þ

From Eq. (1), it is observed that the critical path time of the
conventional implementation of T-Algorithm is very high
which limits the speed of the system.

3.2. T-Algorithm with precomputation architecture

To overcome the limitation of the straight forward implemen-

tation of T-Algorithm, T-Algorithm with Pre-computation
architecture for rate 3/4 convolution code is proposed in
[17,18] which is shown in Fig 3. In this method, optimal path
metric is calculated as a function of previous path metric PMs
(n � q), where ‘q’ is the pre-computation step.

Accurate path metric is calculated in every cycle. So, no

extra parameters are required for compensation. Since the
optimal path metric is calculated from the pre-computed val-
ues, the long critical path is shortened for this architecture.

Functional block diagram of Viterbi decoder with this archi-
tecture is shown in Fig. 4. For two step pre-computation archi-
tecture, optimal path metric can be calculated within 2 clock

cycles. So, it can be pipelined as two stages. The critical path
time of two stages is expressed as Eqs. (2) and (3),
Tðstage 1Þ ¼ Tadder þ 2T4�i=p comp ð2Þ

Tðstage 2Þ ¼ Tadder þ T4�i=p comp þ 2T2�i=p comp ð3Þ
From this, it is observed that the path time of either of these
stages is less compared to the one given in Eq. (1).

Figure 6 Single ACS module for reconfigurable ACS architecture.

High performance ACS for Viterbi decoder 451
The details on BG group, minBMG, even and odd BMs are
given in [18].
4. Proposed ACSU architecture of Viterbi decoder

In the existing technique [18] which is discussed in the previous
section, all the 64 path metrics are stored in the registers for the

successive two clock cycles. After this process, the stored path
metric values are grouped into four clusters, and then the min-
imum path metric value of each cluster is determined. Based on
these computations, optimal path metric is calculated which is

understood from Fig. 3. In our approach, the locations of
delay elements are changed without affecting the functionality
of the system. Here the minimum value finder block of each
cluster is moved before one set of delay elements i.e. minimum
value of each cluster is computed in terms of PMs (n � 1)

instead of PMs (n � 2). Then the minimum value of each clus-
ter is maintained for one cycle. By doing this kind of modifica-
tion, three stage pipelined circuit is obtained without
increasing the count of delay elements, whereas for the existing

system, we have only two stages of pipelining. Pipelined three
stages are shown as dotted lines in Fig. 5. The critical path time
of the three stages is expressed as Eqs. (4)–(6).

Tðstage 1Þ ¼ 2T4�i=p comp ð4Þ

Tðstage 2Þ ¼ Tadder ð5Þ

452 D. Vaithiyanathan et al.
Tðstage 3Þ ¼ Tadder þ T4�i=p comp þ 2T2�i=p comp ð6Þ

Since only the minimum value is retained for the conse-
quent cycle, the number of registers is reduced to a great
extent. The critical path of the first stage of the existing system

contains one adder and two no.’s 4-input comparator which
involves more delay, whereas the proposed technique is
divided into two stages to obtain reduced delay along this

path. Even though the critical path time of the third stage of
our system is same as the second stage of the existing system,
our method achieves better delay reduction as it has lesser

number of registers and look-up tables (LUT’s). Therefore
more freedom in placement and routing of the instances is
gained and also by giving proper area and timing constraints
in the Xilinx tool, the delay can be controlled much more effec-

tively for the proposed method compared to the existing sys-
tem. Also the switching activity of the system comes down
due to the decrease in the register count which results in

reduced dynamic power dissipation.

4.1. Reconfigurable ACS architecture

In the process of designing the reconfigurable ACS architec-
ture the similarities between different parameters of the
Figure 7 minBMG, oddBM, evenBM compu
convolutional codes are first found out. From this, the basic
cell of the design is constructed and then the control logic is
added to control different parameters of the convolutional

code. In our design, highest configuration parameter is rate
3/4 convolution code with constraint length 7. To decode the
rate 3/4 convolution encoder, 64 ACS units are required, and

the structure of single ACS unit is given in Fig. 6, which com-
prises of eight adders. These adders will get enabled depending
upon the flag condition, if the required mode is rate 3/4 convo-

lution coder, all eight adders in the ACS unit will get enabled
depending on the flag condition. If the mode required is rate 2/
3 convolution coder, only the top four adders of the ACS unit
will be activated, and the rest four adders will be disengaged.

For the case of rate 1/2 convolution encoder, only the top
two adders are required. Since for all these three cases, top
two adders are required, the output from these adders is

directly given to the min 8 comparator. Other adders are con-
trolled by having the select module logic. If the mode input is
00, the design will take all adders from the ACS module which

is given in Fig. 6. If the mode is 01, the design will take four
adders required for rate 2/3 convolutional encoder. If the
mode is 10, the design will take only two adders required for

rate 1/2 convolution encoder.
tation for reconfigurable ACS architecture.

Table 3 Cell level analysis report.

Parameter He et al. [18] Proposed system

Cell count 15,775 15,510

Cell area 64,644 61,387

Power (nW) 1265295.849 1028261.037

Delay (ps) 473 442

High performance ACS for Viterbi decoder 453
For optimal path metric computation, it is required to find
the minBMG, oddBM, evenBM values whose functional dia-
gram is shown in Fig. 7. Since the coder has four branch metric

values in one cluster, rate 3/4 convolution coder requires two
stages of two input comparator. Rate 2/3 convolution coder
has only two branch metric values, so it requires only one stage

of two input comparator. To facilitate the selection between
rate 3/4 and rate 2/3 mode, input select unit is inserted between
the comparator stages. Depending upon the input mode, the

input select unit will accept the inputs of the required mode
and it will feed the accepted values to the rest of the computa-
tion. For rate 1/2 convolution encoder, comparators are not
required for minBMG computation. Only evenBM, oddBM

computation requires one comparator. To enable this selec-
tion, another input select unit is added.

From this architecture, it is clear that for the highest

parameter mode all the blocks are utilized. For others, a por-
tion of hardware is utilized. The resources are shared and
reused among different modes. The proposed reconfigurable

decoder supports the coding rate 1/2, 2/3 and 3/4 with con-
straint length 7. The reconfigurable architecture is imple-
mented with negligible hardware overhead compared to the

design with separate circuitry.

5. Experimental results and comparisons

In order to validate the performance of the proposed system,
the architecture of both existing [18] and proposed ACS are
described in Verilog HDL and targeted to Xilinx Vertex 6
XC6VLX240T-1FF1156 device [26]. The existing and the pro-

posed architectures are compared in terms of hardware com-
plexity, timing delay and power consumption. Parameters for
the convolution encoder are specified as follows. Constraint

length is chosen as 7 with coding rate as 3/4 and number of
states is 64. The received sequence is examined by considering
4-bit word per cycle. We have observed that the area of ACS of

Viterbi decoder is dominated by the registers. This makes the
ACS expensive in terms of area and this large no’s of registers
give rise to high power consumption. But in the proposed

method, since we have calculated the minimum cluster value
using PMs (n � 1) instead of PMs (n � 2), the number of reg-
isters and LUT is highly reduced. Resource requirements of
both proposed and existing architectures are summarized in

Table 1. It is observed from Table 1, the number of slice
Table 2 Power report summary.

Technique On chip power summary (W)

Clock Logic Signal IO

He et al. [18] 0.031 0.074 0.104 0.012

Proposed 0.024 0.077 0.093 0.012

Table 1 Resource utilization and timing results.

Logic utilization He et al. [18] Proposed system

Slice register count 636 387

Slice LUTs count 6681 6271

Post PAR timing results 6.436 ns 6.085 ns
registers and LUT’S has decreased by about 39% and 6%
respectively for the proposed architecture compared to the
He et al. [18]. From this it is very clear that the proposed archi-

tecture is very efficient compared to the existing one in terms of
hardware complexity.

Timing result is also noted for the proposed and existing

system and is reported in Table 1. To get the accurate timing
result, Post Place and Route (PAR) is done. Since the hard-
ware resource requirements become low for the proposed

method, it gains greater flexibility in placement and routing
to get the optimized delay. We compared the power consump-
tion of the existing architecture with our modified pipelined
architecture using Xilinx XPower analyzer tool. Reduced reg-

ister count in our architecture decreases the switching rate
which in turn reduces the dynamic power dissipation. For
power estimation, the clock frequency was set to 165 MHz

and supply voltage of Vccint = 1.5 V. Information obtained
on chip power and supply power is reported in Table 2.
Furthermore, the proposed and existing designs are synthe-

sized using Cadence� RTL compiler� with standard library
of TSMC 180 nm CMOS technology [27], and the hardware
complexity in terms of cell area, power consumed and delay

calculations are summarized in Table 3. It is observed from
Table 3 that the proposed design consumes less area and
18.7% reduction in power consumption with 6.5% reduction
in total delay compared to the existing architecture.

The design of ACS unit is constructed as a re-configurable
one to achieve efficient resource reuse and to allow the design
to occupy a relatively smaller chip area. The resource utiliza-

tion summary of the reconfigurable ACS is summarized in
Table 4. The proposed reconfigurable ACS for the constraint
length 7 with coding rate 1/2, 2/3 and 3/4 has significant
Supply power summary (W)

Leakage Total Dynamic Quiescent Total

1.972 2.193 0.221 2.761 2.982

1.971 2.177 0.206 2.761 2.966

Table 4 Resource utilization for reconfigurable ACS.

Logic utilization Proposed

system

Proposed

reconfigurable

system

Slice register count 387 432

Slice LUTs count 6271 8267

Post PAR timing results for

reconfigurable ACS

6.085 ns 6.257 ns

Table 5 Power report summary for the reconfigurable ACS.

Technique On chip power summary (W) Supply power summary (W)

Clock Logic Signal IO Leakage Total Dynamic Quiescent Total

Proposed ACS 0.024 0.077 0.093 0.012 1.971 2.177 0.206 2.761 2.966

Proposed reconfigurable ACS 0.028 0.115 0.245 0.026 1.978 2.393 0.415 2.767 3.182

Table 6 Comparison with reported architectures on xilinx

xcv800 FPGA.

Architecture Area (gates) Throughput (Mbps)

Proposed structure 57,927 35.876

Structure of [18] 62,637 35.458

Structure of [19] 108,389 35.558

Structure of [20] 86,845 20

Table 7 Comparison of reconfigurable Viterbi decoder with

reported architectures on xilinx xc2vp30 FPGA.

Architecture Constraint

length

supported

Area

(gates)

(K)

Throughput Power

(mw)

Proposed

structure

7 66.828 80.142 Mbps 103

Structure of [19] 3–7 113 81 Mbps 103

Structure of [20] 3–7 89.5 20 Mbps –

Structure of [21] 3–7 175 70 Mbps –

Structure of [22] 7,9 95 12.5 Mbps –

Structure of [23] 3–9 190 60.5 Mbps 561.64

Structure of [24] 4–9 65 333.7 Kbps –

454 D. Vaithiyanathan et al.
hardware overhead compared to the proposed nonreconfig-
urable ACS. If we have separate circuitry for these configura-

tion parameters on the single chipset, the requirement will be
huge. So, in this perspective the hardware overhead of the
reconfigurable ACS compared to the nonreconfigurable ACS
is negligible. PAR timing results and power report are also

summarized in Tables 4 and 5 respectively. The maximum fre-
quency achieved for this reconfigurable Viterbi decoder is
160 MHz. Power consumption of the reconfigurable ACS is

almost same as the nonreconfigurable ACS. Thus the resulting
reconfigurable ACS architecture is found to be efficient in
terms of area and has almost the same timing and power

results as the nonreconfigurable ACS architecture.
To compare with the reported architectures presented in

[19–24], the proposed architecture and architecture in [18] were

also tested on Xilinx XCV800 FGPA and XC2VP30 FPGA.
Table 6 compares the proposed decoder and [18] for fixed con-
straint length 7 and code rate as 3/4 with the other existing
architecture that has the constraint length of 7 with code rate

code rate as 1/2–1/3 presented in [19,20]. From Table 6, it is
understandable that the proposed structure has lesser area uti-
lization of 7.5%, 46.56% and 33.29% compared to the struc-

ture in [18–20] respectively. At the same time the proposed
architecture maintains its throughput compared to [18,19]
and 44.25% higher than the reported [20].
In order to obtain more realistic results, Table 7 compares
the proposed reconfigurable decoder which supports the cod-

ing rate 1/2, 2/3 and 3/4 with constraint length 7 with the
reported architecture presented in [19–24]. When compared
to the most recent one [19], the proposed architecture con-

sumes 40.86% lesser area and almost maintains the same
throughput. The structure reported in [20], consumes 25.33%
more area and is 300% slower than the proposed. Compared

to [21], the proposed architecture has 61.81% area improve-
ment and 14.48% speed improvement. The logic utilization
by [24] is significantly lower than the other structures, but
throughput is very low. The overall results show that, the pro-

posed scheme utilizes less logic resources with high throughput
and is found to be efficient for high rate convolution code.

6. Conclusion

In this paper, we have presented a modified approach for the
ACS design of Viterbi decoder, by changing the locations of

delay elements in an optimized manner without affecting the
functionality and thus results a good reduction in register
count and critical path time. To improve the flexibility of

ACS design and for efficient hardware reuse of various wireless
standards, the proposed ACS design is reconfigured for differ-
ent configuration parameters. The ACS design is reconfigured

with negligible hardware overhead compared to the fixed
implementation of Viterbi decoder. The modified design is suc-
cessfully implemented on the Xilinx Vertex 6 FPGA device.
This method has decreased the number of registers by 39%

and LUT count by 6%. The operating frequency of the system
is increased up to 165 MHz. Furthermore, to get in-depth
information to prove the efficiency of the proposed technique,

the design is also synthesized using Cadence� RTL compiler�
using TSMC 180 nm CMOS library to obtain cell level perfor-
mance parameters. Thus the proposed architecture achieves

high-speed and low-power and is found to be very effective
for the high rate convolution code.
References

[1] C.F. Lin, J.B. Anderson, M-Algorithm Decoding of Channel

Convolutional Codes, Princeton Conf. Info. Sci. Syst.,

Princeton, NJ, 1986.

[2] S.J. Simmons, Breadth-first trellis decoding with adaptive effort,

IEEE Trans. Commun. 38 (1) (1990) 3–12, http://dx.doi.org/

10.1109/26.46522.

[3] F. Chan, D. Haccoun, Adaptive Viterbi decoding of

convolutional codes over memoryless channels, IEEE Trans.

Commun. 45 (11) (1997) 1389–1400, http://dx.doi.org/10.1109/

26.649755.

[4] S.W. Choi, K.M. Kang, S.S. Choi, A two-stage Radix-4 Viterbi

decoder for multiband OFDM UWB system, ETRI J. 30 (6)

(2008) 850–852.

http://refhub.elsevier.com/S1110-0168(15)00055-1/h0005
http://refhub.elsevier.com/S1110-0168(15)00055-1/h0005
http://refhub.elsevier.com/S1110-0168(15)00055-1/h0005
http://refhub.elsevier.com/S1110-0168(15)00055-1/h0005
http://dx.doi.org/10.1109/26.46522
http://dx.doi.org/10.1109/26.46522
http://dx.doi.org/10.1109/26.649755
http://dx.doi.org/10.1109/26.649755
http://refhub.elsevier.com/S1110-0168(15)00055-1/h0020
http://refhub.elsevier.com/S1110-0168(15)00055-1/h0020
http://refhub.elsevier.com/S1110-0168(15)00055-1/h0020

High performance ACS for Viterbi decoder 455
[5] R.A. Abdallah, N.R. Shanbhag, Error-resilient low-power

Viterbi decoder architectures, IEEE Trans. Signal Proc. 57 (12)

(2009) 4906–4917, http://dx.doi.org/10.1109/TSP.2009.2026078.

[6] M. Guo, M.O. Ahmad, M.N.S. Swamy, C. Wang, A low-power

systolic array-based adaptive Viterbi decoder and its FPGA

implementation, in: Proceeding of the ISCAS 2003, 276–279

May 2003, http://dx.doi.org/10.1109/ISCAS.2003.1205960.

[7] M. Guo, M.O. Ahmad, M.N.S. Swamy, C. Wang, FPGA design

and implementation of a low-power systolic array-based

adaptive Viterbi decoder, IEEE Trans. Circuits Syst. I 52 (2)

(2005) 350–365, http://dx.doi.org/10.1109/TCSI.2004.838266.

[8] R. Tessier, S. Swaminathan, R. Ramaswamy, D. Goeckel, W.

Burleson, A reconfigurable, power-efficient adaptive Viterbi

decoder, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 13

(4) (2005) 484–488, http://dx.doi.org/10.1109/TVLSI.2004.

842930.

[9] F. Angarita, A. Perez-Pascual, T. Sansaloni, J. Valls, Efficient

mapping on FPGA of a Viterbi decoder for wireless LANs, in:

Proceeding of the Workshop on Signal Processing Systems

Design and Implementation, 710–7155 November 2005, http://

dx.doi.org/10.1109/SIPS.2005.1579957.

[10] M.-H. Chan, W.-T. Lee, M.-C. Lin, L.-G. Chen, IC design of an

adaptive Viterbi decoder, IEEE Trans. Consum. Elect. 42 (1996)

52–62, http://dx.doi.org/10.1109/30.485461.

[11] Fei Sun, Tong Zhang, Low power state-parallel relaxed adaptive

Viterbi decoder design and implementation, IEEE ISCAS (2006)

4811–4814, http://dx.doi.org/10.1109/ISCAS.2006.1693707.

[12] S.W. Shaker, S.H. Elramly, K.A. Shehata, FPGA

Implementation of a reconfigurable Viterbi decoder for

WiMAX receiver, in: Proceeding of the Inter. Conf. on

microelectronics, 264–267 December 2009, http://dx.doi.org/

10.1109/ICM.2009.5418636.

[13] L. Bissi, P. Placidi, G. Baruffa, A. Scorzoni, A Viterbi decoder

architecture for a standard-agile and reprogrammable

transceiver, Integration, VLSI J. 41 (2) (2008) 161–170, http://

dx.doi.org/10.1016/j.vlsi.2007.04.001.

[14] J.-S. Han, T.-J. Kim, C. Lee, High performance Viterbi decoder

using modified register exchange methods, in: Proc. of the

International Symposium on Circuits and Systems, vol. 3, 2004,

pp. 553–556, http://dx.doi.org/10.1109/ISCAS.2004.1328806.

[15] Fei Sun, Tong Zhang, Parallel high-throughput limited search

trellis decoder VLSI design, IEEE Trans. Very Large Scale

Integr. (VLSI) Syst. 13 (9) (2005) 1013–1202, http://dx.doi.org/

10.1109/TVLSI.2005.857181.

[16] J. Jin, C.-Y. Tsui, Low-power limited-search parallel state

Viterbi decoder implementation based on scarce state transition,

IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 15 (11)
(2007) 1172–1176, http://dx.doi.org/10.1109/TVLSI.2007.

903957.

[17] J. He, H. Liu, Z. Wang, A fast ACSU architecture for Viterbi

decoder using T-Algorithm, in: Proc. Of the 43rd IEEE

Asilomar Conf. Signals, Syst. Comput., November 2009, pp.

231–235, http://dx.doi.org/10.1109/ACSSC.2009.5470119.

[18] Jinjin He, Huaping Liu, Zhongfeng Wang, Xinming Huang, Kai

Zhang, High-speed low-power Viterbi decoder design for TCM

decoders, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20

(4) (2012) 755–759, http://dx.doi.org/10.1109/TVLSI.2011.

2111392.

[19] C. Vennila, A.K. Patel, G. Lakshminarayanan, S.B. Ko,

Dynamic partial reconfigurable Viterbi decoder for wireless

standards, Comput. Electr. Eng. 39 (2) (2013) 164–174, http://

dx.doi.org/10.1016/j.compeleceng.2012.12.009.

[20] K. Chadha, J. Cavallaro, A reconfigurable Viterbi decoder

architecture, in: Proc. of the Thirty Fifth Asilomar Conference

on Signals, Systems and Computer, vol. 1, November 2001, pp.

66–71, http://dx.doi.org/10.1109/ACSSC.2001.986882.

[21] J.M. Campos, R.A. Cumplido, A runtime reconfigurable

architecture for viterbi decoding, in: Proc. of the 3rd

International Conference on Electrical and Electronics

Engineering, 1–4 September 2006, http://dx.doi.org/10.1109/

ICEEE.2006.251908.

[22] R. Rasheed, A. Menouni, R. Pacalet, Reconfigurable Viterbi

decoder for mobile platform, in: Proc. of the IFIP International

Conference on Mobile and Wireless Communication Networks,

19–21 September 2005.

[23] J.R. Cavallaro, M. Vaya, Viturbo: a reconfigurable architecture

for viterbi and turbo decoding, in: Proc. of the International

Conference on Acoustics, Speech and Signal Processing, vol. 2,

April 2003, pp. 1520–6149, http://dx.doi.org/10.1109/ICASSP.

2003.1202412.

[24] S. Swaminathan, R. Tessier, D. Goeckel, W. Burleson, A

dynamically reconfigurable adaptive viterbi decoder, in: Proc.

Of International Symposium on Field Programmable Gate

Arrays, 2002, pp. 227–236, http://dx.doi.org/10.1145/503048.

503081.

[25] J. Nargis, D. Vaithiyanathan, R. Seshasayanan, Design of high

speed low power Viterbi decoder for TCM system, in: Proc. of

the International Conference on Information Communication

and Embedded Systems – ICICES 2013, February 2013, pp.

185–190, http://dx.doi.org/10.1109/ICICES.2013.6508239.

[26] Xilinx Inc., San Jose, CA, Virtex-6 FPGAdata sheet, January 19,

2012, <http://www.xilinx.com/support/documentation/data_

sheets/ds150.pdf>.

[27] Cadence, Encounter user guide, Version 6.2.4, March 2008.

http://dx.doi.org/10.1109/TSP.2009.2026078
http://dx.doi.org/10.1109/ISCAS.2003.1205960
http://dx.doi.org/10.1109/TCSI.2004.838266
http://dx.doi.org/10.1109/TVLSI.2004.842930
http://dx.doi.org/10.1109/TVLSI.2004.842930
http://dx.doi.org/10.1109/SIPS.2005.1579957
http://dx.doi.org/10.1109/SIPS.2005.1579957
http://dx.doi.org/10.1109/30.485461
http://dx.doi.org/10.1109/ISCAS.2006.1693707
http://dx.doi.org/10.1109/ICM.2009.5418636
http://dx.doi.org/10.1109/ICM.2009.5418636
http://dx.doi.org/10.1016/j.vlsi.2007.04.001
http://dx.doi.org/10.1016/j.vlsi.2007.04.001
http://dx.doi.org/10.1109/ISCAS.2004.1328806
http://dx.doi.org/10.1109/TVLSI.2005.857181
http://dx.doi.org/10.1109/TVLSI.2005.857181
http://dx.doi.org/10.1109/TVLSI.2007.903957
http://dx.doi.org/10.1109/TVLSI.2007.903957
http://dx.doi.org/10.1109/ACSSC.2009.5470119
http://dx.doi.org/10.1109/TVLSI.2011.2111392
http://dx.doi.org/10.1109/TVLSI.2011.2111392
http://dx.doi.org/10.1016/j.compeleceng.2012.12.009
http://dx.doi.org/10.1016/j.compeleceng.2012.12.009
http://dx.doi.org/10.1109/ACSSC.2001.986882
http://dx.doi.org/10.1109/ICEEE.2006.251908
http://dx.doi.org/10.1109/ICEEE.2006.251908
http://dx.doi.org/10.1109/ICASSP.2003.1202412
http://dx.doi.org/10.1109/ICASSP.2003.1202412
http://dx.doi.org/10.1145/503048.503081
http://dx.doi.org/10.1145/503048.503081
http://dx.doi.org/10.1109/ICICES.2013.6508239
http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf

	High performance ACS for Viterbi decoder using pipeline T-Algorithm
	1 Introduction
	2 Background
	2.1 Functional description of Viterbi decoder
	2.2 Problem description of Viterbi decoder

	3 T-Algorithm with 2-step precomputation architecture
	3.1 T-Algorithm
	3.2 T-Algorithm with precomputation architecture

	4 Proposed ACSU architecture of Viterbi decoder
	4.1 Reconfigurable ACS architecture

	5 Experimental results and comparisons
	6 Conclusion
	References

