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Abstract

A biologically motivated computational model of bottom-up visual selective attention was used to examine the degree to which

stimulus salience guides the allocation of attention. Human eye movements were recorded while participants viewed a series of

digitized images of complex natural and artificial scenes. Stimulus dependence of attention, as measured by the correlation between

computed stimulus salience and fixation locations, was found to be significantly greater than that expected by chance alone and

furthermore was greatest for eye movements that immediately follow stimulus onset. The ability to guide attention of three modeled

stimulus features (color, intensity and orientation) was examined and found to vary with image type. Additionally, the effect of the

drop in visual sensitivity as a function of eccentricity on stimulus salience was examined, modeled, and shown to be an important

determiner of attentional allocation. Overall, the results indicate that stimulus-driven, bottom-up mechanisms contribute signifi-

cantly to attentional guidance under natural viewing conditions. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The amount of incoming information to the primate
visual system is much greater than that which can be
fully processed. It is well known that only part of this
information is processed in full detail while the re-
mainder is left relatively unprocessed (for reviews see
Desimone & Duncan, 1995; Egeth & Yantis, 1997;
Niebur & Koch, 1998, chap. 9). For example, from the
high-resolution foveal representation in the retina where
most processing resources are allocated to the central 5�
of the visual field, to late stages of visual cortical
processing where receptive fields invariably grow to
encompass the fovea, the neural architecture dispro-
portionately represents the central visual field. Addi-
tionally, dynamic mechanisms of selective attention
focus the processing resources of the visual system by
functioning as an information gating mechanism. To-

gether, attentional mechanisms and neural architecture
determine what visual information is or is not fully
processed.

In order that behaviorally relevant visual information
is appropriately selected, efficient mechanisms must be
in place. Two major attentional mechanisms are known
to control this selection process. First, bottom-up at-
tentional selection is a fast, and often compulsory,
stimulus-driven mechanism. There is now clear evidence
indicating that attention can be captured under the right
stimulus conditions. For example, highly salient feature
singletons (Bacon & Egeth, 1994; Treisman & Gelade,
1980) or abrupt onsets of new perceptual objects (Yantis
& Hillstrom, 1994; Yantis & Jonides, 1984) automati-
cally attract attention. The other mechanism, top-down
attentional selection, is a slower, goal-directed mecha-
nism where the observer’s expectations or intentions
influence the allocation of attention. Observers can vo-
litionally select regions of space (Posner, 1980) or indi-
vidual objects (Rock & Gutman, 1981; Duncan, 1984;
Tipper, Weaver, Jerreat, & Burak, 1994) to attend.

The degree to which these two mechanisms play a
role in determining attentional selection under natural

Vision Research 42 (2002) 107–123
www.elsevier.com/locate/visres

* Corresponding author. Tel.: +1-410-516-8643; fax: +1-410-516-

8648.

E-mail address: niebur@jhu.edu (E. Niebur).

0042-6989/02/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.

PII: S0042 -6989 (01)00250 -4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82415832?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


viewing conditions has been for a long time under de-
bate. Much of the research relevant to this question has
focused on the way in which people make eye move-
ments while viewing complex natural scenes. The logic
of this approach rests on the assumption that eye
movements and attention are associated. This assump-
tion is a reasonable one given that both eye movements
and attention are related to the selection of the most
important parts of the visual input. Although the loca-
tions of attention and fixation can be dissociated, psy-
chophysical evidence indicates that focal attention at
the location of a pending eye movement is a necessary
precursor for that movement (Deubel & Schneider,
1996; Hoffman & Subramaniam, 1995; Kowler, Ander-
son, Dosher, & Blaser, 1995; McPeek, Maljkovic, &
Nakayama, 1999; Schneider & Deubel, 1995; Shepherd,
Findlay, & Hockey, 1986).

Some of the earliest studies showed that observers
preferentially look at people and faces, suggesting a
significant role for top-down influences (Buswell, 1935;
Yarbus, 1967). Later, more quantitative analyses indi-
cated that observers look at regions which are deemed to
be informative (Antes, 1976; Mackworth & Morandi,
1967). Unfortunately, from these studies it is unclear to
what degree semantic features (top-down) as compared
to visual features (bottom-up) influenced the informa-
tiveness ratings. Other evidence suggests that top-down
semantic influences do affect attentional guidance,
leading to longer and more frequent fixations on items
that are inconsistent with scene context (DeGraef,
Christiaens, & d’Ydewalle, 1990; Henderson, Weeks,
& Hollingsworth, 1999; Henderson & Hollingsworth,
1998; Loftus & Mackworth, 1978). Furthermore, indi-
vidual observers exhibit idiosyncratic scanpaths upon
repeated viewings of the same stimulus (Noton & Stark,
1971), suggesting an that internal representation is cre-
ated on initial viewing that guides later reviewings.
While later studies (Brant & Stark, 1997; Ellis, 1986;
Stark & Ellis, 1981) have supported this theory, other
results (Mannan, Ruddock, & Wooding, 1997) using
complex natural scenes rather than simple line drawings
find little or no evidence for repetitive scanpaths. Fi-
nally, further evidence of top-down control comes from
the effect of task instructions. Both the patterns of fix-
ation locations (Yarbus, 1967) and the spatio-temporal
dynamics of eye movements (Andrews & Coppola,
1999) can vary with task.

On the other side of the debate, the strong evidence
for stimulus-driven attentional capture indicates that
bottom-up selection can influence attentional allocation
in simple experimental paradigms, but there is little re-
search examining the extent of bottom-up attentional
allocation under more natural viewing conditions. Only
recently have studies quantitatively examined the simi-
larity between extracted image features in natural scenes
and the fixation locations made when participants free

view these scenes. In general, only measures of edge
density and local contrast tend to be greater at the
points of fixation than at other locations (Krieger,
Rentschler, Hauske, Schill, & Zetzsche, 2000; Mannan,
Ruddock, & Wooding, 1996; Mannan et al., 1997;
Reinagel & Zador, 1999).

We address the extent to which bottom-up, stimulus-
driven factors influence the allocation of attention by
examining the correlation between stimulus salience, as
determined by a biologically plausible computational
model of bottom-up selective attention, and human eye
movements obtained while viewing complex natural and
artificial scenes. The model, shown in Fig. 1, function-
ally implements many of the processes important in
early vision (e.g. center-surround organization, lateral
inhibition and multiscale interactions). In a purely
bottom-up fashion, the model takes as input an image
and processes it in three parallel feature channels using
a range of spatial scales. The resulting topographic
feature maps are then combined across scales and
channels to form a ‘‘saliency map’’ (Koch & Ullman,
1985). The saliency map indicates the most salient, or
visually important, regions in the image. If attention is
stimulus-driven under normal viewing conditions, there
should be a positive correlation between the locations of
fixation and the salience of the stimulus at those loca-
tions. This logic rests on the assumption that eye
movements and attention are associated. As mentioned
earlier, this assumption is valid for a number of reasons.
First, both eye movements and attention can serve the
same goal, selecting the instantaneously most important
parts of the visual input. Second, our examination of
attentional allocation is limited to natural viewing
conditions, when constraints that might dissociate eye
movements and attention are limited. Finally, psycho-
physical evidence indicates that focal attention at the
location of a pending eye movement is a necessary
precursor for that movement (Deubel & Schneider,
1996; Hoffman & Subramaniam, 1995; Kowler et al.,
1995; McPeek et al., 1999; Schneider & Deubel, 1995;
Shepherd et al., 1986).

To test the correlation between stimulus salience and
fixation locations, an experiment was conducted where
eye movements were recorded while participants free
viewed four different types of images (see Fig. 2 for ex-
amples). The images ranged in degree of realism from
computer generated fractals, where we suspected eye
movements to be the most stimulus-driven, to home
interiors and building and city scenes, where we sus-
pected top-down influences to be much more common.
Participants were required to free view each image for
five seconds. The free viewing task was chosen in order
to avoid introducing task dependent top-down effects on
eye movements. In addition, the free viewing task was
chosen because it most closely approximates natural
viewing conditions.

108 D. Parkhurst et al. / Vision Research 42 (2002) 107–123



In analyzing the correlation between eye movements
and salience, we initially focused on the locations of the
first fixation after each trial started. Next, we examined
the following fixations. Given the slower onset of top-
down attentional effects (for a detailed review of the
time course of top-down attention see Egeth & Yantis,
1997) and the necessity to acquire at least some infor-
mation from the visual input before top-down influences
can be exerted on a given image, we suspected a stronger
correlation with bottom-up influences for early fixa-
tions than for later fixations. Subsequently, to further
investigate the dependence of attentional allocation on
stimulus properties, the ability of each of the three fea-
tures channels to guide attention was examined inde-
pendently. Finally, the role of the decline in visual
sensitivity as a function of eccentricity in determining
attentional allocation was examined in the context of the
model.

2. Model

Ever since Broadbent (1958) first proposed the filter
theory of selective attention, the two-stage framework

has pervaded conceptual and computational modeling
efforts (Cave & Wolfe, 1990; Findlay & Walker, 1999;
Neisser, 1967; Theeuwes, 1993; Treisman & Gelade,
1980; Wolfe, 1994). Within this framework, the first
stage preattentively processes all incoming visual infor-
mation equally and in a parallel fashion. The degree of
processing is rudimentary, consisting only of a simple
feature-based decomposition (e.g. color and orienta-
tion). At the interface between the first and second
stages is a filter or bottleneck that functions as a gate
allowing only part of the visual information to proceed
to the second stage. The processing of the second stage
differs from that of the first in capacity and level of
detail. It has a limited capacity, being only able to
process one or possibly a few objects simultaneously,
and it processes the visual information to a much higher
level of detail (e.g. object-based representations). This
model framework has served as a cornerstone to inter-
preting most of the results in the visual attention
literature. Indeed, converging evidence from neuro-
physiological and neuroanatomical studies suggests a
plausible neural implementation of the two-stage model
in the primate visual cortex. Early cortical areas show
cellular response properties similar to some of the

Fig. 1. (A) Schematic view of the model. The input image is separated into three parallel feature channels (color, intensity, and orientation) and

sampled at a series of spatial scales. Feature activity is propagated to the next level and reorganized into a center-surround arrangement. Finally,

activity is normalized within each feature channel and linearly summed to form the salience map. Dynamic allocation of the focus of attention is

determined through a winner-take-all process in the saliency map. Once the focus of attention has been shifted to a location, inhibition of return

lowers the salience at that location allowing the focus of attention to shift to a new location. (B) An example image used in the experiment. (C) The

saliency map generated from B with regions of high salience shown in white.
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stimulus features that support pop-out. 1 These cells
typically have small receptive fields scattered throughout
the visual field, suggesting parallel processing. Later
areas show much more complex response properties and

have receptive fields that typically cover a large portion
of the visual field, suggesting serial processing.

Described in this section is a biologically plausible
model of bottom-up visual selective attention. As can be
seen in Fig. 1, visual input is provided to the model and
segregated into three separate parallel feature channels,
one each for color, intensity, and orientation. Although
these feature dimensions do not represent an exhaustive
set of those important in determining salience, modeling
these features allows the model to account for a large

Fig. 2. Examples of the four classes of images used in the experiment.

Fig. 3. The method for quantifying the correlation between stimulus salience and fixation locations is illustrated for one image database. The lo-

cation of the first fixation after stimulus onset is extracted from the eye movement record and indicated by a red circle on each image (left). A saliency

map is generated for each image in the database and the saliency at the first fixation location is extracted (center). The mean of the extracted salience

values ð�ssÞ is calculated across images and compared to the distribution of �ss expected by chance (right). The distance between the �ss obtained as a

fixation location and the mean �ss expected by chance alone is referred to as the chance-adjusted salience sa.

1 Pop-out is a perceptual phenomenon where one unique feature

will stand out from a field of surrounding features. Pop-out typically

occurs for simple features and is attributed to the fast parallel pro-

cessing that occurs in early vision.
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number of psychophysical results. For example, the
model can account for many preattentive pop-out effects
in visual search (Bravo & Nakayama, 1992; Julesz, 1984;
Treisman & Gelade, 1980; Treisman & Gormican,
1988), but as it is exclusively a model of bottom-up at-
tentional allocation, it cannot account for many other
results (see Section 7). Within each feature channel, vi-
sual input is first sampled at a series of spatial scales to
form a set of topographic feature maps. Then at the next
level of processing, these features are reorganized into a
center-surround arrangement that is characteristic of
receptive field organization seen throughout the primate
visual system (Wandell, 1995). The center-surround
feature maps are then combined across scale and nor-
malized within each channel. Next, the resulting maps
are linearly summed across feature channels to form the
saliency map. Following Koch and Ullman (1985), the
fundamental hypothesis in our approach is that the sa-
liency map indicates which locations in the visual input
are most salient, or are most visually important. As the
model only takes bottom-up information into account,
in this framework the focus of attention is solely deter-
mined by a winner-take-all process in the saliency map
(ibid). In other words the focus of attention is directed
to the location of peak salience. Once attention is shifted
to that location, inhibition of return, a bias that inhibits
attentional selection of previously selected locations
(Posner & Cohen, 1984) reduces salience at the current
focus of attention. Consequently, a new salience peak
will dominate and cause attention to shift to another
location. Although the dynamics of attentional shifts are
clearly an important aspect of visual selection, this study
focuses primarily on the ability of the saliency map to
predict fixation locations. Other work has focused on
the dynamic aspects of attentional allocation in the
model (Niebur & Koch, 1996; Itti & Koch, 1999, 2000).

A rudimentary description of the model is presented
in the remainder of this section. For a more compre-
hensive treatment see Niebur and Koch (1996) and Itti,
Koch, and Niebur (1998). The model takes digitized
images as input (see Fig. 1B). This input is then broken
down and processed in parallel in the aforementioned
three feature pathways. At the first stage of each of the
pathways, the input image is sampled at nine spatial
scales in a Gaussian pyramid scheme (Burt & Adelson,
1983). The spatial scales of the pyramid range from no
reduction (1:1) to maximal reduction (1:256) in powers
of 2. For the first feature channel, four color pyramids
(red, green, blue and yellow) are constructed from the
RGB formatted input image. For the second feature
channel, one intensity pyramid is constructed by taking
the average luminance across all the RGB image color
components. The third feature channel consists of four
orientation pyramids (0�, 45�, 90�, 135�) constructed by
convolving the input image with an oriented Gabor
function of the appropriate orientation and scale. Gabor

convolution was used because it approximates the re-
ceptive field structure of orientation selective neurons
commonly found in the primary visual cortex (Hubel &
Wiesel, 1968, 1977).

At the second stage of processing, the features in each
channel and each scale are reorganized into a center-
surround arrangement. This arrangement, which is ubi-
quitous throughout the visual system, functions to
maximize local differences and increase contrast. In the
model, center-surround reorganization is accomplished
by taking the difference of simple features at different
spatial scales within each pyramid. For the color chan-
nel, two center-surround pyramids are created to model
the double-opponent color system of early vision. One
pyramid is sensitive to center-surround differences in red
and green and the other to differences in blue and yel-
low. For the intensity channel, a single center-surround
pyramid is constructed by computing differences across
scales within the intensity feature map and effectively
models the color-blind magnocellular pathway (Hubel &
Livingstone, 1990). Similarly for the orientation chan-
nel, each of four center-surround pyramids is con-
structed by computing across-scale differences within the
corresponding orientation pyramid. This representation
of orientation contrast models the non-classical recep-
tive field influences typically seen in primary visual
cortex (Allman, Miezin, & McGuinness, 1985) and im-
plements the psychophysical orientation contrast that
drives texture segmentation (Leonards & Singer, 1998;
Nothdurft, 1991, 1993, 2000).

Within each center-surround feature map, a normal-
ization procedure is then applied. The normalization
scales the activations of a map to the squared difference
between its global maximum and the average of the re-
maining (local) maxima in the map (such a normaliza-
tion has been used successfully to explain single-cell
behavior in primary visual cortex; Carandini & Heeger,
1994). Functionally, this operation is akin to a lateral
inhibition mechanism between neighbors with similar
activation values (a widespread neural mechanism).
Furthermore the normalization remaps the activations
from dynamic ranges specific to a particular feature or
particular spatial scale to a range that depends on how
much a particular feature stands out. This remapping
across different features and spatial scales is required for
the subsequent development of a single saliency map
which is common to all feature types and scales. Al-
though more realistic normalization procedures have
been implemented in the context of this model (for ex-
ample see Itti & Koch, 2000), the results obtained using
the current implementation are qualitatively similar and
preferred for reasons of computational and conceptual
simplicity.

The final processing stage involves the construction
of the saliency map. First, for the color and orientation
channels, the individual pyramids are linearly summed
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within each channel to obtain one pyramid per channel.
Then a unimodal saliency map is created for each fea-
ture channel through cross-scale addition of the feature
maps. The cross-scale addition reduces all the center-
surround feature maps to the spatial scale of the saliency
map (1:16 relative to the original images). This scale was
chosen because it leads to a resolution of 40� 30, simi-
lar to what has been proposed for the resolution of se-
lective attention in human observers (Verghese & Pelli,
1992). The resulting unimodal saliency maps are then
normalized again before summing them to form the
final, common saliency map. The last normalization
serves to enhance within-feature competition across
spatial scales and to remap all the unimodal saliency
maps to equivalent dynamic ranges. Finally, it is con-
venient to scale the saliency map to a range from 0
(global minimum) to 100 (global maximum).

3. Experimental methods

Four Johns Hopkins students (two female) were paid
for participation in the experiment. Each participated in
three half-hour sessions, with a break every five minutes.
All participants had normal or corrected-to-normal vi-
sion and all were naive with respect to the purpose of the
study.

Over the course of the experiment, participants were
presented images from four different databases. For
three of the databases (home interiors, natural land-
scapes, and buildings and city scenes) the images were
digitized from photographs whereas the remaining data-
base (fractals) was computer generated. All images
were displayed fullscreen (30�� 22:4�) at a resolution of
640� 480 pixels in 16-bit color mode. Representative
images are shown in Fig. 2.

Prior to beginning the experiment, participants were
told to free view the images and that the only require-
ment was that they ‘‘look around at the images’’. At the
beginning of each trial only a fixation cross was pre-
sented at the center of the screen and the participants
were required to fixate and to press a mouse button to
commence the trial. At this time, an image was pre-
sented for a period of five seconds. Subsequently, the
display was blanked and the fixation cross for the next
trial was displayed. Participants viewed each image once
until the database was exhausted. Image type was
blocked such that all images from one database were
viewed before proceeding to another database.

At the beginning of each section of 25 trials, the eye
tracker was calibrated. The calibration phase consisted
of a series of nine fixation crosses that the participants
were required to sequentially fixate. At the end of each
section, an eye tracking error measurement was taken by
having the participants fixate 10 randomly positioned
crosses. The mean distance between actual and obtained

positions was used to estimate the quality of eye track-
ing. The participants were given the opportunity to take
a short break before the next section of trials.

Participants were seated comfortably at a normal
viewing distance (58 cm) in front of a standard 17 in.
computer screen (cathode ray tube) that was used for
stimulus presentation. All stimuli were presented full-
screen and subtended 30.0� of visual angle horizontally
and 22.4� vertically. A custom-made head rest provided
support for chin and forehead in order to minimize the
effects of head movements.

An ISCAN model RK-416 eye tracker was used to
monitor eye position. This model is a real time digital
image processor that tracks the center of the partici-
pant’s pupil and measures its size from an infrared video
image of the participant’s eye. The unit automatically
computes the position of the pupil over the two-dimen-
sional matrix of the eye imaging camera. Pupil coordi-
nates and diameter are computed at a rate of 60 Hz. A
bi-cubic non-linear interpolation (cubic in both hori-
zontal and vertical dimensions) between a grid of nine
calibration points was used to calibrate the eye tracker
(Stampe, 1993). This procedure helped to minimize errors
from non-linearities due to infrared source reflections.
Additionally, the calibration was adjusted using a pro-
cedure where an eye sample from the fixation point at the
beginning of each trial was used to re-align the original
nine point interpolation. Full recalibration and adjust-
ment of the eye tracker was intermittently required during
a block of trials in the case of excessive head movements.
Fixation locations and durations were extracted from the
raw eye tracking data using velocity (saccadic velocity:
greater than 30�/s) and duration (fixation duration:
greater than 100 ms) criteria (Stampe, 1993).

4. Stimulus dependence of attentional guidance

4.1. Data analysis

In order to quantify the correlation between stimulus
salience and eye movements the following procedure (as
diagrammed in Fig. 3) was conducted for each image
database on a participant by participant basis. To begin,
the coordinates ðf k

x ; f
k
y Þ of the kth fixation location fol-

lowing stimulus onset were extracted from the raw eye
tracking data for a given image. The model was pre-
sented with the same image and allowed to generate a
saliency map ðSÞ as described in Section 2. Next, the
salience at the fixation locations was extracted from the
corresponding saliency map and the average salience
ð�sskÞ was computed across all salience values obtained for
the images in a given database:

�ssk ¼ 1

n

Xn
i¼1

Siðf k
x ; f

k
y Þ ð1Þ
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where i is the image number and n is the number of
images in the database.

Given that salience is scaled to range from 0 to 100, a
value of �ss ¼ 100 would indicate a perfect correlation
between the location of highest salience in the salience
map and the observed fixation locations. On the other
hand, if �ss ¼ 0 were found, consistently low salience
values would be associated with fixation locations of
high probability. To quantify the correlation between
stimulus salience and fixation locations, we compare the
values of �ss obtained at the observed locations of fixation
with the salience value expected by chance. We refer to
the difference between the mean salience obtained at the
observed fixation locations and the mean salience ex-
pected by chance as the chance-adjusted salience ðsaÞ.
The chance-adjusted salience is the preferred metric for
comparison across conditions because the salience ex-
pected by chance alone varies with image database (see
Fig. 4). Note that chance-adjusted salience ðsaÞ can be
used to estimate the relative probability of fixating re-
gions of high salience or the inverse, the probability of
fixating regions of low salience. If sa is positive, regions
of high salience would be fixated with a greater proba-
bility than other regions and if sa is negative, regions of
low salience would be fixated with a greater probability.

One way to estimate the �ss expected by chance alone is
by recalculating �ss using randomly chosen locations in
the saliency map instead of the observed fixation loca-
tions. If the �ssk obtained using the observed fixation lo-
cations is similar to the �ss obtained at random locations,
then this would indicate that attention is not influenced
by stimulus properties. If on the other hand, the �ssk ob-
tained using the observed fixation locations is greater (or
possibly smaller) than the �ss obtained at random loca-

tions, this would indicate that attention is guided by
stimulus properties.

By recalculating �ss many times using randomly chosen
locations in the saliency map a sampling distribution of
�ss due to chance factors alone can be generated. The
distribution is presented as a histogram for the fractals
image database in Fig. 3. The mean of this sampling
distribution gives the average salience that would be
expected by chance alone, and the standard deviation
gives the standard error of the mean (Efron & Tibsh-
irani, 1993). It is clear that �ss1 (vertical line in Fig. 3)
significantly differs from chance as it is many standard
errors away from the mean �ss expected by chance alone.
Although an estimate of the mean salience expected by
chance alone and standard error of that mean can be
calculated using a bootstrap, an exact analytic solution
is available in this case (Efron & Tibshirani, 1993).
Therefore, the �ss expected by chance and its standard
error are analytically computed rather than using the
bootstrap which was described to provide an intuitive
understanding of chance performance. To evaluate the
significance of an observed �ss, a z-score is calculated and
the implied p-value is derived from the normal distri-
bution.

4.2. Results

The mean salience at the first fixation location of each
participant for each image database are shown in Fig. 4.
The salience for each participant is plotted as an open
circle and the mean salience expected by chance, as
computed in Section 4.1, is plotted as a closed circle,
with the vertical bars indicating plus/minus one standard
error of the mean. Significance was evaluated for each
participant within each image database as described in
Section 4.1. In every case, a significant result was ob-
tained (always p < 0:001, although usually with much
lower p-values). In addition, a one-way repeated-mea-
sures ANOVA was conducted with image type (fractals,
natural landscapes, buildings and city scenes, and home
interiors) as the relevant factor. A significant main effect
of image type was observed (F (3,9)¼ 5.12, p < 0:05).
Post hoc comparisons between the means using
the Newman–Keuls procedure (a ¼ 0:05) indicated a
stronger correlation between salience an fixation loca-
tions for the fractals (M ¼ 50:65) than for the natural
landscapes (M ¼ 46:08), buildings and city scenes
(M ¼ 44:95), or for the home interiors (M ¼ 43:74). No
other effects were significant.

The chance-adjusted salience averaged across image
databases and participants is shown in Fig. 5 as a
function of fixation number. The error bars represent
plus/minus one standard error of the mean across par-
ticipants. A two-way repeated-measures ANOVA was
conducted with image type and fixation number as the
relevant factors. A significant main effect of fixation

Fig. 4. The mean salience at the first fixation location is shown as an

open circle for each participant within each database. The mean sa-

lience expected by chance for each database is shown as a closed circle

with errorbars indicating plus/minus one standard error of the mean.

Each observation significantly differs from chance. Stimulus depen-

dence for the fractal images was the highest.
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number was observed (F ð13; 39Þ ¼ 6:96, p < 0:001)
where early fixations showed a higher chance-adjusted
salience than later fixations. Comparing the first fixation
to the remaining fixations, an approximately 40%
stronger correlation is observed. A significant main ef-
fect of image type was also observed (F ð3; 9Þ ¼ 20:79,
p < 0:001). Post hoc comparisons between the image
types using the Newman–Keuls procedure (a ¼ 0:05)
indicated that the correlation between salience an fixa-
tion locations for the home interiors (M ¼ 7:76) was
weaker than the correlation for the fractals, natural
landscapes, or buildings and city scenes (Ms ¼ 12:92,
10.59 and 11.41). In addition, fractals showed a stronger
correlation than the natural landscapes. No other effects
were significant.

4.3. Discussion

The goal of this experiment was to examine the
stimulus dependence of eye movements under normal
viewing conditions using a bottom-up computational
model of attention. If attention is stimulus-driven, there
should be a positive correlation between the locations of
fixation and the salience of the stimulus at those loca-
tions. The first fixation location analysis results, shown
in Fig. 4, clearly indicate a significant correlation be-
tween stimulus salience and fixation locations. For each
participant within each image database the mean sa-
lience at the first fixation locations was many standard
errors away from the mean salience expected by chance
alone. This significant correlation indicates that the se-
lection of the first fixation location is indeed guided by
stimulus properties.

The stimulus dependence of later fixations was also
examined and plotted in Fig. 5. Stimulus dependence
was highest for fixations that immediately followed
stimulus onset. This is consistent with the assumption of
a slow onset of top-down attentional effects. In all cases,
however, stimulus dependence reached an asymptotic
level for later fixations rather than dropping to chance
levels or below. Both the fact that the time course to
asymptote is over many fixations (many hundreds of
milliseconds), and the fact that stimulus dependence
remained significantly greater than expected by chance
throughout the trial indicates that stimulus properties
are more influential in attentional guidance than previ-
ously thought. Overall, these results indicate that eye
movements are indeed stimulus-driven under normal
viewing conditions.

5. Relative strength of each feature dimension

To further probe the nature of the stimulus depen-
dence of attentional allocation, the relative contribu-
tions of different feature dimensions were examined. As
illustrated in Fig. 6, visual input to the model is pro-
cessed in three independent feature channels represent-
ing color, intensity, and orientation. The culmination of
processing in each channel is a map that indicates the
salient locations in the image with respect to only one
feature dimension. The final saliency map is a linear sum
of these three submodality saliency maps. The following
analysis aims to determine the relative contribution of
each feature dimension by examining the correlations
between the submodality saliency maps and the ob-
served fixation locations.

5.1. Data analysis

In order to quantify the relative strength of each
feature dimension, the procedure described in Section
4.1 (as diagrammed in Fig. 3) was repeated using each
submodality salience map instead of the combined sa-
lience map. The relative strength of each feature channel
was calculated as a ratio of the chance-adjusted salience
obtained using each submodality map relative to the
chance-adjusted salience obtained using the combined
salience map. A relative strength of one would mean
that fixation locations correlated with regions of high
salience in the submodality salience map as well as they
did in the combined salience map. This would indicate
that the relevant stimulus property strongly underlies
the observed stimulus dependence. On the other hand,
relative strength zero would mean that fixation locations
did not correlate at all with regions of salience in the
submodality map, and therefore would indicate that the
stimulus property has little influence on the guidance of
attention. A measure of relative strength was calculated

Fig. 5. The mean chance-adjusted salience for all databases is shown

averaged across participants as a square where the errorbars represent

plus or minus one standard error of the mean. Stimulus dependence is

greatest for early fixations, but remains highly above chance levels

throughout the trial.
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independently for each feature channel, each image
database, and each participant by averaging over the
results obtained from the analysis using each of the first
14 fixation locations.

5.2. Results

Shown in Fig. 7 are the relative strengths obtained for
each image database and each feature channel averaged
across participants where the error bars represent plus/
minus one standard error of the mean across partici-
pants. A two-way repeated-measures ANOVA was
conducted with image type and feature channel (color,
intensity and orientation) as the relevant factors. A
significant main effect of feature channel was observed
(F (2,6)¼ 15.33, p < 0:005). Post hoc comparisons be-

tween the feature channels using the Newman–Keuls
procedure (a ¼ 0:05) indicated that the correlation be-
tween salience and fixation locations in the color and
intensity salience maps (Ms ¼ 0:81, 0.81) was stronger
than the correlation for the orientation salience map
(M ¼ 0:64). A small but significant main effect of image
type was observed (F (3,9)¼ 32.80, p < 0:001) as was an
interaction between image type and feature channel
(F (6,18)¼ 5.88, p < 0:005). No other effects were sig-
nificant.

5.3. Discussion

The goal of this analysis was to examine the role that
different feature dimensions play in attentional allo-
cation. One might have suspected to find a clear rank

Fig. 6. The generation of the combined salience map is illustrated. The input image is separated into three independent feature channels and

processed to create submodality salience maps. The salience maps indicate locations in the image which are highly salient based on only one stimulus

property. For example, in the color salience map, the area corresponding to the greenery and red flowers is salient whereas in the intensity salience

map, the location corresponding to the bright reflection from the waterfall is salient. The combined salience map is generated by summing together

the three submodality salience maps. It indicates the locations in the image which are highly salient based on all the computed features.
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ordering of feature dimension strengths based on their
behavioral importance. Instead, we found that the rela-
tive strength of each feature dimension depends strongly
on the image type. Although the range of image types
used was small, the rank ordering of importance, shown
in Fig. 7, varies dramatically. For instance, in the frac-
tals and home interior image databases, color played a
dominant role in the guidance of attention whereas in-
tensity dominated in the natural landscapes and build-
ings and city scenes databases. In general, the color and
intensity feature channels (both with equal contributions
of 0.81 when averaged across image databases) con-
tributed more than the orientation feature channel
(0.64). A notable exception to this pattern is for the
buildings and city scenes where orientation contributes
more than color. This is most likely due to the strong
lines present in the architecture and the low saturation
typical of the colors in these images. The results of this
analysis clearly indicate the importance of integrating a
range of features to calculate stimulus salience when
modeling attentional allocation.

It is interesting to note that relative strengths ob-
tained for each feature dimension do not sum to 1, but
rather, sum to approximately 2.3. This indicates the
presence of redundancy between channels since sum-
ming to 1 would indicate independence of the feature
channels. This is not surprising given that the submo-
dality salience maps show an average correlation of 0.34
with each other. There are several potential explanations
for this redundancy. First, although each feature chan-
nel operates independently, the extraction of informa-
tion for different channels may partially rely on the same
information. For example, two adjacent areas with dif-
ferent contrast usually generate an oriented edge. Ad-

ditionally, multiple feature properties in the scene may
be spatially co-located, for example when both color
and intensity contrasts are present at the same location.
Interestingly, recent psychophysical results suggest that
salience, even when signaled independently by more
than one dimension, fails to sum linearly (Nothdurft,
2000), which is in agreement with the present results.

6. The role of visual sensitivity in attentional selection

Although the results of the previous analyses clearly
indicate that stimulus properties play an important role
in guiding attention and eye movements, qualitative
comparison between the model predictions and the ob-
served eye movements indicate an interesting discrep-
ancy which is shown in Fig. 8. The location of the first
fixation following stimulus onset is plotted as points for
the participants and as boxes for the model. The par-
ticipants’ first fixation locations tend to be clustered
around the center of the image, site of the fixation point
before the test images are presented, whereas the loca-
tions predicted by the model are more uniformly dis-
tributed across the entire image. Shown in Fig. 9A and B
are histograms of the first saccade distances (i.e. the
distance between the fixation point and the first fixation
location) for the participants and the model, respec-
tively. The participant distribution is positively skewed
with a mean of about 5� whereas the model distribution
is less skewed and has a much larger mean.

Both Figs. 8 and 9 show that participants are biased
to preferentially make saccades to targets that are po-
sitioned close to the current fixation location. A bias
towards central targets is commonly observed in studies

Fig. 7. The mean ratio of chance-adjusted salience for a single feature

channel relative to the chance-adjusted salience for all channels is

shown for each image database and each feature channel. The ratios

represent the mean across participants and are shown as circles plus or

minus one standard error of that mean.

Fig. 8. First fixation locations for the participants (shown as points)

and the model (shown as boxes). Fixations for the participants are

noticeably biased towards the center, while those predicted by the

model are more uniformly distributed.
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of scene viewing (Mannan et al., 1996, 1997) as well as
visual search (Carrasco, Evert, Chang, & Katz, 1995;
Engel, 1971, 1977; Wolfe, O’Niel, & Bennett, 1998). A
potential explanation for this pattern of results is the
drop of visual system sensitivity to high spatial fre-
quencies in the periphery. It is known that spatial fre-
quency sensitivity in the central region of the visual field

exceeds that in peripheral regions by an order of mag-
nitude (Wandell, 1995). One reason for this difference is
that photoreceptor density varies across the surface of
the retina. It is greatest in the fovea, the part of the
retina to which the central visual field projects, and
lowest in the surrounding regions. This inhomogeneous
representation of the visual field continues at subsequent
stages of the visual pathway. For instance, the neural
projections from the retina (through the lateral genicu-
late nucleus of the thalamus) to the visual cortex follow
a non-linear mapping with more cortical processing
power being dedicated to the central visual field (Sch-
wartz, 1977). Moreover, as one considers more down-
stream visual cortical areas, visual receptive fields of
most neurons grow and eventually most come to en-
compass the central visual field (Boussaoud, Desimone,
& Ungerleider, 1991; Gattass, Sousa, & Gross, 1988).

This drop of visual sensitivity is not implemented in
our model; resolution is kept constant across the feature
maps. To evaluate the effects of decreased visual sensi-
tivity in the periphery, a set of images from the home
interior database was filtered such that the spatial fre-
quency content progressively fell as the distance from
the central fixation point increased. A seventh-order
Butterworth filter was used to achieve a spatial fre-
quency reduction that correlated with the maximum
detectable spatial frequency of a sinusoidal grating
presented at the relevant eccentricity (Virsu & Rovamo,
1979). These images, which simulate the drop in sensi-
tivity of the visual system at peripheral locations, were
used as input to the model. Qualitatively, the resulting
saliency maps showed a reduction of salience in the
periphery that was proportional to the decrease in spa-
tial frequency content. This result suggests that the de-
crease in sensitivity as a function of eccentricity
functions to reduce the salience of objects located in the
periphery.

To quantitatively examine the role that the decline of
visual sensitivity in the periphery has in determining
attentional allocation, the model was modified and the
results re-analyzed using the methods of Section 4.1.
The model was modified such that when analyzing the
salience at a particular fixation, the salience peripheral
to the previous fixation location was reduced. This
simulates the reduction in peripheral salience that would
occur due to the drop in visual sensitivity in the pe-
riphery. If this drop plays a role in attentional alloca-
tion, then there should be an increase in the correlation
between stimulus salience and fixation locations. The
next section describes in detail how this prediction was
tested.

6.1. Modified model

In order to take into account the drop of visual
sensitivity in the periphery, and the resulting drop in

Fig. 9. (A) and (B) Histogram of saccade distances between the fixa-

tion point and the first fixation location for the participants and the

model, respectively, across all databases. Note that the participant

data are positively skewed with a mean of about 5� and a mode of 3�
whereas the modeled data is less skewed and has a much larger mean.

(C) Histogram of saccade distances between the fixation point and the

first fixation location for the fixation model with ðr ¼ 9:5�Þ, see text.

The distribution of the fixation model resembles that of the partici-

pants seen in (A). Each histogram was calculated using the data col-

lected from all four image databases.
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peripheral salience, the model was modified in the fol-
lowing manner. A first-order approximation to the re-
duction in peripheral salience was used where salience
is scaled by a weighted function of distance from the
current fixation location in the image. This reduction
was modeled by weighting the saliency map, generated
as described in Section 2, by a two-dimensional Gauss-
ian filter. The resulting saliency map ðS0Þ is given by

S0ðx; yÞ ¼ Sðx; yÞ exp �
ðx� f 0

x Þ
2 þ ðy � f 0

y Þ
2

2r2

! 
ð2Þ

where r determines the width of the Gaussian and
consequently controls to what degree salience is reduced
in the periphery. When creating the saliency map rele-
vant for analyzing the first fixation location after stim-
ulus onset, the Gaussian reduction must be centered on
the fixation location prior to the first fixation location.
In other words, it must be centered on the location
where the participant was fixating prior to stimulus
onset; the central fixation point whose coordinates we
will call ðf 0

x ; f
0
y Þ. More generally, to generate the rele-

vant saliency map for analyzing a particular fixation
ðf nÞ, the Gaussian reduction must be centered on the
previous fixation ðf n�1Þ. We refer to this model as the
modified fixation model.

Since all trials begin by the participants fixating the
center of the screen (the fixation cross), reducing pe-
ripheral salience in the model has the effect of reducing
the number of first fixation locations seen in the pe-
riphery and increasing the number near the center. This
redistribution can be seen in the histogram of simulated
saccade distances for the modified model plotted in Fig.
9C. Compared to the original model distribution shown
in Fig. 9B, the modified model distribution has a smaller
mean and is more positively skewed resembling that
observed for the participants shown in Fig. 9A.

6.2. Data analysis

Given that modeling the reduction in peripheral
salience improves the correspondence between the
predicted and observed distributions of first fixation
locations, the correlation between salience and fixation
locations, as described in Section 4.1, was also exam-
ined. For the modified model, the salience map is
weighted by a Gaussian with a standard deviation ðrÞ
chosen individually to optimize the correspondence for
each image database of each participant. Plotted in Fig.
10 is the correlation between stimulus salience and the
first fixation location across a range of r for one par-
ticipant who viewed the fractal image database. The
correlation is plotted in terms of the chance-adjusted
salience ðsaÞ. This representation is useful in the com-
parison across different values of r because as salience is
reduced in the periphery, the mean salience expected by

chance is also reduced. For comparison purposes, the
chance-adjusted salience obtained from the uniform
model is also plotted (diamond at far right of Fig. 10).
As expected, for large r with correspondingly small
reduction in peripheral salience, the chance-adjusted
salience approaches the value seen with the uniform
model. On the other hand, for small r, corresponding to
a very strong reduction in peripheral salience, the
chance-adjusted salience approaches zero. This is again
expected since the only salient locations remaining are
those in direct proximity to the fixation point. In be-
tween these two extremes lies an optimal r (in this
example, r � 5�) that maximizes the chance-adjusted
salience by reducing the peripheral salience of distant
locations, yet not so much as to overly restrict the range
of potential fixation locations.

6.3. Results

The chance-adjusted salience observed for the first
fixation locations for each participant and each image
database is illustrated in Fig. 11. Open circles and tri-
angles represent the uniform model and the modified
fixation model respectively. The means across partici-
pants for each model and image database are plotted
as closed circles plus/minus one standard error of that
mean. A two-way repeated measures ANOVA was
conducted with model type (uniform/modified) and im-
age type as factors. A significant main effect of model
type was observed (F (1,3)¼ 45.66, p < 0:01) where the
modified fixation model (M ¼ 23.37) showed a stronger
correlation than the uniform model (M ¼ 14.38). A sig-
nificant main effect of image type was also observed
(F (3,9)¼ 6.51, p < 0:05). Post hoc comparisons between
the means using the Newman–Keuls procedure (a ¼
0:05) indicated a stronger correlation for the fractals

Fig. 10. Chance-adjusted salience ðsaÞ as a function of the standard

deviation ðrÞ of the Gaussian function used to weight the saliency map.

Optimal performance is obtained at an intermediate r. The chance-

adjusted salience for the uniform model is plotted to the right for

comparison (diamond, same scale).
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(M ¼ 24:34) than for the other databases (M ¼ 19:20,
16.34, and 15.64). No other effects were significant.

The mean chance-adjusted salience observed for the
first fourteen fixations locations following stimulus on-
set is plotted in Fig. 12 where the means across partici-
pants are plotted as closed squares and circles
representing the uniform and modified fixation model
respectively. The error bars represent plus/minus one
standard error of that mean. Shown also is the same
quantity for a central model in which Gaussian reduc-
tion is always around the center of the screen, rather
than on the current fixation location (see Section 6.4). A
two-way repeated measures ANOVA was conducted
with model type (uniform/modified) and fixation num-
ber as factors. A significant main effect of model type
was observed (F (1,3)¼ 1310.77, p < 0:001) where the
modified fixation model (M ¼ 16.02) showed a stronger
correlation than the uniform model (M ¼ 10:56). A
significant main effect of fixation number was also ob-
served (F (13,39)¼ 6.37, p < 0:001) where early fixations
showed a higher chance-adjusted salience than later
fixations. With the modified fixation model, comparing
the first fixation to the remaining fixations, an approxi-
mately 55% stronger correlation is observed. A signifi-
cant interaction between model type and fixation
number was observed (F (13,39)¼ 2.85, p < 0:01) caused
by the larger difference between earlier and later sac-
cades for the modified fixation model than for the uni-
form model.

6.4. Discussion

The goal of this analysis was to study the effects of the
decreasing visual sensitivity in the periphery on

the correlation between stimulus salience and fixation
locations. As discussed earlier, the earliest selection
mechanism in primate vision is based on the differential
resolution of the retina (high in the center of the visual
field, progressively lower towards the periphery).
Though various types of eye movements (mainly sac-
cades but also smooth pursuit), different location in
the visual field are sequentially sampled. Because the
amount of information available already at the retinal
level (and, consequently, at all higher processing levels)
varies with eccentricity, this differential resolution can
be expected to lead to different weightings in the saliency
map (but see Wolfe et al. (1998) discussed below). Em-
phasis of the central part of the visual field continues in
higher stages of primate vision, as evidenced by the fact
that the receptive fields of many if not most cells in in-
ferotemporal cortex include the fovea. It stands to rea-
son that this emphasis of stimuli in central vision gives
rise to preferential treatment during the visual search
task studied. This is exactly what we observed for the
first fixation (see Fig. 11) as well as subsequent fixations
(see Fig. 12). The correlation between stimulus salience
and fixation locations increased substantially (indepen-
dent of image databases) when the modified version of
the saliency map, as described in Section 6.1, was used
instead of the original, uniform saliency map.

An alternative account of the tendency for fixation
locations to be clustered around the center of the image

Fig. 11. Chance-adjusted salience ðsaÞ for the uniform model and the

fixation-centered model are shown as open circles and triangles, re-

spectively. The mean performance across participants for the models

are shown as a closed circle or triangle plus or minus one standard

error of the mean. A main effect of model type is seen with perfor-

mance being greatest for the modified model.

Fig. 12. The mean chance-adjusted salience for all databases is shown

averaged across participants where the errorbars represent plus or

minus one standard error of the mean. The results from the fixation

model are shown as circles and represent the case where the Gaussian

reduction is centered on the previous fixation location in order to

simulate the falloff of visual system sensitivity in the periphery. The

results from the central model are shown as triangles and represent the

case where the Gaussian reduction is always centered in the middle of

the image. The results of the uniform model are shown as squares.

Although the mean salience for both the central model and the fixation

model are higher than that of the uniform model, only for the fixation

model is this difference significant for all fixations. Performance of the

central model is high for the first few fixations but declines later.
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is that observers may have a general bias or top-down
strategy to select central locations. Many visual media
sources (e.g. television) present important information
centrally, and consequently, attending to central regions
represents an efficient information selection strategy. Or
possibly, the presentation, by media producers, of im-
portant information in a central location is motivated by
knowledge of a general bias to attend centrally. Either
way, a central bias account differs from the visual sen-
sitivity account only by the fact that the reduction of
peripheral salience is always centered on the screen
rather than the current fixation location. Therefore to
evaluate this account, a central bias model was imple-
mented in a similar fashion to the modified fixation
model with the exception that the Gaussian reduction in
salience was restricted to the center of the image rather
than following the current fixation location. The data
analysis of Section 6.2 was repeated and the mean re-
sults across participants are shown in Fig. 12 as triangles
where the errorbars represent plus/minus one standard
error of the mean. For early fixations there is a clear
benefit for the central model over the uniform model,
which is to be expected because most early fixations also
tend to be centrally located. Even so, the central model
does not perform quite as well as the fixation model on
the first fixation because there is a some variability in
participants’ ability to fixate centrally before beginning
each trial which is taken into account by the fixation
model. For later fixations the benefit of the central
model over the uniform model almost disappears. On
the other hand, the results for the fixation model show a
clear benefit over the uniform model that only slightly
decreases for later fixations. This pattern of results
suggests that the decrease of visual sensitivity in the
periphery rather than a bias to select central locations
accounts for the observed pattern of eye movements.

The implementation of the reduction of visual sensi-
tivity in the periphery that we used is quite crude. In the
spirit of keeping the model as simple as possible, we
applied a non-uniform weighting only at the final pro-
cessing stage, the saliency map itself, rather than at all of
the earlier stages. We found that this simple weight-
ing scheme, a convolution of the saliency map with a
Gaussian, dramatically improves the correlation be-
tween salience and fixation locations. In addition to
simplifying the computations, our implementation has
the advantage that no assumptions are made about the
source of the non-homogeneity, whether it is the lower
resolution of the optical system/retina in the periphery,
the influence of the cortical magnification factor (Carr-
asco et al., 1995; Geisler & Chou, 1995), or rather at-
tentional effects that favor the vicinity of the fixation
point over the surround (Wolfe et al., 1998). More re-
alistic implementations will probably improve perfor-
mance but at the cost of increasing model complexity. It
may also be advantageous to take into account other

dimensions of retinal inhomogeneity, for example the
dependence of color receptor distributions on eccen-
tricity (Curcio et al., 1991). In either case, we suggest
that the reduction in peripheral salience is an important
factor to consider in the control of visual selective at-
tention and eye movements.

7. General discussion

The goal of this study was to elucidate the extent to
which stimulus-driven factors influence the allocation
of attention by examining the correlation of stimulus
salience, as determined by a biologically plausible
computational model of bottom-up visual selective at-
tention, and eye movements while observers viewed
complex scenes. The results of the primary analysis
indicated that attention is stimulus-driven throughout
the trial, and furthermore that attention was most
stimulus-driven just after stimulus onset when top-down
influences are presumably weakest. The second analysis
examined the relative strength of individual feature
channels and indicated a strong dependence of the rel-
ative strengths on image type. The final analysis exam-
ined the effect of the reduced visual sensitivity in the
periphery on the development of stimulus salience and
indicated that the reduction in visual sensitivity corre-
spondingly reduces stimulus salience in the periphery.

A side result of interest is that the correlation between
stimulus salience and fixation locations was greatest for
the fractal image database. Two possible explanations
for this result include the influence of top-down atten-
tional biases as well as differences in bottom-up stimu-
lus characteristics across image databases. First, eye
movements may have been influenced by top-down at-
tentional biases stemming from internal models (Noton
& Stark, 1971; Yarbus, 1967). For example, we observed
in the home interiors database that participants often
examined objects on table tops independent of their
salience. Searching table tops is a reasonable strategy for
finding the position of interesting objects in home inte-
riors whereas such strategies are less likely to be estab-
lished for fractals. Given that such strategies are at least
partially idiosyncratic, one might expect to observe
greater interparticipant variability of fixation locations
when top-down strategies are influencing attention than
when attention is controlled predominantly by bottom-
up stimulus properties. This is exactly what is observed;
interparticipant variability of fixation locations is much
lower for fractals than for the other image types. This
reduced variability is consistent with our results that
stimulus properties have a stronger influence on atten-
tional guidance in these images.

On the other hand, differences in bottom-up stimulus
characteristics across image types could also explain the
pattern of model performance. Qualitative examination

120 D. Parkhurst et al. / Vision Research 42 (2002) 107–123



of the saliency maps indicated that there were often
fewer areas of high salience (or, in other words, a greater
separation between the salience of the peaks and the
average background level) for the fractals than for other
image types. This can be seen in Fig. 4 as the lower
salience expected by chance for fractals as compared to
the other databases. Possibly, the fact that certain fea-
tures in fractals pop-out due to their contrast to the
background acts to increase the stimulus dependence
when viewing fractals.

Given that this study examined the attentional allo-
cation of observers viewing static images, we were
unable to evaluate the ability of motion or temporal
change to guide attention. Clearly, dynamic stimuli are
an important aspect of natural viewing conditions and
have been shown to guide or even capture attention
in experimental settings (Dick, Ullman, & Sagi, 1987;
Folk, Remington, & Wright, 1994; Yantis & Jonides,
1984). It may be possible to evaluate the degree of
stimulus dependence of eye movements made by ob-
servers viewing dynamic stimuli using a similar analysis
with the addition of a motion feature channel to the
model (for efforts to model motion in the context of this
model see Niebur & Koch, 1996).

The overall approach we have taken to understand
and quantitatively measure the stimulus dependence of
attention has been strongly influenced by both neuro-
science and psychology. In designing a computational
model of visual selective attention, an effort was made to
functionally implement those neural mechanisms which
are thought to be important in early visual processing.
Experimental and theoretical results from psychology
also served to constrain the model’s implementation.
For the sake of simplicity in these early stages of de-
velopment and testing of this model, we do not attempt
to implement the biological mechanisms with a high
degree of detail. Rather, we feel that capturing the
functional aspects of these mechanisms is most impor-
tant and that implementational details can be incorpo-
rated at a later time.

It is important to note that although the model can
account for many psychophysical results relevant to
natural scene viewing and visual search, there are many
results for which the model cannot account. One reason
for this is that we may have not yet fully explored or
implemented all the mechanisms important in deter-
mining visual salience. For example, some results sug-
gested that visual salience may be affected by stimulus
repetition (McPeek et al., 1999) and familiarity (Suzuki
& Cavanagh, 1995; Wang, Cavanagh, & Green, 1994).
Although we may be able to account for these factors by
altering low-level calculations of salience, it is still un-
clear whether these effects are bottom-up or top-down
let alone their neural implementation. Another example
is the fact that we have not fully explored the parameter
space of the model. Throughout this study, all feature

maps were treated equally (i.e. linearly summed with
constant and equal weighting after normalization). A
potential modification to our approach would be to
tailor the weights of each feature map for each partici-
pant. Certain participants may have a bias for or against
a particular feature map or spatial scale. Given that the
documented variability of eye movements within as well
as between participants is quite high (Mannan, Rud-
dock, & Wooding, 1995; Mannan et al., 1996, 1997),
tailoring the weighting of feature maps to individual
participants may lead to substantive gains in model
performance.

Furthermore, our modeling approach has focused on
bottom-up attentional allocation and therefore by its
very nature cannot account for top-down effects. There
are many potential ways to extend this model. One way
might be to adjust the feature map weights with the
purpose of simulating top-down influences, assuming
that those influences are implemented in the form of
biased neural processing. For instance, in the context
of a search task, those neurons which represent features
of the item to be searched would be preferentially acti-
vated, as has been suggested, for instance, for the guided
search model of attentional selection (Wolfe, 1994;
Wolfe, Cave, & Franzel, 1989). In the framework of the
model used in this report, this approach was demon-
strated by using a supervised learning scheme to deter-
mine weights to optimize performance in a visual search
task (Itti, Niebur, Braun, & Koch, 1996).

In conclusion, we used a purely bottom-up model of
selective visual attention based on the architecture and
neural mechanisms of the primate visual cortex to ex-
amine the degree to which eye movements are deter-
mined by stimulus properties alone. It was found that
stimulus salience correlated with fixation locations much
better than expected by chance alone. The best corre-
lation was observed just after stimulus onset, but even
later in the trial, eye movements were still influenced
by stimulus properties. Overall, our results indicate that
attention is indeed guided by stimulus-driven, bottom-
up mechanisms under natural viewing conditions even
when top-down mechanisms are presumably operating.

Acknowledgements

This research was supported by the National Science
Foundation (CAREER and LIS grants) and by an
Alfred P. Sloan Fellowship to EN as well as a NIH-NEI
visual neuroscience training fellowship to DP.

References

Allman, J., Miezin, F., & McGuinness, E. (1985). Stimulus specific

responses from beyond the classical receptive field: neurophysiological

D. Parkhurst et al. / Vision Research 42 (2002) 107–123 121



mechanisms for local–global comparisons in visual neurons.

Annual Review, 8, 407–430.

Andrews, T. J., & Coppola, D. M. (1999). Idiosyncratic characteristics

of saccadic eye movements when viewing different visual environ-

ments. Vision Research, 39, 2947–2953.

Antes, J. R. (1976). The time course of picture viewing. The Journal of

Experimental Psychology, 103, 62–70.

Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven

attentional capture. Perception and Psychophysics, 55, 485–496.

Boussaoud, D., Desimone, R., & Ungerleider, L. G. (1991). Visual

topography of area TEO in the macaque. Journal of Comparative

Neurology, 36, 554–575.

Brant, S. A., & Stark, L. W. (1997). Spontaneous eye movements

during visual imagery reflect the content of the visual scene. The

Journal of Cognitive Neuroscience, 9(1), 27–38.

Bravo, M. J., & Nakayama, K. (1992). The role of attention in

different visual search tasks. Perception and Psychophysics, 51(5),

465–472.

Broadbent, D. E. (1958). Perception and communication. London:

Pergamon.

Burt, P. J., & Adelson, E. H. (1983). The Laplacian pyramid as a

compact image code. IEEE Transactions on Communications, 31,

532–540.

Buswell, G. T. (1935). How people look at pictures: a study of the

psychology of perception in art. Chicago: University of Chicago

Press.

Carandini, M., & Heeger, D. (1994). Summation and division by

neurons in primate visual cortex. Science, 264, 1333–1336.

Carrasco, M., Evert, D. L., Chang, I., & Katz, S. M. (1995). The

eccentricity effect: target eccentricity aspects performance on

conjunction searches. Perception and Psychophysics, 57, 1241–1261.

Cave, K., & Wolfe, J. (1990). Modeling the role of parallel processing

in visual search. Cognitive Psychology, 22, 225–271.

Curcio, C. A., Allen, K. A., Sloan, K. R., Lerea, C. L., Hurley, J. B.,

Klock, I. B., & Milam, A. H. (1991). Distribution and morphology

of human cone photoreceptors stained with anti-blue opsin.

Journal of Comparative Neurology, 312, 610–624.

DeGraef, P., Christiaens, D., & d’Ydewalle, G. (1990). Perceptual

effects of scene context on object recognition. Psychological

Research, 52, 317–329.

Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective

visual attention. Annual Review of Neuroscience, 18, 193–222.

Deubel, H., & Schneider, W. X. (1996). Saccade target selection and

object recognition: evidence for a common attentional mechanism.

Vision Research, 36(12), 1827–1837.

Dick, M., Ullman, S., & Sagi, D. (1987). Parallel and serial processes in

motion detection. Science, 237, 400–402.

Duncan, J. (1984). Selective attention and the organization of visual

information. Journal of Experimental Psychology: General, 113,

501–517.

Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap.

New York, NY: Chapman and Hall.

Egeth, H. E., & Yantis, S. (1997). Visual attention: control represen-

tation and time course. Annual Review of Psychology, 48, 269–297.

Ellis, S. R. (1986). Statistical dependency in visual scanning. Human

Factors, 28, 421–438.

Engel, F. L. (1971). Visual conspicuity, directed attention and retinal

locus. Vision Research, 11, 563–576.

Engel, F. L. (1977). Visual conspicuity, visual search and fixation

tendencies of the eye. Vision Research, 17, 95–108.

Findlay, J. M., & Walker, R. (1999). A model of saccade generation

based on parallel processing and competitive inhibition. Behavioral

and Brain Sciences, 22(4), 661–721.

Folk, C. L., Remington, R., & Wright, J. H. (1994). The structure of

attentional control: contingent attentional capture by apparent

motion, abrupt onset, and color. Journal of Experimental Psycho-

logy: Human Perception and Performance, 20(2), 317–329.

Gattass, R., Sousa, A., & Gross, C. (1988). Visuotopic organization

and extent of V3 and V4 of the macaque. Journal of Neuroscience,

8, 1831–1845.

Geisler, W. S., & Chou, K. L. (1995). Separation of low-level and high-

level factors in complex tasks: visual search. Psychological Review,

102(2), 356–378.

Henderson, J. H., Weeks, P. A., & Hollingsworth, A. (1999). The

effects of semantic consistency on eye movements during complex

scene viewing. The Journal of Experimental Psychology: Human

Perception and Performance, 25(1), 210–228.

Henderson, J. M., & Hollingsworth, A. (1998). Eye movements during

scene viewing: an overview. In G. Underwood (Ed.), Eye guidance

while eading and while watching dynamic scenes (pp. 269–293).

Amsterdam: Elsevier.

Hoffman, J. E., & Subramaniam, B. (1995). The role of visual attention

in saccadic eye movements. Vision Research, 57(6), 787–795.

Hubel, D. H., & Livingstone, M. S. (1990). Color and contrast

sensitivity in the lateral geniculate body and primary visual cortex

of the macaque monkey. Journal of Neuroscience, 1, 2223–

2237.

Hubel, D., & Wiesel, T. (1968). Receptive fields and functional

architecture of monkey striate cortex. Journal of Physiology, 195,

215–243.

Hubel, D., & Wiesel, T. (1977). Functional architecture of macaque

monkey visual cortex. Proceedings of the Royal Society of London

Series B, 198, 1–59.

Itti, L., & Koch, C. (1999). Target detection using saliency-based

attention. RTO/SCI-12 Workshop on Search and Target Acquisition

(Vol. 20(11)). Utrecht, The Netherlands: NATO.

Itti, L., & Koch, C. (2000). A saliency-based search mechanism for

overt and covert shifts of visual attention. Vision Research, 40(10–

12), 1489–1506.

Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based

visual attention for rapid scene analysis. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 20(11), 1254–1259.

Itti, L., Niebur, E., Braun, J., & Koch, C. (1996). A trainable model of

saliency-based visual attention. In Society for Neuroscience Ab-

stracts, vol. 22 (p. 270). Washington, DC: Society for Neuroscience.

Julesz, B. (1984). A brief outline of the texton theory of human vision.

Trends in Neuroscience, 7, 41–45.

Koch, C., & Ullman, S. (1985). Shifts in selective visual attention:

towards the underlying neural circuitry. Human Neurobiology, 4,

219–227.

Kowler, E., Anderson, E., Dosher, B., & Blaser, E. (1995). The role of

attention in the programming of saccades. Vision Research, 35(13),

1897–1916.

Krieger, G., Rentschler, I., Hauske, G., Schill, K., & Zetzsche, C.

(2000). Object and scene analysis by saccadic eye-movements: an

investigation with higher-order statistics. Spatial Vision, 13,

201–214.

Leonards, U., & Singer, W. (1998). Two segmentation mechanisms

with differential sensitivity for color and luminance contrast. Vision

Research, 38(1), 101–109.

Loftus, G. R., & Mackworth, N. H. (1978). Cognitive determinants of

fixation location during picture viewing. The Journal of Experi-

mental Psychology: Human Perception and Performance, 4,

565–572.

Mackworth, N. H., & Morandi, A. J. (1967). The gaze selects

informative details within pictures. Perception and Psychophysics,

2, 547–552.

Mannan, S. K., Ruddock, K. H., & Wooding, D. S. (1995). Automatic

control of saccadic eye movements made in visual inspection of

briely presented 2-D images. Spatial Vision, 9(3), 363–386.

Mannan, S. K., Ruddock, K. H., & Wooding, D. S. (1996). The

relationship between the locations of spatial features and those

oxations made during visual examination of briefly presented

images. Spatial Vision, 10(3), 165–188.

122 D. Parkhurst et al. / Vision Research 42 (2002) 107–123



Mannan, S. K., Ruddock, K. H., & Wooding, D. S. (1997). Fixation

sequences made during visual examination of briefly presented 2D

images. Spatial Vision, 11(2), 157–178.

McPeek, R. M., Maljkovic, V., & Nakayama, K. (1999). Saccades

require focal attention and are facilitated by a short-term memory.

Vision Research, 39, 1555–1566.

Neisser, U. (1967). Cognitive psychology. New York: Appleton-

Century-Crofts.

Niebur, E., & Koch, C. (1996). Control of selective visual attention:

modeling the ‘‘where’’ pathway. In D. S. Touretzky, M. C. Mozer,

& M. E. Hasselmo (Eds.), Advances in neural information process-

ing systems (vol. 8) (pp. 802–808). Cambridge, MA: MIT

Press.

Niebur, E., & Koch, C. (1998). Computational architectures for

attention. In R. Parasuraman (Ed.), The attentive brain (pp. 163–

186). Cambridge, MA: MIT Press.

Nothdurft, H.-C. (1991). Texture segmentation and pop out from

orientation contrast. Vision Research, 31, 1073–1078.

Nothdurft, H.-C. (1993). Saliency effects across dimensions in visual

search. Vision Research, 33.

Nothdurft, H.-C. (2000). Salience from feature contrast: additivity

across dimensions. Vision Research, 40, 1183–1201.

Noton, D., & Stark, L. (1971). Scanpaths in eye movements. Science,

171, 308–311.

Posner, M. I. (1980). Orienting of attention. Quarterly Journal of

Experimental Psychology, 32, 3–25.

Posner, M.I., & Cohen, Y. (1984). Components of visual orienting. In

H. Bouma, & D. G. Bouwhuis (Eds.), Attention and performance

X (pp. 531–556). Hilldale, NJ: Erlbaum.

Reinagel, P., & Zador, A. M. (1999). Natural scene statistics at the

center of gaze. Network: Computation in Neural Systems, 1,

341–350.

Rock, I., & Gutman, D. (1981). The effect of inattention on form

perception. Journal of Experimental Psychology: Human Perception

and Performance, 7(2), 275–285.

Schneider, W. X., & Deubel, H. (1995). Visual attention and saccadic

eye move ments: evidence for obligatory and selective spatial

coupling. In J. M. Findlay, R. Kentridge, & R. Walker (Eds.), Eye

movement research: mechanisms, processes and applications

(pp. 317–324). New York: Elsevier.

Schwartz, E. (1977). Spatial mapping in the primate sensory projec-

tion: analytic structure and relevance to perception. Biological

Cybernetics, 25, 181–194.

Shepherd, M., Findlay, J. M., & Hockey, R. J. (1986). The relationship

between eye movements and attention. Quarterly Journal of

Experimental Psychology, 38A, 475–491.

Stampe, D. M. (1993). Heuristic filtering and reliable calibration

methods for video based pupil tracking systems. Behavior Research

Methods, Instruments, and Computers, 25(2), 137–142.

Stark, L. W., & Ellis, S. R. (1981). Scan paths revisited: cognitive

models direct active looking. In D. F. Fisher, R. A. Monty, & J. W.

Senders (Eds.), Eye movements: cognition and visual perception

(pp. 193–226). Hillside, NJ: Lawrence Erlbaum Associates.

Suzuki, S., & Cavanagh, P. (1995). Facial organization blocks access to

low-level feature: An object inferiority effect. Journal of Experi-

mental Psychology: Human Perception and Performance, 21(4),

901–913.

Theeuwes, J. (1993). Visual selective attention: a theoretical analysis.

Acta Psychologica, 83, 93–154.

Tipper, S. P., Weaver, B., Jerreat, L. M., & Burak, A. L. (1994).

Object- and environment-based inhibition of return of visual

attention. Journal of Experimental Psychology: Human Perception

and Performance, 2, 478–499.

Treisman, A., & Gelade, G. (1980). A feature-integration theory of

attention. Cognitive Psychology, 12, 97–136.

Treisman, A., & Gormican, S. (1988). Feature analysis in early vision:

evidence from search asymetries. Psychological Review, 95, 15–48.

Verghese, P., & Pelli, D. (1992). The information capacity of visual

attention. Vision Research, 32(5), 983–995.

Virsu, V., & Rovamo, J. (1979). Visual resolution contrast sensitivity

and the cortical magnification factor. Experimental Brain Research,

37(3), 475–494.

Wandell, B. A. (1995). Foundations of Vision. Sunderland, MA:

Sinauer Associates.

Wang, Q., Cavanagh, P., & Green, W. (1994). Familiarity and pop out

in visual search. Perception and Psychophysics, 56(5), 495–500.

Wolfe, J. (1994). Guided Search 2.0––a revised model of visual search.

Psychonomics Bulletin and Review, 1(2), 202–238.

Wolfe, J., Cave, K., & Franzel, S. (1989). Guided search: an alternative

to the feature integration model for visual search. Journal of

Experimental Psychology, 15, 419–433.

Wolfe, J. M., O’Niel, P., & Bennett, S. A. (1998). Why are there

eccentricity effects in visual search? Visual and attentional hypoth-

eses. Perception and Psychophysics, 60, 140–156.

Yantis, S., & Hillstrom, A. P. (1994). Stimulus-driven attentional

capture: evidence equiluminant visual objects. Journal of Experi-

mental Psychology: Human Perception and Performance, 2, 95–107.

Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective

attention: evidence from visual search. Journal of Experimental

Psychology: Human Perception and Performance, 1, 601–621.

Yarbus, A. (1967). Eye Movements and Vision. New York: Plenum

Press.

D. Parkhurst et al. / Vision Research 42 (2002) 107–123 123


