A Characterization of the Ree Groups ${ }^{2} F_{4}(q)$

David Parrotti ${ }^{\bar{i}}$
The Ohio State University, Columbus, Ohio 43210

Received May 26, 1971

1. Introduction

The Ree groups ${ }^{2} F_{4}(q)$ are the fixed points of a certain automorphism of the Chevalley groups of type F_{4} over a finite field $K=G F(q)$, where $q=2^{2 n+1}$, $n \geqslant 0$. Ree [7] showed that the groups ${ }^{2} F_{4}(q)$ are simple if $q>2$, while Tits [12] showed that ${ }^{2} F_{4}(2)$ is not simple but possesses a simple subgroup \mathscr{F} of index 2.

In this paper, we give a characterization of the Ree groups in terms of the centralizers of involutions in the center of a Sylow 2 -subgroup. Namely, if $H(q)$ denotes the centralizer of each involution in the centre of a Sylow 2 -subgroup of ${ }^{2} F_{4}(q)$, we have the following.

Theorem. Let G be a fuite group which possesses a subgroup $H \cong H(q)$ so that for every involution $z \in Z(H)$ we have $H=C_{G}(z)$. Then one of the following possibilities holds:
(i) $G \cong{ }^{2} F_{4}(q), q=2^{2 n+1}, n \geqslant 0$.
(ii) $q=2$ and $G=H \cdot O(G)$.
(iii) $q>2$ and $Z(H) \triangleleft G$ (with $|G: H| \mid q-1$).

The notation of this paper will follow [3], and we will follow [7] in regard to the structure of ${ }^{2} F_{4}(q)$. In particular, if X_{1}, X_{2} are subsets of a finite group $X, X_{1} \sim_{x} X_{2}$ means $X_{1}=x^{-1} X_{2} x=X_{2}^{x}$ for some $x \in X$, while $L_{n}(X)$ is defined by $L_{1}(X)=X$ and $L_{n}(X)=\left[X, L_{n-1}(X)\right]$ for each $n \geqslant 2$.

2. The Structure of $H \cong H(q)$

Since we will only consider the structure of $H(q)$ and not that of ${ }^{2} F_{4}(q)$, we will identify H with $H(q)$.

Let $K=G F(q)$ be a finite field of characteristic 2 and order $q=2^{2 n+1}$, $n \geqslant 0$. Further, let K^{*} denote the multiplicative group of K. As is well
${ }^{1}$ Department of Pure Mathematics, The University of Adelaide, South Ausiralia 5001.
known, K admits and automorphism θ such that $2 \theta^{2}=1$. In [7], Ree gives generators $\alpha_{i}(t) ; i=1, \ldots, 12, t \in K$, for a Sylow 2-subgroup $T=T(q)$ of ${ }^{2} F_{4}(q)$. He also shows $Z(T)=\left\langle\alpha_{12}(t) \mid t \in K\right\rangle$ is elementary of order q. Using the definition of the $\alpha_{i}(t)$ and the commutator relations for the Chevalley groups of type F_{4} (see [7, p. 404]) all commutators [$\left.\alpha_{i}(t), \alpha_{j}(u)\right]$ can be computed. From Ree's work, it is straightforward to show that $H=C_{2_{F_{4}(q)}}\left(\alpha_{12}(t)\right)$ is independent of our choice of $t \in K^{*}$.

Further, in the notation of [7],

$$
\begin{aligned}
H & =\left\langle T, \omega(w(1,-1, \infty))=\omega_{34^{\prime}} \cdot \omega_{34}, h\left(\chi_{34^{\prime}, t^{1-2 \theta}} \cdot \chi_{34, t^{-1}}\right) \mid t \in K\right\rangle \\
& =\left\langle T, \omega_{1}, h(t) \mid t \in K\right\rangle
\end{aligned}
$$

Below we list relations between the generators of H :

1. For all $t, u \in K$ we have:
(a) $\quad \alpha_{i}(t) \alpha_{i}(u)=\alpha_{i}(t+u)=\alpha_{i}(u) \alpha_{i}(t), i=2,3,7,8,9,10,11,12$

$$
\begin{aligned}
& \alpha_{1}(t)^{2}=\alpha_{2}\left(t^{2 \theta+1}\right),\left[\alpha_{1}(t), \alpha_{1}(u)\right]=\alpha_{2}\left(t^{2 \theta} u+t u^{2 \theta}\right) ; \\
& \alpha_{4}(t)^{2}=\alpha_{8}\left(t^{2 \theta+1}\right),\left[\alpha_{4}(t), \alpha_{4}(u)\right]=\alpha_{8}\left(t^{2 \theta} u+t u^{2 \theta}\right) ; \\
& \alpha_{5}(t)^{2}=\alpha_{12}\left(t^{2 \theta+1}\right),\left[\alpha_{5}(t), \alpha_{5}(u)\right]=\alpha_{12}\left(t^{2 \theta} u+t u^{2 \theta}\right) ; \\
& \alpha_{6}(t)^{2}=\alpha_{11}\left(t^{2 \theta+1}\right),\left[\alpha_{6}(t), \alpha_{6}(u)\right]=\alpha_{11}\left(t^{2 \theta} u+t u^{2 \theta}\right) .
\end{aligned}
$$

(b) $\left[\alpha_{11}(t), \alpha_{3}(u)\right]=\left[\alpha_{10}(t), \alpha_{4}(u)\right]=\left[\alpha_{9}(t), \alpha_{6}(u)\right]$

$$
=\left[\alpha_{8}(t), \alpha_{7}(u)\right]=\alpha_{12}(t u) ;
$$

$$
\left[\alpha_{10}(t), \alpha_{1}(u)\right]=\left[\alpha_{9}(t), \alpha_{2}(u)\right]=\alpha_{11}(t u) ;
$$

$$
\left[\alpha_{9}(t), \alpha_{1}(u)\right]=\alpha_{10}\left(t u^{2 \theta}\right) \alpha_{11}\left(t u^{2 \theta+1}\right) \alpha_{12}\left(t^{2 \theta} u\right) ;
$$

$$
\left[\alpha_{8}(t), \alpha_{2}(u)\right]=\alpha_{10}(t u) \alpha_{11}\left(u^{2 \theta} t\right) \alpha_{12}\left(t^{2 \theta} u\right)
$$

$$
\left[\alpha_{8}(t), \alpha_{1}(u)\right]=\alpha_{9}(t u) \alpha_{11}\left(u^{2 \theta+2} t\right) \alpha_{12}\left(t^{2 \theta} u^{2 \theta+1}\right)
$$

$$
\left[\alpha_{5}(t), \alpha_{7}(u)\right]=\alpha_{11}(t u),\left[\alpha_{5}(t), \alpha_{6}(u)\right]=\alpha_{10}(t u),
$$

$$
\left[\alpha_{5}(t), \alpha_{4}(u)\right]=\alpha_{9}(t u),\left[\alpha_{5}(t), \alpha_{3}(u)\right]=\alpha_{8}(t u)
$$

$$
\left[\alpha_{7}(t), \alpha_{4}(u)\right]=\alpha_{10}\left(u^{2 \theta} t\right) \alpha_{11}\left(t^{2 \theta} u\right) \alpha_{12}\left(u^{2 \theta+1} t\right)
$$

$$
\left[\alpha_{i}(t), \alpha_{3}(u)\right]-\alpha_{9}\left(t u^{2 \theta}\right) \alpha_{10}\left(t^{2 \theta} u\right) ;
$$

$$
\left[\alpha_{6}(t), \alpha_{3}(u)\right]=\alpha_{8}\left(t u^{2 \theta}\right) \alpha_{9}\left(t^{2 \theta} u\right) \alpha_{12}\left(t^{2 \theta+1} u\right)
$$

$$
\left[\alpha_{6}(t), \alpha_{1}(u)\right]=\alpha_{7}(t u) ;
$$

$$
\left[\alpha_{4}(t), \alpha_{2}(u)\right] \cdots \alpha_{7}(t u) \alpha_{11}\left(t^{2 \theta+1} u^{2 A}\right) \alpha_{12}\left(t^{2 \theta+2} u\right)
$$

$$
\left[\alpha_{4}(t), \alpha_{1}(u)\right]=\alpha_{5}\left(t^{2 \theta} u\right) \alpha_{6}\left(t u^{2 \theta}\right) \alpha_{7}\left(t u^{2 \theta}\right) \alpha_{9}\left(t^{2 \theta+1} u\right)
$$

$$
\alpha_{11}\left(t^{2 \theta+1} u^{2 \theta+2}\right) \alpha_{12}\left(t^{2 \theta+2} u^{2 \theta+1}\right) ;
$$

$$
\left[\alpha_{3}(t), \alpha_{2}(u)\right]=\alpha_{5}\left(t^{2 \theta} u\right) \alpha_{6}(t u) \alpha_{7}\left(t u^{2 \theta}\right) \alpha_{8}\left(t^{2 \theta \mid 1} u\right) \alpha_{9}\left(t^{2 \theta \mid 1} u^{2 \theta}\right)
$$

$$
\alpha_{10}\left(t^{2 \theta+1} u^{2}\right) \alpha_{12}\left(t^{2 \theta+2} u^{2 \theta+1}\right)
$$

$$
\left[\alpha_{3}(t), \alpha_{1}(u)\right]=\alpha_{4}(t u) \alpha_{5}\left(t^{2 \theta} u^{2 \theta+1}\right) \alpha_{7}\left(t u^{2 \theta+2}\right) \alpha_{8}\left(t^{2 \theta+1} u^{2 \theta+1}\right)
$$

$$
\alpha_{9}\left(t^{2 \theta+1} u^{2 \theta+2}\right) \alpha_{10}\left(t^{2 \theta+1} u^{4 \theta+2}\right) \alpha_{11}\left(t^{2 \theta+1} u^{4 \theta+3}\right)
$$

$$
\alpha_{12}\left(t^{2 \theta+2} u^{4 \theta+3}\right)
$$

All other commutators $\left[\alpha_{i}(t), \alpha_{j}(u)\right]=1, i, j=1, \ldots, 12$.
2. Put $h(u)=h\left(\chi_{34^{\prime}},{ }_{u^{1-2 \theta}} \cdot \chi_{34, u^{-1}}\right)$ for each $u \in K^{*}$. Then

$$
\left\langle h(u) \mid u \in K^{*}\right\rangle \cong K^{*}
$$

and for each $t \in K, u \in K^{*}$ we have the following action of $h(u)$ on T :

$\alpha_{i}(t)$	$\alpha_{12}(t)$	$\alpha_{11}(t)$	$\alpha_{10}(t)$	$\alpha_{9}(t)$	$\alpha_{8}(t)$	$\alpha_{7}(t)$
$\alpha_{i}(i)^{h(u)}$	$\alpha_{12}(t)$	$\alpha_{11}\left(u^{-2 \theta} t\right)$	$\alpha_{10}\left(u^{2 \theta-2} t\right)$	$\alpha_{9}\left(u^{2-2 \theta} t\right)$	$\alpha_{8}\left(u^{2 \theta} t\right)$	$\alpha_{7}\left(u^{-2 \theta_{i}}\right)$
$\alpha_{i}(t)$	$\alpha_{6}(t)$	$\alpha_{5}(t)$	$\alpha_{4}(t)$	$\alpha_{3}(t)$	$\alpha_{2}(t)$	$\alpha_{1}(t)$
$\alpha_{i}(t)^{h(u)}$	$\alpha_{6}\left(u^{2 \theta-2} t\right)$	$\alpha_{5}(t)$	$\alpha_{4}\left(u^{2-2 \theta} t\right)$	$\alpha_{3}\left(u^{2 \theta} t\right)$	$\alpha_{2}\left(u^{-2 t}\right)$	$\alpha_{1}\left(u^{2-4 \theta_{i}}\right)$

3. Put $\omega_{1}=\omega(w(1,-1, \infty))$; then $\omega_{1}{ }^{2}=1$ and for each $t \in K$,

$$
\begin{gathered}
\alpha_{12}(t)^{\omega_{1}}=\alpha_{12}(t), \alpha_{11}(t)^{\omega_{1}}=\alpha_{8}(t), \alpha_{10}(t)^{\omega_{1}}=\alpha_{9}(t), \\
\alpha_{5}(t)^{\omega_{1}}=\alpha_{5}(t), \alpha_{7}(t)^{\omega_{1}}=\alpha_{3}(t), \alpha_{6}(t)^{\omega_{1}}=\alpha_{4}(t) .
\end{gathered}
$$

Further, for each $u \in K^{*}, h(u)^{\omega_{1}}=h(u)^{-1}$.
4. $S=\left\langle\alpha_{1}(t), \omega_{1}, h(u) \mid t \in K, u \in K^{*}\right\rangle \cong S z(q)$, the Suzuki simple group (described in [8]). (This is probably most easily seen by showing that the Sylow 2-subgroups of S are T.I. sets and then using Suzuki's result [9].)

From these relations, we can describe the structure of H using the following notation:

$$
\begin{aligned}
U_{i} & =\left\langle\alpha_{i}(t), \alpha_{i+1}(t), \ldots, \alpha_{12}(t) \mid i \in K\right\rangle \\
V_{i} & =\left\langle\alpha_{i}(t) \mid t \in K\right\rangle, \quad i=1, \ldots, 12 \\
\tilde{J} & =U_{3}=O_{2}(H) ; \\
Z & =Z(H)=Z(T)=U_{12}=V_{12} ; \\
E & =U_{8}=J^{\prime} ; \\
Q & =\left\langle h(u) \mid u \in K^{*}\right\rangle
\end{aligned}
$$

(Note that $T=U_{1}$ is a Sylow 2-subgroup of H.)
We have that H is a faithful split extension of the 2 -group J of class 3 and order q^{10} by the group $S \cong S z(q)$ of order $q^{2}(q-1)(q+1)$. A. Sylow 2 -subgroup T of H has order $q^{12}, N_{H}(T)=T \cdot Q$, where Q is cyclic of order $q-1$ and $Z=Z(T)=Z(H)$ is elementary of order q. The subgroup $E=J^{\prime}$ is elementary of order q^{5} with $C_{H}(E)=\left\langle E, V_{5}\right\rangle$ of order q^{6} and $\Omega_{1}(C(E))=E$.

Also $Z=L_{3}(J)=\left[J, J^{\prime}\right], U_{i} \triangleleft T$ and $V_{i}{ }^{O}=V_{i}$ for each $i=1, \ldots, 12$. Note that V_{i} is elementary abelian for $i=2,3,7,8,9,10,11,12$, but $V_{1} \cong V_{4} \cong V_{5} \cong V_{6}$ are "Suzuki 2-groups" of order q^{2}.

Some Properties of $S \cong S z(q)$ (see [8])
The groups $S z(q)$ are simple if $q>2$, while $S z(2)$ is a Frobenius group of order 20. A Sylow 2-subgroup V_{1} of S is non-Abelian of order q^{2}, $\Omega_{1}\left(V_{1}\right)=V_{2}=Z\left(V_{1}\right)=V_{1}^{\prime}$ is elementary of order q with $N_{S}\left(V_{1}\right)=Q \cdot V_{1}$. For each involution $\alpha_{2}(t) \in V_{2}, C_{S}\left(\alpha_{2}(t)\right)=V_{1}$. The other conjugacy classes of maximal local subgroups of S are Frobenius groups of order $4(q+\sqrt{2 q}+1), 4(q-\sqrt{2 q}+1), 2(q-1)$ (the latter having $N_{S}(Q)=$ $Q\left\langle\omega_{1}\right\rangle$ as a representative). If $S_{1} \subseteq S$ then either S_{1} is conjugate to a subgroup of one of the maximal subgroups above or $S_{1} \cong S z\left(q_{1}\right)$, where $q_{1} \mid q$. Finally, each outer automorphism of S is induced by a field automorphism of the underlying field K.

With regard to the action of S on J, we have $C_{J}(S)=V_{5}$ (of order q^{2}) while if $q>2 S$ acts indecomposably on both E and J / E.

The Conjugacy Classes of Involutions in H

In $E-Z$ there are two classes of involutions (in H) with representatives $\alpha_{11}(1), \alpha_{10}(1)$. Put $C=C_{H}\left(\alpha_{11}(1)\right)=C_{T}\left(\alpha_{11}(1)\right)$ and $D=C_{H}\left(\alpha_{10}(1)\right)=$ $C_{T}\left(\alpha_{10}(1)\right)$. We have $C=\left\langle V_{i} \mid i \neq 3\right\rangle$ is of order q^{11} and class 5 with $Z(C)=L_{5}(C)=U_{11}$ and put $F=L_{3}(C)=\left\langle V_{12}, V_{11}, V_{10}, V_{9}, V_{7}\right\rangle$ so F is clementary Λ belian of order q^{5}. Note that $F \triangleleft T$. Further, therc are precisely $2 q-1$ cosets of E in J which contain an element of order four whose square is $\alpha_{11}(1)$. Similarly, $D=\left\langle V_{i} \mid i \neq 1,4\right\rangle$ is of order $q^{10}, Z(D)=Z \times V_{10}$ and $L_{5}(D)=Z$ if $q>2$ while $L_{4}(D)=Z$ if $q=2$. Finally, if $e \in E-U_{10}$ we have $C_{T}(e)=C_{J}(e)$ (of order q^{9}) while $e \in E \cap F-U_{11}=U_{9}-U_{11}$ implies $e \sim_{H} \alpha_{10}(1)$ and $e \in U_{11}-Z$ implies $e \sim_{H} \alpha_{11}(1)$.

In $J-E$ there is one class of involutions with representative $\alpha_{7}(1)$ and there are precisely $\left(q^{2}+1\right)(q-1)+1=q^{3}-q^{2}+q$ cosets of E in J which contain involutions. We have that $C_{H}\left(\alpha_{7}(1)\right)=C_{T}\left(\alpha_{7}(1)\right)=\left\langle V_{i}\right| i=$ $1,2,6,7,9,10,11,12\rangle$ is of order q^{8} and with center $\left\langle Z, V_{11}, V_{7}\right\rangle$ elementary of order q^{3}. Also, $\Omega_{1}\left(C_{T}\left(\alpha_{7}(1)\right)\right)$ has index q in $C_{T}\left(\alpha_{7}(1)\right)$ so that $C_{T}\left(\alpha_{7}(1)\right)=$ $\Omega_{1}\left(C_{T}\left(\alpha_{7}(1)\right) \cdot V_{1}\right.$.

Finally in $T-J$ there are q classes of involutions with representatives $\alpha_{2}(1) \alpha_{12}(t), t \in K$. For each $t \in K, C_{H}\left(\alpha_{2}(1) \alpha_{12}(t)\right)=C_{T}\left(\alpha_{2}(1)\right)=C_{H}\left(\alpha_{2}(1)\right)=$ $\left\langle V_{i} \mid i=1,2,5,6,7,10,11,12\right\rangle$. Further, $Z\left(C_{T}\left(\alpha_{2}(1)\right)\right)=\left\langle Z, V_{11}, V_{2}\right\rangle$ is elementary Abelian of order q^{3} while $\Omega_{1}\left(C_{T}\left(\alpha_{2}(1)\right)\right)=\left\langle V_{12}, V_{11}, V_{10}, V_{7}, V_{2}\right\rangle$ is elementary of order q^{5}.

To summarize, we list representatives of the conjugate classes of involutions in $H-Z$ and some properties of their centralizers:

Involution x	Location	$\left\|C_{H}(x)\right\|$	$Z\left(C_{H}(x)\right)$
$\alpha_{11}(1)$	$E-Z$	q^{11}	$Z \times V_{11}=U_{11}$
$\alpha_{10}(1)$	$E-Z$	q^{10}	$Z \times V_{10}$
$\alpha_{7}(1)$	$J-E$	q^{8}	$U_{11} \times V_{7}$
$\alpha_{2}(1) \alpha_{12}(t)$, $t \in K$	$H-J$	q^{8}	$U_{11} \times V_{2}$

3. A Preliminary Result

The idea used in the proof of Proposition 2 is due to Suzuki [10]; the first result is well known (see [10] also).

Proposition 1. Let w, v be involutions in a finite group X with 〈wo of even order. If i is the unique involution in $\langle w v\rangle$ then $\langle w, v\rangle \subseteq C_{X}(i)$ and either

$$
z v i \widetilde{x}^{w} \quad \text { and } v i \widetilde{x}^{v} \text { or } z v i \widetilde{x}^{v} \text { and } v i \widetilde{x}^{w} \text {. }
$$

Proposition 2. Let Y be a 2-subgroup of a finite group X. Suppose that $Y \subset W \subseteq X$ so that for every $x \in X$ and $y \in Y$ with $y^{x} \in W$, we have $y^{x} \in Y$. Further, suppose there is an involution $w \in W-Y$ with $C\left(w_{1}\right) \subseteq W$ for all $w_{1} \in\langle v, Y\rangle^{*}$. Then $Y \triangleleft X$.

Proof. Note that $Y \triangleleft W$, whence $\langle w, Y\rangle$ is a group of order $2|Y|$. Suppose $Y \nleftarrow X$, so $Y \neq 1$. There exists $x \in X$ with $Y^{x} \neq Y$. If $1 \neq a \in Y^{x} \cap W, a \in Y^{x} \cap Y$ so that a centralizes $Z\left(Y^{x}\right) \neq 1$ (as Y is a 2-group), whence $Z\left(Y^{x}\right) \subseteq W$ by assumption and so $Z\left(Y^{x}\right) \subseteq Y$. But then if $1 \neq b \in Z\left(Y^{x}\right), C_{X}(b) \subseteq W$ so $Y^{x} \subseteq W$, whence $Y^{x}=Y$. Thus, $Y^{x} \cap W=1$.

Let y be an involution in Y and put $v=y^{x}$. Then $v \chi_{x} w$ by assumption so $\langle v w\rangle$ has even order. Let i be unique involution in $\langle v w\rangle$. Note that $i \in C_{X}(w) \subseteq W$. By Proposition 1, either $w i \sim_{X} v$ or $v i \sim_{X} v$.
If $w i \sim_{X} v$, as $w i \subset W$, wi $\in Y$, whence $i \in Y v$. By assumption $C_{X}(i) \subseteq W$ so $v \in W$ which contradicts $v \in Y^{x}$ and $Y^{x} \cap W=1$.
We may assume, therefore, that $v i \sim_{X} v$. Hence, $v i \in Y^{x}\left(a s i \in C_{X}(v) \subseteq W^{x}\right)$ so $i \in Y^{*}$, whence $i \in W \cap Y^{x}=1$, a contradiction. The proposition is proved.

4. The Cases (ii) and (iii) of the Theorem

For the rest of the paper, we suppose G, H satisfy the hypotheses of the theorem. We use the same notation as in Section 2; as well, $C(X)$ and $N(X)$ will denote $C_{G}(X), N_{G}(X)$ respectively, for any subset X of G.

Lemma 1. A Sylow 2-subgroup T of H is a Sylow 2-subgroup of G.
Proof. If T is not a Sylow 2-subgroup of G, by Sylow's theorem there exists a 2 -group T_{1} with $\left|T_{1}: T\right|=2$. Let $y \in T_{1}-T$, so $y \notin H$. As $Z(T)=Z$ char $T \triangleleft T_{1}, y \in N(Z)$, whence $C_{Z}(y) \neq 1$, contradicting our assumption.

Lemma 2. Let x be an element of order p, p an odd prime, with $x \in N(Z)$. If $C(x) \cap N(Z)$ covers $H \mid J$ then $C_{J}(x)=1$.

Proof. By assumption, $C(Z)=H$. Clearly $J=O_{2}(H) \triangleleft N(Z)$ and since $H / J \cong S z(q)$, if x is as in the statement of the lemma, $x \notin H$. If $E_{0}=C_{n}(x) \neq 1$, as $C_{E}(x) \triangleleft C_{H}(x)$ we have $\left|E_{0}\right| \geqslant q^{4}$ and so $E_{0} \times Z=E$. It follows that E_{0} contains an element $e \sim_{H} \alpha_{11}(1)$ and so x permutes the $2 q-1$ cosets of E in J which possess an element of order 4 whose square is e. As $|N(Z): H||q-1, p| q-1$ and so $C_{J / E}(x) \neq 1$.

On the other hand, if $C_{J / E_{0}}(x) \neq 1$, as $C_{J}(x) / E_{0} \triangleleft C(x) / E_{0},\left|C_{J}(x) / E_{0}\right| \geqslant q^{4}$. Thus $C_{J}(x)$ contains cosets of E_{0} which contain only elements of order four, and so $E_{0} \neq 1$.

We have proved that if $C_{J}(x) \neq 1$ then $\left|C_{J}(x)\right| \geqslant q^{8}$ and $E_{0} \times Z=E$. However, $C_{J}\left(E_{0}\right)=C_{J}(E)$, so $\left[C_{J}(x), E_{0}\right] \neq 1$. But $\left[C_{J}(x), E_{0}\right] \subseteq[J, E]=Z$, and, hence, $Z \cap C_{J}(x) \neq 1$ which is a contradiction. The lemma is proved.

In the rest of this section, we will show that if Z is weakly closed in H with respect to G, then G satisfies either conclusion (ii) or (iii) of the Theorem.

Lemma 3. If z is an involution in Z and $\langle z\rangle$ is weakly closed in H with respect to G then $G=H \cdot O(G)$, where $O(G)=1$ if $q>2$. In particular if $q=2$ and Z is weakly closed in H then $G=H \cdot O(G)$.

Proof. The first statement follows immediately from Glauberman's theorem [2]. If $q=2, Z=\langle z\rangle$ is of order 2 and the last statement follows. If $q>2$ and $O(G) \neq 1$, since Z contains a four group there exists an involution $z \in Z$ with $C(z) \cap O(G) \neq 1$. But then $H \cap O(G) \neq 1$ which contradicts the structure of H. Hence, if $q>2, O(G)=1$ as required.

The proof of the next lemma uses an idea of Suzuki [10].
Lemma 4. If $q>2$ and Z is weakly closed in H with respect to G then $Z \triangleleft G$, and so $|G: H| \mid q-1$.

Proof. Suppose $q>2, Z$ is weakly closed in H but $Z \notin G$. By Lemma 3, for each involution $z \in Z$ there exists $g \in G$ with $z \neq z^{g} \in H$ (otherwise $G=H \subseteq N(Z))$. As $Z \subseteq C\left(z^{g}\right)=H^{g}$, it follows that $Z^{g^{-1}} \subseteq H$ so $Z^{g^{-1}}=Z$. Thus, $N(Z) \supset H$ and if $z^{g} \in H$ for any $g \in G, z \in Z$, we have $z^{g} \in Z$. If we show that $C\left(\alpha_{2}(1) \alpha_{12}(t)\right) \subseteq N(Z)$ for each $t \in K$, the assumptions of Proposition 2 will be satisfied (with $X=G, Y=Z, W=N(Z)$ and $w=\alpha_{2}(1)$) and we can conclude that $Z \triangleleft G$.

Let $y=\alpha_{2}(1) \alpha_{12}(t)$ for any $t \in K, P=C_{H}(y)$ and $\Lambda=C_{G}(y)$. Note that P is a normal Sylow 2-subgroup of $C_{N(z)}(y)=A \cap N(Z)$. Under the assumptions of the lemma, we want to prove that $A \subseteq N(Z)$. We argue by way of contradiction and assume $Z \nVdash A$.

Since Z is weakly closed in H, Z is weakly closed in P and so P (of order q^{8}) is a Sylow 2 -subgroup of A. By assumption A contains more than one Sylow 2-subgroup. Among all Sylow 2 -subgroups of A, choose a Sylow 2 -subgroup P_{1} of A so that $\left|P \cap P_{1}\right|$ is maximal. Put $I=P_{1} \cap P$ and note that $1 \neq\langle y\rangle \subseteq I$.

Suppose $1 \neq z \in Z \cap I$. Let $a \in A$ with $P^{a}=P_{1}$ so $z=z_{0}{ }^{a}$ for some $z_{0} \in Z$. Thus, $z \in Z(P)^{a}=Z\left(P_{1}\right)$ so $P_{1} \subseteq H$, contradicting $H \cap A=P$. We have shown that $I \cap Z=1$.

Next we prove that $I C_{A}(I) / I$ is a T.I. group in the sense of Suzuki [9]. Put $R=I C_{A}(I)$. Clearly $Z I \subseteq R \cap P$ and so Z is weakly closed in $R \cap P$, whence $R \cap P$ is a Sylow 2-subgroup of R. Clearly $Z^{a} \subseteq R$ (but $Z^{\alpha} \nsubseteq I$), whence $R \cap P$ is not the only Sylow 2 -subgroup of R; i.e., $R \cap P \notin R$. Let R_{1} be a Sylow 2-subgroup of R with $R_{1} \cap(R \cap P)=R_{1} \cap P \supset I$. Then if A_{1} is a Sylow 2-subgroup of A with $A_{1} \supseteq R_{1}$, we have $A_{1} \cap P \supset I$, i.e.,

$$
\left|A_{1} \cap P\right|>\left|P_{1} \cap P\right|
$$

By the maximality of $\left|P_{1} \cap P\right|$, we must have $A_{1}=P$ which means $R_{1}(P \cap R) \subseteq P$ so $R_{1}(P \cap R)$ is a 2 -group. This forces $R_{1}=P \cap R$ as $P \cap R$ is a Sylow 2-subgroup of R. The distinct Sylow 2-subgroups of R / Z therefore have trivial intersection with each other; i.e., R / I is a T.I. group. As $Z I / I$ is elementary of order $q>2$, Suzuki's result ([9], Theorem 2) yields that R / I possesses a normal series $R / I \triangleright R_{2} / I \triangleright R_{3} / I \triangleright I / I$, where $\left|R: R_{2}\right|$, $\left|R_{3}: I\right|$ are odd and $R_{2} / R_{3} \cong L_{2}(q), U_{3}(q)$ or $S z(q)$.

In any case, all involutions in $P \cap R / I$ are conjugate in R / I so $\Omega_{1}(P \cap R / I)=Z I / I$ and $\left|N_{R}(Z): P \cap R\right|=q-1$. From the structure of H it follows that $R_{3}=I$, while $Z(P) \subseteq R$ so $|Z(P) \cap I|=q^{2}$ (as $Z(P)=U_{11} \times V_{2}$ is elementary of order q^{3}). Let x be an element of order p, p an odd prime, $p \mid q-1$ with $x \in N_{R}(Z)$. Then $x \in C(I)$ so $C_{R}(x)$ has order $\geqslant q$ and $C(x)$ covers $\Omega_{1}(T / J)$. Since $H / J \cong S z(q)$ and $x \in N(Z)-H, C(x)$ covers H / J (as $C(x)$ covers $\left.\Omega_{1}(T / J)\right)$. By Lemma $2, C_{J}(x)=1$ which contradicts $\left|C_{E}(x)\right| \geqslant q$. Wc have shown that $C(y) \subseteq N(Z)$ as required.

5. Fusion of Involutions

For the rest of the paper, we assume that Z is not weakly closed in H with respect to G. In order to complete the proof of the theorem we have to show, therefore, that $G \cong{ }^{2} F_{4}(q)$ under this assumption.

Lemma 5. We have that $D=C_{H}\left(\alpha_{10}(1)\right)$ is a Sylow 2-subgroup of $C_{G}\left(\alpha_{10}(1)\right)$ and so $\alpha_{i v}(1) \not \chi_{G} z$ for all $: \in Z$.

Proof. From Sec. $2, L_{i}(D)=Z, i=4$ or 5 , and so Z char D. The result now follows from Sylow's theorem and our assumption that $C(z)=H$ for all $z \in Z^{f}$.

Lemma 6. If $C_{H}\left(\alpha_{7}(1)\right)$ is not a Sylow 2-subgroup of $C_{G}\left(\alpha_{7}(1)\right)$ then $\alpha_{11}(1) \sim_{G} z$ for some $z \in Z^{*}$.

Proof. Suppose $C_{H}\left(\alpha_{7}(1)\right)=C_{T}\left(\alpha_{7}(1)\right)$ is not a Sylow 2-subgroup of $C_{G}\left(\alpha_{7}(1)\right)$. By Sylow's theorem there exists a 2-element $b \in N\left(C_{H}\left(\alpha_{7}\right)\right)$) with $b^{2} \in C_{H}\left(\alpha_{7}(1)\right)$ but $b \in C\left(\alpha_{7}(1)\right)-C_{H}\left(\alpha_{7}(1)\right)$. Clearly b normalizes the subgroup $U_{11} \times V_{7}=Z\left(C_{H}\left(\alpha_{7}(1)\right)\right)$. Recall that all involutions in $U_{11}-Z$ are conjugate to $\alpha_{11}(1)$ in H and all involutions in $U_{11} \times V_{7}-U_{11}$ are conjugate to $\alpha_{7}(1)$ in H. If the lemma is false, $Z^{b} \cap U_{11}=1$ (note that $Z^{b} \cap Z=1$; otherwise, $b \in N\left(Z^{b} \cap Z\right)$ and $\left.C_{Z}(b) \neq 1\right)$. Thus, b normalizes $Z \cup\left(U_{11} \times V_{7}-U_{11}\right)$ and also $U_{11}-Z$, whence b normalizes

$$
\left\langle U_{11}-Z\right\rangle=U_{11}
$$

which is impossible.
Lemma 7. If some involution $z \in Z$ is conjugate to an involution $y \in T-J$ (in G) then $\alpha_{11}(1) \sim_{G} z^{\prime}$ for some $z^{\prime} \in Z^{*}$.

Proof. Without loss we take $y=\alpha_{2}(1) \alpha_{12}(t)$ for some $t \in K$. Then $C_{H}(y)=C_{T}(y)$ has order q^{8} and $W=\Omega_{1}\left(C_{H}(y)\right)=U_{10} \times V_{7} \times V_{2}$ is elementary of order q^{5}. Under the assumption $y \sim_{G} z$ for some $z \in Z$, there exists a 2-element $v \in C(y) \cap N_{H}(C(y))$ with $v^{2} \in C_{H}(y)$ but $v \notin C_{H}(y)$. Clearly $v \in N(W)-H$. If v normalizes $U_{10} \times V_{7}-U_{10}$ then v normalizes $\left\langle U_{10} \times V_{7}-U_{10}\right\rangle=U_{10} \times V_{7}=C_{J}(y) \cap W$. Thus, $v \in N\left(U_{10}\right)$. Now $Z^{v} \cap Z=1$ (as above) and $Z^{v} \subseteq U_{11}-Z$ by Lemma 5 and the fact that all involutions in $U_{10}-U_{11}$ are conjugate to $\alpha_{10}(1)$ in H. In this case $\alpha_{11}(1) \sim_{G} z$ for all $z \in Z^{*}$.

On the other hand, if v does not normalize $U_{10} \times V_{7}-U_{10}, \alpha_{7}(1)$ must be conjugate to an involution in U_{10} and/or an involution in $W-W \cap J=$ $W-\left(U_{10} \times V_{7}\right)$. This forces that $C_{H}\left(\alpha_{7}(1)\right)$ is not a Sylow 2-subgroup of $C\left(\alpha_{7}(1)\right)$ for if $\alpha_{7}(1) \sim_{G} e, e \in U_{10}$ then $\left|C_{H}(e)\right| \geqslant q^{10}$, while if $\alpha_{7}(1) \sim_{G} h$,
$h \in W-W \cap J$ then $\left|C_{H}(h)\right|=\left|C_{H}\left(\alpha_{7}(1)\right)\right|=q^{8}$ but $C_{H}\left(\alpha_{7}(1)\right) \nsubseteq C_{H}(h)$ (see Section 2). Lemma 6 gives the desired result in this case.

Lemma 8. We have that $\alpha_{11}(1) \sim \alpha_{12}(t)$ for all $t \in \mathbb{K}^{*}$. In fact, all involutions in U_{11} are conjugate in $M=N\left(U_{11}\right)$.

Proof. Under the assumption that Z is not weakly closed in H with respect to G, there exists $z \in Z^{*}$ with z conjugate 0 (at least) one of $\alpha_{11}(1)$, $\alpha_{7}(1), \alpha_{2}(1) \alpha_{12}(t), t \in K$ (using Lemma 5). It follows immediately from Lemmas 6 and 7 that $\alpha_{11}(1) \sim_{G} z^{\prime}$ for some $z^{\prime} \in Z$. Thus $C=C\left(\alpha_{11}(1)\right)$ is not a Sylow 2-subgroup of $C\left(\alpha_{11}(1)\right)$. Choose $c \in C\left(\alpha_{11}(1)\right) \cap N(C)-C$ with c a 2 -element such that $c^{2} \in C$. Then $Z^{c} \cap Z=1$ and so $Z^{c} \subseteq U_{11}-Z$ as $Z(C)=U_{11}$ must be normalized by c. The lemma now follows from the fact that all involutions in $U_{11}-Z$ are conjugate in $N_{H}(T)=N_{H}(C)=$ $N_{H}\left(U_{11}\right)$ 。

Lemma 9. When $q=2, N(Z)=H$ while if $q>2,|N(Z): H|=q-1$. In particular, $N(Z)=J \cdot L$ with $J \cap L=1, L=Q_{2} \times S_{2}$ where Q_{2} is cyclic of order $q-1$ and $S_{2} \cong S z(q)$. Further, $C\left(Q_{2}\right) \cap N(Z)=L$ and $B=N_{G}(T)=T \cdot Q_{0}$ is of order $q^{12}(q-1)^{2}$, where Q_{0} is the direct product of two cyclic groups of order $q-1$.

Proof. By Lemma 8, all involutions of Z are conjugate in G. Thus, all involutions of Z are conjugate in $B=N_{G}(T) \subseteq N_{G}(Z)$ by a result of Burnside [3, p. 240]. Since $C_{G}(z)=H$ for all $z \in Z^{*},|N(Z): H|=q-1(=1$ when $q=2$).

We see that U_{11} is the only normal elementary Abelian subgroup of T of order q^{2} which implies that $U_{11} \triangleleft B$. By the Frattini argument, $N(T)=B$ covers $N(Z) / H$ and so $|B|=q^{12}(q-1)^{2}$ as obviously $B \subseteq N(Z)$. It is clear that B is soluble, so we may choose a complement Q_{0} of T with $Q_{0} \cap H=Q$.

Since Q_{0} normalizes $\left[U_{11}, Q\right]=V_{11}$ there exists $t \in K^{*}$ such that $C\left(\alpha_{11}(t)\right)$ covers Q_{0} / Q. It follows that $Q_{1}=C_{Q_{v}}\left(\alpha_{11}(t)\right)$ is cyclic of order $q-1$ as $C_{G}\left(\alpha_{11}(t)\right) \cong H$. From Lemma 8, we see that $\alpha_{11}(t)=z^{x}$ for some $x \in M=$ $N\left(U_{11}\right)$ and $z \in Z^{*}$. Thus, T^{x} is the normal Sylow 2-subgroup of $C_{M}\left(\alpha_{11}(t)\right)$. In particular, Q_{1} normalizes T^{x} and, therefore, centralizes $Z\left(T^{x}\right)$. Now $U_{11}=C_{U_{11}}\left(Q_{1}\right) \times\left[U_{11}, Q_{1}\right]=Z\left(T^{x}\right) \times Z$ which implies $C\left(Q_{1}\right) \cap U_{11}=V_{11}$ as Q_{1} normalizes V_{11}. Hence, $Q_{1} \triangleleft Q_{0}$ as Q_{0} normalizes V_{11}, and so $Q_{0}=Q_{1} \times Q$.

We have that Q_{1} normalizes $H / J \cong S z(q)$ and centralizes $Q J / J$, a Hall subgroup of H / J. It follows that $\left[Q_{1}, H\right] \subseteq J$ and so $N(Z) / J=H / J \times Q_{2} J / J$, where Q_{2} is a complement of Q in Q_{0}. The Frattini argument yields that $N\left(Q_{2}\right)$
covers H / J, whence $C\left(Q_{2}\right)$ covers H / J. From Lemma 2, we see that $C_{J}\left(Q_{2}\right)=1$, whence $C\left(Q_{2}\right) \cap N(Z) / Q_{2} \cong S \approx(q)$. Clearly

$$
C_{H}\left(Q_{2}\right)=S_{2} \triangleleft C\left(Q_{2}\right) \cap N(Z)
$$

and so $C_{N(Z)}\left(Q_{2}\right)=Q_{2} \times S_{2}$, where $S_{2} \simeq S z(q)$.
Lemma 10. We have the following fusion of involutions in G :

$$
\alpha_{11}(1) \sim \alpha_{12}(t) \sim \alpha_{2}(1) \alpha_{12}\left(t_{0}\right), \text { for all } t \in K^{*} \text { and some }
$$

fixed $t_{0} \in K$;

$$
\alpha_{10}(1) \sim \alpha_{7}(1) \sim \alpha_{2}(1) \alpha_{12}(u), \text { for all } u \in K-\left\{t_{0}\right\} .
$$

Proof. Recall from Section 2 that $\left\langle\omega_{1}, V_{5}\right\rangle$ is a Sylow 2-subgroup of $N_{H}(Q)$. Further, $\Omega_{1}\left(\left\langle\omega_{1}, V_{5}\right\rangle\right)=\left\langle\omega_{1}, Z\right\rangle$ is elementary of order $2 q$. Now Q_{2} normalizes $N_{H}(Q)$ and so Q_{2} centralizes an involution $\omega_{1} \alpha_{12}\left(t^{\prime}\right)$ for some $t^{\prime} \in K$, and acts transitively on the other $q-1$ involutions in $\left\langle\omega_{1}, Z\right\rangle-Z$. Since $\omega_{1} \sim_{s} \alpha_{2}(1),\left\langle\alpha_{2}(1), Z\right\rangle-Z$ also possesses two classes of involutions in $N(Z)$; i.e., for some fixed $t_{n} \in K, \alpha_{2}(1) \alpha_{12}\left(t_{0}\right) \not \chi_{N(Z)} \alpha_{2}(1) \alpha_{12}(t)$ for all $t \in K-\left\{t_{0}\right\}$, but the $q-1$ involutions $\alpha_{2}(1) \alpha_{12}(t), t \in K-\left\{t_{0}\right\}$ are conjugate in $N(Z)$.

A computation yields $\Omega_{1}(C)-\left\langle F, \alpha_{2}(t), \alpha_{8}(t), \alpha_{6}(t) \alpha_{5}\left(t^{26}\right) \mid t \in K\right\rangle$ is of order q^{8} (where $F=L_{3}(C)=U_{9} \times V_{7}$, so $\left.F \triangleleft M\right), Z\left(\Omega_{1}(C)\right)=U_{10}$ and $\Omega_{1}(C \cap J)=\langle E, F\rangle$ is of order q^{6}. In $N_{M}(Z)$ there are precisely 5 conjugate classes of involutions in F with representatives:

$$
\begin{aligned}
\alpha_{12}(1) & \in Z \\
\alpha_{11}(1) & \in U_{11}-Z \\
\alpha_{10}(1) & \in U_{10}-U_{11} \\
\alpha_{9}(1) & \in U_{9}-U_{10} \\
\alpha_{7}(1) & \in F-U_{9} .
\end{aligned}
$$

Also in $N_{M}(Z)$ there are precisely two conjugacy classes of (nontrivial) cosets of F in $\Omega_{1}(C)$ which contain involutions. They have representatives $\alpha_{8}(1) F$ and $\alpha_{2}(1) F$. The coset $\alpha_{8}(1) F$ contains q^{3} involutions conjugate to $\alpha_{11}(1)$ in H with representative $\alpha_{8}(1)$ and $(q-1) q^{3}$ involutions conjugate to $\alpha_{10}(1)$ in H with representative $\alpha_{8}(1) \alpha_{9}(1)$. The coset $\alpha_{2}(1) F$ contains q^{3} involutions conjugate to $\alpha_{2}(1) \alpha_{12}\left(t_{0}\right)$ and $q^{3}(q-1)$ involutions conjugate to $\alpha_{2}(1) \alpha_{12}\left(t_{1}\right)$, where $t_{1} \in K-\left\{t_{0}\right\}$.

All that remains to be shown is that $\alpha_{9}(1) \sim_{M} \alpha_{7}(1)$ and $\alpha_{2}(1) F \sim_{M} \alpha_{8}(1) F$. This follows because:
(a) $Z \nrightarrow M$ but $U_{10} \triangleleft M$,
(b) for any $e \in U_{9}-U_{10},\left(C(e) \cap \Omega_{1}(C)\right)^{\prime}=Z$,
(c) for any involution $e \in\left\{\alpha_{3}(t) F \mid t \in K^{*}\right\}$ (i.e., $\left.e \in E-F\right)$,

$$
\left(C(e) \cap \Omega_{1}(C)\right)^{\prime}=Z
$$

Lemma 12. We have $M / C \cong G L(2, q)$ and

$$
C_{M}\left(\alpha_{10}(1)\right) / C_{C}\left(\alpha_{10}(1)\right) \cong S L(2, q) .
$$

Further, all involutions in $M-C$ are conjugate to $\alpha_{10}(1)$ in G.
Proof. We know that $T=C V_{3}$ is a Sylow 2 -subgroup of M and so T / C_{8} a Sylow 2 -subgroup of M / C, is elementary Abelian of order q. A simple computation shows that all involutions in $T-C$ lie in $J-C$. Therefore, all involutions in $T-C$ are conjugate to $\alpha_{7}(1)$ in H and to $\alpha_{10}(1)$ in G (by Lemma 11).

All involutions in U_{11} are conjugate in M, so

$$
|M|=|H \cap M| \cdot\left(q^{2}-1\right)=q^{12} \cdot(q-1)^{2}
$$

and

$$
|M / C|=q \cdot(q-1)^{2}(q+1) .
$$

If $x \in T-C, C(x) \cap U_{11}=Z$, which means that if T_{1} is any other Sylow 2-subgroup of M besides $T, T_{1} \cap T=C$ (using the fact that $N_{M}(Z)=N_{M}(T)$). Thus, M / C is a T.I. group with Abelian Sylow 2-subgroups.

If $q=2,|M / C|=6$, whence $M / C \cong S L(2,2)=G L(2,2)$, and as $\alpha_{10}(1)$ has precisely four conjugates in $M, C_{M}\left(\alpha_{10}(1)\right)$ covers M / C. The lemma is proved in this case.
In the case $q>2$, Suzuki's result [9] yields that M possesses normal subgroups L_{1}, L_{2} with $M \triangleright L_{1} \triangleright L_{2} \triangleleft C,\left|M: L_{1}\right|,\left|L_{2}: C\right|$ odd and $L_{2} / L_{1} \cong S L(2, q)$. However, as $Q_{0}=Q \times Q_{1}, M / L_{2} \cong S L(2, q)$ and so by Gaschutz' theorem [5, Satz I.17.4], $M / C \cong G L(2, q)$. Finally, $\alpha_{10}(1)$ has $q^{3}-q^{2}=q^{2}(q-1)$ conjugates in M and $\left|C: C_{C}\left(\alpha_{10}(1)\right)\right|=q^{2}$ so

$$
\left|C_{M}\left(\alpha_{10}(1)\right): C_{C}\left(\alpha_{10}(1)\right)\right|=q(q-1)(q+1) .
$$

The structure of $G L(2, q)$ yields immediately that

$$
C_{M}\left(\alpha_{10}(1)\right) / C_{C}\left(\alpha_{10}(1)\right) \cong S L(2, q) .
$$

Lemma 13. We have $C\left(\alpha_{10}(1)\right) \subseteq M$.

Proof. Put $X=C_{G}\left(\alpha_{10}(1)\right), Y=C_{M}\left(\alpha_{10}(1)\right)$ and recall that $D=C_{H}\left(\alpha_{10}(1)\right)$ is a Sylow 2 -subgroup of X.

Suppose that $w^{x} \in Y$ for some $w \in U_{11}$ and $x \in X$. We claim that $w^{x} \in U_{11}$. If not, $w w^{x} \in Y \cap C-F$, and so w^{x} is conjugate to an involution in $\alpha_{8}(1) F$. However, for any $f \in C_{F}\left(\alpha_{8}(1)\right)$, an easy computation yields $L_{3}\left(C_{D}\left(\alpha_{8}(1) f\right)\right)=Z$. Thus, $C_{D}\left(\alpha_{8}(1) f\right)$ is a Sylow 2 -subgroup of $C_{X}\left(\alpha_{8}(1) f\right)$, whence $\alpha_{8}(1) f$ can not be conjugate to any involution in $U_{11}\left(\right.$ as $\left.C_{D}\left(\alpha_{8}(1) f\right) \subset D\right)$. We have $w w^{x} \in U_{11}$ as required.

For any $w \in U_{11}^{*}, C_{X}(w) \subseteq Y$. This is clear because all involutions in U_{11} are conjugate in Y and for any $z \in Z^{*}, C_{X}(z)=C_{H}\left(\alpha_{10}(1)\right)=D \subseteq Y$.
Finally we show that for any $w \in U_{11}, C_{X}\left(\alpha_{3}(1) w\right) \subseteq Y$. It is enough to consider $w \in Z$ since $C\left(\alpha_{3}(1)\right) \cap U_{11}=\delta^{1}\left(\left\langle\alpha_{3}(1), U_{11}\right\rangle\right)=Z$. Put $y=\alpha_{3}(1) z$ for any $z \in Z$. Since $Y / Y \cap C \cong S L(2, q)$,

$$
C_{Y}(y)=C_{D}(y)=\left\langle Z, V_{10}, V_{9}, V_{8}, V_{3}\right\rangle
$$

is elcmentary Abelian of order q^{5}. From the fact that U_{11} is weakly closed in Y with respect to X, it follows that Z is weakly closed in $C_{Y}(y)$ with respect to X. Thus, $N_{X}\left(C_{Y}(y)\right) \subseteq N_{X}(Z) \cap C_{Y}(y)=C_{Y}(y)$ which implies (by Sylow) that $C_{Y}(y)$ is a self-normalizing (Abelian) Sylow 2 -subgroup of $C_{X}(y)$. An application of Burnside's transfer theorem yields that $C_{X}(y)$ possesses a normal 2 -complement R. We act on R with the four group $\left\langle\alpha_{12}(1), \alpha_{8}(1)\right\rangle$, all of whose involutions are conjugate to $\alpha_{12}(1)$. Clearly $C_{R}\left(\alpha_{12}(1)\right)=1$, so if $R \neq 1$ we may assume without loss that $C_{R}\left(\alpha_{8}(1)\right) \neq 1$. Thus, $\alpha_{12}(1)$ inverts an element of odd order in $C_{G}\left(\alpha_{8}(1)\right)$. However,

$$
\left|H \cap C_{G}\left(\alpha_{8}(1)\right)\right|=q^{11}
$$

which forces $\alpha_{12}(1) \in O_{2}\left(C\left(\alpha_{8}(1)\right)\right)$ as $C\left(\alpha_{8}(1)\right) \sim_{G} H$. This gives a contradiction to $R \neq 1$ and we conclude that $C_{X}(y) \subseteq Y$.

The conditions of Proposition 2 are satisfied (with $Y=U_{11}, w=\alpha_{3}(1)$, $W=Y$ and $X=X$) and we conclude, therefore, that $U_{11} \triangleleft X$; i.e., $C\left(\alpha_{10}(1)\right) \subseteq M$.

6. The Identification of G with ${ }^{2} F_{4}(q)$

We divide this section into two parts depending on whether $q>2$ or $q=2$.
Case I. $q>2$
Put $N=N\left(Q_{0}\right)$ and recall $B=N(T)=T \cdot Q_{0}$. From the proof of Lemma 10, $C\left(Q_{2}\right) \cap N_{H}(Q)=Q\left\langle\omega_{1} \alpha_{12}\left(t^{\prime}\right)\right\rangle$ for some $t^{\prime} \in K$. We put $\omega-\omega_{1} \alpha_{12}\left(t^{\prime}\right)$ and have $N_{N(z)}\left(Q_{0}\right)=Q_{0}\langle\omega\rangle$. Further, $C_{c}\left(Q_{0}\right)=1$, so

Lemma 12 shows that $N_{M}\left(Q_{0}\right)=Q_{0}\langle v\rangle$ where v is an involution in $M-T$. We can now state the following.

Lemma 14. The group Q_{0} is self-centralizing in G and $N=N\left(Q_{0}\right)=$ $Q_{0}\langle v, \omega\rangle$, where $\langle v, \omega\rangle \cong D_{16}$, the dihedral group of order 16 .

Proof. We show first that $C\left(Q_{0}\right)=Q_{0}$. From Lemma 9, $C_{N(z)}\left(Q_{2}\right)=$ $Q_{2} \times S_{2}$, where $S_{2} \cong S z(q)$. The proof of Lemma 10 shows that $\omega \sim_{G} \alpha_{12}(1)$ and so $Q_{2} \sim_{C} Q$ as $\omega \in C\left(Q_{2}\right)$. Thus, $C(Q) \supset C_{N(Z)}(Q)=Q_{0} V_{\check{z}}$. Since $C(z) \cap C(Q)=Q \times V_{5}$ for all $\approx \in Z^{*}, C(Q)$ must be a T. \mathcal{I}. group. Applying Suzuki's result [9] and using the fact that $N(\mathbb{Z}) \cap C(Q)=Q_{0} V_{5}$ we get $C(Q) / Q \cong S z(q)$. Hence, $C(Q)=Q \times S_{1}, S_{1} \cong S z(q)$ as $Q \sim_{G} Q_{2}$. The structure of $S_{1} \cong S z(q)$ yields immediately that $C\left(Q_{0}\right)=Q_{0}$.

Our remarks above give us $N=N\left(Q_{0}\right) \supseteq Q_{0}\langle v, \omega\rangle$. Lemma 12 implies $v \sim_{G} \alpha_{10}(1)$ and as $\omega \sim_{G} \alpha_{12}(1),\langle v \omega\rangle$ has even order and therefore possesses a unique involution i. Further, $C_{Q_{0}}(c) \cong\left[v, Q_{0}\right] \cong Q$ and we know i normalizes $C_{Q_{0}}(v)$. If i centralizes $C_{Q_{0}}(v), v \sim_{G} i \sim_{G} \alpha_{10}(1)$ as $C_{H}(Q)=Q \times V_{5}$. On the other hand, if $\left[i, C_{O_{0}}(v)\right] \neq 1, i$ inverts an element of odd order in $C_{G}(v)$. In particular $i \notin O_{2}(C(v))$ which implies, by Lemmas 12, 13, that $i \sim_{G} \alpha_{10}(1)$. Since ω normalizes $C_{O_{0}}(i)$, the same argument yields that $C_{O_{0}}(i)=1$, as we have proved $i \sim_{G} \alpha_{10}(1)$.

As $C\left(Q_{0}\right)=Q_{0}$ and $C_{Q_{0}}(i)=1, N\left(Q_{0}\right)=N=Q_{0} \cdot C_{N}(i)$. Since $C_{Q_{0}}(\omega)=$ $Q_{2} \triangleleft C_{N}(\omega), Q \sim_{G} Q_{2}$ and $N(Q)=\left(Q \times S_{1}\right)\langle\omega\rangle$, we have that $C_{N}(\omega)=$ $\langle i, \omega\rangle \cdot Q_{2}$. Now $i \sim_{G} \alpha_{10}(1)$ so by Lemma 12, $13 \omega \in O_{2}(C(i))$, whence $\mathrm{O}_{2}\left(C_{N}(i)\right)$ is a 2-group of maximal class. Thus, $C_{N}(i)$ is a 2-group of maximal class and as $v \nsim \omega, C_{N}(i)$ is dihedral. Further, $\Omega_{1}(T)$ does not contain elements of order 16 , so $C_{N}(i)$ is dihedral of order 8,16 . The proof of the Lemma is completed by showing $\langle v, \omega\rangle \cong D_{16}$.

It is enough to show that $(v \omega)^{4} \neq 1$. Since $v \in M-N(Z), \alpha_{12}(1)^{v}=$ $\alpha_{11}(i) \alpha_{12}(u)$ for some $t, u \in K$ while $\left(\alpha_{8}(t) \alpha_{12}(u)\right)^{v}=\alpha_{2}\left(t_{1}\right) j$ for some $t_{1} \in K$, $j \in J$. Thus, $\left(\alpha_{2}\left(t_{1}\right) j\right)^{(\omega \omega)^{3} v}=\alpha_{2}\left(t_{1} j\right)$ which implies $(v \omega)^{4} \neq 1$ as $\omega \in H-T$ while $C_{H}\left(\alpha_{2}\left(t_{1}\right) j\right) \subseteq T$. The lemma is proved.

Next we derive some results about the action of z on C. By definition, $v \in N \cap M-N(Z)$. Thus, $Q^{v} \times Q=Q_{0}$, and as Q_{0} normalizes $C\left(Q^{v}\right) \cap U_{11}$, $C\left(Q^{v}\right) \cap U_{11}=V_{11}$, i.e., $Z^{v}=V_{11}$. By Lemma 2, $C_{T}\left(Q^{v}\right) \subseteq J$, so $V_{5}^{v}=$ $\left\langle\alpha_{6}\left(t^{2 \theta-2}\right) \alpha_{7}\left(t^{-2 \theta} u\right) \alpha(t, u)\right| t \in K, u$ is some fixed element of K and $\alpha(t, u) \in E$ (here $\alpha(t, u)$ depends on $t, u)\rangle$. (This follows because $V_{5}=C_{Q}(Q)$ so $V_{5}^{v}=$ $C_{C}\left(Q^{v}\right)$ and $V_{\overline{5}}{ }^{v}$ is Q-invariant.) Now

$$
\begin{aligned}
{\left[V_{5}, V_{5}^{v}\right] } & =\left\langle\left[\alpha_{6}\left(t^{2 \theta-2}\right) \alpha_{7}\left(t^{-2 \theta} u\right) \alpha(t, u), \alpha_{5}(v)\right] \mid t, v \in K\right\rangle \\
& =\left\langle\left[\alpha_{6}\left(t^{2 \theta-2}\right) \alpha_{7}\left(t^{-2 \theta} u\right), \alpha_{5}(v)\right] \mid t, v \in K\right\rangle \\
& =\left\{\begin{array}{l}
\left\langle\alpha_{10}(t), \alpha_{11}(t) \mid t \in K\right\rangle \text { if } u \neq 0, \\
\left\langle\alpha_{10}(t) \mid t \in K\right\rangle \text { if } u-0 .
\end{array}\right.
\end{aligned}
$$

However, [$V_{5}{ }^{v}, V_{5}$] is v-invariant which implies $u=0$ and

$$
V_{5}^{v}=\left\langle\alpha_{6}(t) \alpha(t) \mid t \in K, \alpha(t) \in E\right\rangle=V_{6}^{*}
$$

Further, $V_{10}^{o}=V_{10}$, since $u=0$.
From the proof of Lemma 10, $V_{9}{ }^{v}=\left\langle\alpha_{7}(t) \alpha_{0}(t) \mid t \in K, \alpha_{0}(t) \in E \cap F\right\rangle=$ $V_{7}{ }^{*}$. Put $\left(V_{6}^{*}\right)^{\omega}=\left\langle\alpha_{4}(t) \alpha(t)^{\omega} \mid t \in K, \alpha(t)^{\omega} \in E\right\rangle=V_{4}^{*}$. Since

$$
\left[V_{4}^{*}, U_{10}\right]=Z,\left(V_{4}^{*}\right)^{v}=V_{1}^{*}
$$

must cover T / J. Put $\left(V_{7}{ }^{*}\right)^{\omega}=\left\langle\alpha_{3}(t) \alpha_{0}(t)^{\omega} \mid \alpha_{0}(t)^{\omega} \in E, t \in K\right\rangle=V_{3}^{*}$ and note that $T=C V_{3}{ }^{*}$. We have the following table for the action of v, ω on subgroups of T :

Subgroup X	V_{10}	V_{9}	$V_{7}{ }^{*}$	V_{5}	$V_{6}{ }^{*}$	$V_{4}{ }^{*}$	C	J
X^{v}	V_{10}	$V_{7}{ }^{*}$	V_{9}	$V_{6}{ }^{*}$	V_{5}	$V_{1}{ }^{*}$	C	
X^{ω}	V_{9}	V_{10}	$V_{3}{ }^{*}$	V_{5}	$V_{4}{ }^{*}$	$V_{6}{ }^{*}$		J

For each $w \in\langle\omega, w\rangle$ define $l(w)$ to be the minimal length of w as a word in ω, v. (Clearly $l(w) \leqslant 8$ as $(\omega v)^{8}=1$). Using the table and the fact that $B=\left(J Q_{0}\right) V_{1}^{*}=V_{1}^{*}\left(J Q_{0}\right)=V_{3}^{*}\left(C Q_{0}\right)=\left(C Q_{0}\right) V_{3}^{*}$ we have: if $l(v w) \geqslant l(w)$ then $v B w \subset B v w B$ and if $l(\omega w) \geqslant l(w)$ then $\omega B w \subseteq B \omega w B$, for all $w \in\langle\omega, v\rangle$.

Since $N(Z) / Q_{2} \cdot J \cong S z(q), Q_{2} \cdot J \subseteq B$ and $B / Q_{2} \cdot J$ is a Sylow 2-normalizer of $N(Z) / Q_{2} \cdot J, N(Z)=B \cup B \omega B$ (i.e., $S z(q)$ acts doubly transitively on its Sylow 2-subgroups; see [8]). Similarly, we have $M=B \cup B v B$. For if $M_{1} \subseteq B$ so that $M_{1} / C=O(M / C)$ then $M / M_{1} \cong S L(2, q)$ and B / M_{1} is a Sylow 2-normalizer of M / M_{1} (and again, $S L(2, q)$ acts doubly transitively on its Sylow 2-subgroups; see [8] or [3, p. 41]).

By a result of Tits [11], the above two facts imply that
(a) $s B w \subseteq B w B \cup B s w B$ for each $s \in\{\omega, v\}$ and $w \in\langle\omega, v\rangle$. Clearly, we also have
(b) $s B s \neq B$ for $s \in\{\omega, v\}$.

Next we show G is simple. Suppose $1 \neq G_{2} \triangleleft G$. As $|Z|=q>2, G_{2}$ must be even as $O(I I)=1$. Thus at least one of $\alpha_{10}(1), \alpha_{12}(1) \in G_{2}$. However, $\left[\alpha_{7}(1), \alpha_{8}(1) \alpha_{9}(1)\right]=\alpha_{12}(1)$ and

$$
\left[\alpha_{2}(1) \alpha_{12}\left(t_{0}\right), \alpha_{8}(1)\right]-\alpha_{10}(1) \alpha_{11}(1) \alpha_{12}(1) \sim_{H} \alpha_{10}(1)
$$

so G_{2} contains both $\alpha_{10}(1)$ and $\alpha_{12}(1)$. In particular, $H \subseteq G_{2}$ and $M^{\prime} \subseteq G_{2}$, where $\left|M: M^{\prime}\right|=q-1$ and $M^{\prime} / C \cong S L(2, q)$. But $Q \subseteq M-M^{\prime}$ and $Q \subseteq H$ so $G_{2} \supseteq\langle N(\mathcal{Z}), M\rangle$ whence $G_{2}=G$ by the Frattini argument applied to the Sylow 2-subgroup T. We have
(c) G is a simple group.

Put $G_{1}=\langle B, N\rangle=\left\langle T, Q_{0}, v, \omega\right\rangle=\langle N(Z), M\rangle$. From Section 5 it is clear that for any pair of involutions $x, y \in T$ with $x \sim_{G} y$ then $x \sim_{G_{1}} y$. Since $H \subseteq G_{1}$ and $C\left(\alpha_{10}(1)\right) \subseteq M \subseteq G_{1}$ it follows that $C(x) \subseteq G_{1}$ for each involution $x \in T$. Clearly T is a Sylow 2 -subgroup of G_{I} so G_{1} contains the centralizer of each of its involutions. If $G_{1} \subset G, G_{1}$ would be "strongly embedded in G " and G would have one class of involutions, see [3, p. 306]. This is not the case so we get
(d) $G=\langle B, N\rangle$.

As the statements (a) and (b) above remain valid if we replace each element $x \in\langle\omega, v\rangle$ by $\bar{x}=x(B \cap N)$, Lemma 14, (a), (b), (c), (d) imply the following.

Lemma 15. The group G is a finite simple group with a (B, N)-pair of rank 2 such that $N=N\left(Q_{0}\right)$ and $B=Q_{0} T=(B \cap N) T$.

We remark that the term "rank 2 " refers to the fact that $N / B \cap N=N / Q_{0}$ is generated by two involutions.

It follows immediately from Lemma 15 and Theorem B of Fong and Seitz [1] that $G \cong{ }^{2} F_{4}(q)$.

Case II. $q=2$
Levima 16. Let $T^{*}=\left\langle M^{\prime} \cap T, \alpha_{3}(1)\right\rangle$, a subgroup of index 2 in T. Then for any element $x \in T^{*}, x$ of order four, we have that $x \chi_{G} \alpha_{5}(1)$.

Proof. A simple computation gives $C^{\prime}=\Omega_{1}(C)=\left\langle U_{7}, \alpha_{2}(1), \alpha_{5}(1) \alpha_{6}(1)\right\rangle$ is of order 2^{8}. Further, $\left[\alpha_{3}(1), \alpha_{1}(1)\right]=\alpha_{4}(1) \alpha_{5}(1) c^{\prime}, c^{\prime} \in C^{\prime}$, and so $\alpha_{4}(1) \alpha_{5}(1) \in M^{\prime}$. The factor group M / C is a faithful extension of an elementary group of order 8 by $S L(2,2) \cong D_{6}$. If P is a Sylow 3-subgroup of M, P fixes the coset $\alpha_{5}(1) C^{\prime}$ (because $\left\langle\alpha_{5}(1), C^{\prime}\right\rangle \mid F$ is the only elementary subgroup of C / F of order 16). Thus, $\left|M: M^{\prime}\right|=4$ with $\alpha_{5}(1) \notin M^{\prime}$. Put

$$
T^{*}=\left\langle M^{\prime} \cap T, \alpha_{3}(1)\right\rangle
$$

so $\left|T: T^{*}\right|=2$ and $\alpha_{5}(1) \notin T^{*}$.
Let x be an element of order four in T^{*}. Suppose $x \sim_{G} \alpha_{5}(1)$, so $x^{2} \sim_{G} \alpha_{12}(1)$. Since all cosets in $M^{\prime} \cap T / C^{\prime}$ are conjugate to $\alpha_{4}(1) \alpha_{5}(1) C^{\prime}$ and if y is an element of ordcr four in $\alpha_{4}(1) \alpha_{5}(1) C^{\prime}$ then $y^{2} \sim_{G} \alpha_{10}(1)$, we
have $x \notin M^{\prime} \cap T-C^{\prime}$. We next consider $x \in T^{*}-C \cap T^{*}$. If $x \in J$ and $x E$ contains involutions, $x^{2}=\alpha_{12}(1)$ so $x \chi_{T} \alpha_{5}(1)$, whence $x \not \chi_{G} \alpha_{5}(1)$ (as $\left.\alpha_{5}(1) E \triangleleft H\right)$. On the other hand, if $x E$ does not contain involutions (and $x \in J), x^{2} \sim_{G} \alpha_{10}(1)$ as $x E \sim_{H} \alpha_{5}(1) \alpha_{6}(1) E$. In the case $x \notin J$, as $x E=\alpha_{3}(1) c E$ for some $c \in C \cap T^{*}-J$, a simple computation shows $(x E)^{2}=x^{2} E=j E$ for some $j \in J$, whence $x^{2} \sim_{H} \alpha_{7}(1) \sim_{G} \alpha_{10}(1)$.

Finally we consider the case when $x \in C^{\prime}-F$. If $x F$ does not contain involutions, $x^{2} \sim_{G} \alpha_{10}(1)$. When $x F$ does contain involutions, $x F \sim_{M} \alpha_{8}(1) F$. But all elements of order four in $\alpha_{8}(1) F$ lie in $\alpha_{7}(1) E$ and so have square $\alpha_{12}(1)$. Thus, $x \not \chi_{G} \alpha_{5}(1)$ in this case as $\alpha_{7}(1) E \not \chi_{H} \alpha_{5}(1) E$. The lemma is proved.

Lemma 17. The group G possesses a normal subgroup G^{*} of index 2 with $G^{*} \cong \mathscr{T}$, the Tits simple group.

Proof. It is easily seen that $T-T^{*}$ possesses no involutions and so $\alpha_{5}(1)$ is an element of minimal order in $T-T^{*}$. Thus, Lemma 16 and Harada's transfer lemma [4, Lemma 16] yield that G possesses a subgroup G^{*} of index 2 with $\alpha_{5}(1) \in G-G^{*}$. Now $C_{G^{*}}\left(\alpha_{12}(1)\right)=H \cap G^{*}=H^{*}$ is a faithful extension of a 2-group $J^{*}=J \cap H^{*}$ of order 2^{θ} and class 3 by a Frobenius group of order 20. Further, if P^{*} is a Sylow 5-subgroup of H^{*},

$$
C_{J^{*}}\left(P^{*}\right)=Z\left(H^{*}\right)=\left\langle\alpha_{12}(1)\right\rangle .
$$

Finally, $\left\langle\alpha_{12}(1)\right\rangle$ is not weakly closed in T^{*} with respect to G^{*} which implies $G^{*} \neq H^{*} O\left(G^{*}\right)$. It follows immediately from the author's result [6] that $G^{*} \cong \mathscr{T}$.

We conclude that $G \cong{ }^{2} F_{4}(2)$ by using an unpublished result of J. Tits that Aut $\mathscr{T} \cong{ }^{2} F_{4}(2)$, as clearly $G \subseteq$ Aut G^{*}. This completes the proof of the theorem.

References

1. P. Fong and G. Seitz, Groups with a (B, N)-pair of Rank 2, to appear.
2. G. Glauberman, Central elements in core-free groups, J. Algebra 4 (1966), 403-420.
3. D. Gorenstein, "Finite Groups," Harper and Row, New York, 1968.
4. K. Harada, Finite simple groups with short chains of subgroups, J. Math. Sac. Japan 20 (1968), 655-672.
5. B. Huppert, "Endliche Gruppen," Vol. I, Springer-Verlag, Berlin/Heidelberg/ New York, 1967.
6. D. Parrott, A characterization of the Tits' simple group, Canad. J. Math. 24 (1972), 672-685.
7. R. Ree, A family of simple groups associated with the simple Lie algebra of type (F_{q}), Amer. J. Math. 83 (1961), 401-420.
8. M. Suzuki, On a class of doubly transitive groups, I, Amn. Math. 15 (1962), 105-145.
9. M. Suzuki, Finite groups of even order in which Sylow 2 -subgroups are indem pendent, Ann. Math. 80 (1964), 58-77.
10. M. Suzukr, Characterizations of linear groups, Bull. Aweer. Math. Soc. 75 (1969), 1043-1091.
11. J. Tits, Théorème de Bruhat et sous-groupes paraboliques, C. R. Acad. $S c i$. Paris 254 (1962), 2910-2912.
12. J. Tits, Algebraic and abstract simple groups, Ann. Math. 80 (1964), 313-329.
