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1. INTRODUCTION 

ee groups “F&q> are the fixed points of a certain automorphism of the 
Chevalley groups of type F4 over a finite field K = GF(q), where q = lP+I, 
n 3 0. Ree [7] showed that the groups 2F,(q) are simple if q > 2, while 
Tits [12] showed that zFg(2) is not simple but possesses a simple subgroup F 
of index 2. 

In this paper, we give a characterization of the Ree groups in terms of the 
centralizers of involutions in the center of a Sylow Zsubgroup. Namely, if 
N(q) denotes the centralizer of each involution in the centre of a Sylow Z&sub- 
group of 2F,(q), we have the following. 

THEOREM. Let G be a jirzite group which possesses a subgroup Hz H(q) so 
that for every involution x E Z(H) we have H = CG(x). Then one of the f~~lg~~~~ 
~ossib~l~t~es holds: 

(i) G z zFd(q), q = 22n+1, n 3 0. 

(ii) q = 2 and G = H * O(G). 

(iii) q > 2 and Z(H) CI G (with 1 G : H / 1 q - I). 

The notation of this paper will follow [3], and we will follow [7] in regard 
to the structure of 2F,(q). In particular, if XI , X, are subsets of a finite group 
x, x1 NX x2 means XI = x1X,x = X2x for some x E X, while L,(X) is 
defined by L,(X) = X and L,(X) = [X, L,-,(X)] for each IZ 3 2. 

2. THE STRUCTURE OF N g H(q) 

Since we will only consider the structure of N(q) and not that of aF,(q), we 
will identify H with H(q). 

Let R = GF(q) be a finite field of characteristic 2 and order q = 29?L+iY 
n > 0. Further, let K* denote the multiplicative group of K. As is well 
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known, K admits and automorphism 0 such that 28” = 1. In [7], Ree gives 
generators ai( i = l,..., 12, t E K, for a Sylow 2-subgroup T = T(q) of 
“F&J). He also shows Z(T) = (olra(t)j t E K) is elementary of order q. Using 
the definition of the ai and the commutator relations for the Chevalley 
groups of type F4 (see [7, p. 4041) all commutators [ai( aj(u)] can be com- 
puted. From Ree’s work, it is straightforward to show that H = C2F4,,,(alz(t)) 
is independent of our choice of t E K*. 

Further, in the notation of [7], 

H = CT, 441, -1, ~0)) = ws4’ . wQ4 , ~(x,,~,,~-ze . x~~,~-~)I t E K > 

= CT, ~1, h(t)[ t E K). 

Below we list relations between the generators of H: 

1. For all t, u E K we have: 

(a) ai ai(u) = ai(t + u) = ai(U) ai( i = 2, 3, 7, 8, 9, 10, 11, 12 
al(t)2 = a2(Pfl), [al(t), Ml(U)] = a,(t% + t2.P); 
a4(t)2 = a*(t*~+l), [Olg(t), 01q(u)] = cx,(t”%4 + t2.P); 
c+(t)2 = a12(P+l), [as(t), a&L)] = a12(t’%J + tzP); 
c+(t)2 = all(t’e+l), [as(t), cd&)] = Olll(PU + tzP). 

(b) b&h 441 = [c&h 441 = ll44, 441 
= [%3(t), 441 = (%,(tu); 

[%3(t), 441 = Mt>> ~2641 = %w; 
[a9(t), a&)] = a,,(tzP) a&L’e+l) a12(t%); 

[%3(t), a2(41 = %dW %dU2eo %2(tze4, 
[CL*(t), rxl(U)] = ol,(tu) cx&2e+2t) aIz(t”eU2e+1); 

[I&h 441 = 44~ [%5(f), %WI = %O@)~ 
[f%(t), 441 = 44, Mth 44 = %w; 
[lx,(t), a4(u)] = “lo(U2et) al,(t2eU) a,2(U2e+1t) 

[&), c&l = %(tu2e) %o(f2eU); 
[a&t), a&)] = ol,(tde) a@%) ci12(t”e+1u) 
[%&)T 441 = 4t4; 
[014(t), a2(u)] = o+(tu) ctIl(t2e+1U2e) a12(t2e+2U) 

[a4(t), a&L)] = c&2%) c&P) a&P) a9(t2~+lu) 

,ll(t2e+iU2e+2) ,12(t2e+2U2e+i); 

[a.Jt), a2(u)] = $%4) c&u) c+(tzP) a*(Pflu) a9(t’~+1zP) 
2e+iu2) ,12(t2e+2U2e+i), 

[(x3(t), a&)] = a&) ,5(t”%“~+l) cd,(t24”~+2) a3(t2~+W+l) 
,e(t2e+lu2e+2) ,lo(t2e+1U4e+2) ,ll(t2e+iU4e+3) 

,12(t’~+‘U4~+3). 

All other commutators [ai( q(u)] = 1, i,j = l,..., 12. 
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2. Put h(u) = h(&f ) u1--20 . x34,u-i) for each u E K*. Then 

(h(u)l u E K”) gg K”, 

and for each t E K, u E K* we have the following action of h(u) on T: 
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ai cx&) a&-2~t) OIlo(U2~-‘Q ) a&-%) a,(&) CL,(U-“O?) 

3. Put q = w(w(1, - 1, co)); then wr2 = 3 and for each t E M, 

Further, for each u E K”, Hal = h(u)-l, 

4. s = (4), q , h(u)1 t E K, u E K*) z Sk(q), the Suzuki simple 
group (described in [8]). (This is probably most easily seen by showing that 
the Syiow 2-subgroups of S are T.I. sets and then using Suzuki’s result [S],) 

From these relations, we can describe the structure of H using the follownag 
notation: 

ui = (c%(t), %+1(t),..., qzjtfl t E 0; 

Vi = (ai t E K), i = l,..., 12; 

J = u, = O,(N); 

z = Z(H) = Z(T) = ul, = v,, ; 

E= U,=J’; 

Q = (h(u)l u E K*). 

(Note that T = U, is a Sylow 2-subgroup of M.) 
We have that N is a faithful split extension of the 2-group J of class 3 and 

order qr” by the group S z Sz(q) of order q2(q - l)(p + 1). A Sylow 2-sub- 
group T of H has order q12, NH(T) = T . Q, where Q is cychc of order q - 1 
and Z = Z(T) = Z(H) is elementary of order q. The subgroup E = gl is 
elementary of order q5 with C,(E) = (E, V5) of order q6 and S2,(C(E)) = E. 
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Also 2 = La(J) = [J, J’], Ui 4 T and ViQ = Vi for each i = l,..., 12. 
Note that Vi is elementary abelian for i = 2, 3, 7, 8, 9, 10, 11, 12, but 
Vi g V, g V, E V, are “Suzuki 2-groups” of order q2. 

Some Properties of S g S%(q) (see [S]) 

The groups Sz(q) are simple if q > 2, while Sx(2) is a Frobenius group of 
order 20. A Sylow 2-subgroup V, of S is non-Abelian of order q2, 
sZ,( Vi) = V, = Z( Vi) = Vi’ is elementary of order q with Ns( Vi) = $J . V, . 
For each involution a2(t) E V, , C,(u,(t)) = Vi . The other conjugacy classes 
of maximal local subgroups of S are Frobenius groups of order 
4(q + d& + l), 4(q - 1/z + l), 2(q - 1) (the latter having N,(Q) = 
s(wi) as a representative). If S, _C S then either S, is conjugate to a subgroup 
of one of the maximal subgroups above or S, g Sx(q,), where q1 1 q. Finally, 
each outer automorphism of S is induced by a field automorphism of the 
underlying field K. 

With regard to the action of S on J, we have CJ(S) = Vs (of order q2) 
while if q > 2 S acts indecomposably on both E and J/E. 

The Conjugacy Classes of Involutions in H 

In E - 2 there are two classes of involutions (in H) with representatives 

all(l), alo( Put C = G(d)) = G(41)) and D = G(alo(l)> = 
CT(oli,,(l)). We have C = (Vi 1 i f 3) is of order qll and class 5 
with Z(C) = &(C) = U,, and put F = L&C) = ( VI2 , VI, , V,, , V, , V,) 
so F is elementary Abelian ‘of order q5. Note that F d T. Further, there are 
precisely 2q - I cosets of E in J which contain an element of order four 
whose square is 01ii(l). Similarly, D = (Vi j i f 1,4) is of order 
ql”, Z(D) = 2 x Vi, and L,(D) = 2 if q > 2 while L,(D) = 2 if q = 2. 
Finally, if e E E - U,, we have C,(e) = C,(e) (of order qs) while 
e E E n F - U,, = Us - U,, implies e wu alo(l) and e E U,, - 2 implies 

e -H 41). 
In J - E there is one class of involutions with representative 01~(1) and 

there are precisely (q2 + l)(q - 1) + 1 = q3 - q2 + q cosets of E in J which 
contain involutions. We have that CH(~?(l)) = Cr(o1,(1)) = (Vi 1 i = 
I, 2, 6, 7, 9, 10, 11, 12) is of order q8 and with center (Z, Vi, , V,) elementary 
of order q”. Also, ~n,(C,(ol,(l))) has index q in CT(c+(l)) so that CT(a7(1)) = 

Ql(GMlN . Vl . 
Finally in T - J there are q classes of involutions with representatives 

as(l) a12(t), t E K. For each t E K, CH(+(l) a12(t)) = C,(ol,(l)) = CEI(~a(l)) = 
(Vi 1 i = 1,2, 5, 6,7, 10, 11, 12). Further, Z(C,(ol,(l))) = (2, Vi, , V,) is 
elementary Abelian of order q3 while sZ,(C,(ol,( 1))) = (Vi, , Vi, , Vi,, V, , V,) 
is elementary of order 45. 
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To summarize, we list representatives of the conjugate classes of invo!utions 
in M - Z and some properties of their centralizers: 

Involution x Location 

3. A PRELIMINARY RESULT 

The idea used in the proof of Proposition 2 is due to Suzuki [IO]; the first 
result is well known (see [IO] also). 

PROPOSITION 1. Let w, v be involutions in a &ite group X with (‘zv) of 
even ordeer. If i is the unique involution in (WV) thelz (w, v) C C,(i) and either 

.wi y w and vi ‘;;I v OY wi ‘;;’ v and vi w w. 
x 

PRQPOSITION 2. Let Y be a 2-subgroup of a jkite group X. Su.pose that 
YCWCXso thatforeveryxxXandyEYwithy”EW, wehaveyxEY. 
Further, suppose there is an involution w E W - I7 with C(w,> G W for all' 

w1 E (w, Y)“. Then Y cl X. 

Proof. Note that Y <I W, whence (w, Y) is a group of order 2 j Y I . 
Suppose Y 4 X, so Y # 1. There exists x E X with Y” # Y. If 
I # a E Y” A W, a E Y” n Y so that a centralizes Z(Y”) # I (as Y is a 
2-group), whence Z(Y”) C W by assumption and so Z(Y”) c Y. 
1 # b E Z(Y$ G,(b) Z W so Ylc C W, whence Yz = Y. Thus, P n W = I. 

Let y be an involution in Y and put v = y”, Then a; +x w by assumption 
so (VW) has even order. Let i be unique involution in. (VW). xote that 
i E CZ@) _C W. By Proposition 1, either wi -X v or vi mx v. 

If wz^ hx a, as wi E W, wi E Y, whence i E Yw. By assumption C,(a) c W 
so v E @‘which contradicts v E Y” and Y” n W = 1. 

We may assume, therefore, that vi -x v. Hence, vi E I'" (as i E Cx(v) 6 WE) 
so i E p/m, whence i E W n Y” = 1, a contradiction. The proposition is proved. 
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4. THE CASES (ii) AND (iii) OF THE THEOREM 

For the rest of the paper, we suppose G, H satisfy the hypotheses of the 
theorem. We use the same notation as in Section 2; as well, C(X) and N(X) 
will denote C,(X), N,(X) respectively, for any subset X of G. 

LEMMA 1. A Sylow 2-subgroup T of H is a Sylow 2-subgroup of G. 

Proof. If T is not a Sylow 2-subgroup of G, by Sylow’s theorem there 
exists a 2-group T, with 1 T1 : T / = 2. Let y E T, - T, so y $ H. AS 
Z(T) = 2 char T 4 TI , y E N(Z), whence C,(y) # 1, contradicting our 
assumption. 

LEMMA 2. Let x be an element of oyder p, p an odd prime, with x E N(Z). If 
C(x) n N(Z) coven H/J then C,(x) = 1. 

Proof. By assumption, C(Z) = H. Clearly J = O,(H) 4 N(Z) and 
since H/ Jg Sz;(q), f i x is as in the statement of the lemma, x $ H. If 

E, = C,(x) # 1, as CE(X) 4 Cd x we have 1 E, j 3 q* and so E,, x Z = E. ) 
It follows that E0 contains an element e wH Al,, and so x permutes the 
2q - 1 cosets of E in J which possess an element of order 4 whose square 
ise.AsjN(Z):H]/q--l,pIq-landsoCJIE(X)fl. 

On the other hand, if CJiE,(x) # 1, as C,(x)/E,, 4 C(x)/E,, 1 C,(x)/EO 1 > q4. 
Thus C,(x) contains cosets of E, which contain only elements of order four, 
andsoE,,+l. 

We have proved that if C,(x) # 1 then 1 C,(x)/ 3 q* and E, x Z = E. 
However, C,(E,,) = C.,(E), so [C,(x), EO] f 1. But [C,(x), E,] C [J, E] = Z, 
and, hence, Z n C,(x) # 1 which is a contradiction. The lemma is proved. 

In the rest of this section, we will show that if Z is weakly closed in H with 
respect to G, then G satisfies either conclusion (ii) or (iii) of the Theorem. 

LEMMA 3. If x is an involution in Z and (z) is weakly closed in H with 
respect to G then G = H. O(G), w h eye O(G) = 1 if q > 2. In particular if 
q = 2 and Z is weakly closed in H then G = H . O(G). 

Proof. The first statement follows immediately from Glauberman’s 
theorem [2]. If 2 = 2, Z = (z) is of order 2 and the last statement follows. If 
Q > 2 and O(G) # 1, since Z contains a four group there exists an involution 
z E Z with C(z) n O(G) f 1. But then H n O(G) f 1 which contradicts the 
structure of H. Hence, if p > 2, O(G) = 1 as required. 

The proof of the next lemma uses an idea of Suzuki [lo]. 

LEMMA 4. If q > 2 and Z is weakly closed in H with respect to G then 
ZaG,andsojG:HjIq-1. 
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Proof. Suppose q > 2, Z is weakly closed in M but Z + G. 
for each involution z E Z there exists g E G with z # zQ 

= 14 C N(Z)). As 2 C C(xg) = Hg, it follows that Zg-* C 
bus, N(Z) 3 N and if zg E W for any g E 6, z E Z, we have z? E Z. If we 

show that C(o1.J) I) C N(Z) for each t E K, the assumptions of Proposi- 
tion 2 will be satisfied (with X = G, Y = 2, W = N(Z) and uj = ~~(1)) and 
we can conclude that Z o G. 

Let y = a,(l) a&t) for any t E K, P = C’,(y) a A = C,(y) ~ Note 

that P is a normal Sylow 2-subgroup of CN(a)( y) = n N(Z). Under the 
assumptions of the lemma, we want to prove that A C N(Z). 
way of contradiction and assume Z + A. 

Since Z is weakly closed in H, 2 is weakly closed in P and so P (of order q8) 
is a Sylow 2-subgroup of A. By assumption A contains more than one Sylow 
2-subgroup. Among all Sylow 2-subgroups of A, choose a S 
PI of r% so that / P n P, 1 is maximal. Put I = PI n 
1 # ( y) c I. 

Suppose 1 + x E .Z’n I. Let a E A with Pa = P, so x = zOa for some 
x0 E Z. Thus~ x E .Z(P)” = Z(P,) so P, C H, contradicting H n A = P. We 
have shown that 1 n Z = 1. 

Next we prove that IC,(I)/I is a T.T. group in the sense of Suzuki [Sj. Put 
= IC,(l). clearly ZI S R n P and so 2 is weakly closed in R n P, whence 
n P is a Sylow 2-subgroup of I?. Clearly Z” C W (but .3 g I), whence 
n P is not the only Sylow 2-subgroup of R; i.e., R n P -33 R. Let 

,&xv 2-subgroup of I2 with RI n (R n P) = R, R P 3 I. Then if 
Sylow2-subgroup of A with A, 2 R,,we have Al r? PIlB,i.e., 

IA,nPl >jP,nPI 

the maximality of j P, n P 1 , we must have A, = I” which means 
R) C P so R,(P n R) is a 2-group. This forces R, = B n R 

is a Sylow 2-subgroup of R. The distinct Syl 
therefore have trivial intersection with each other; i.e., 
.ZI/I is elementary of order q > 2, Suzuki’ 
that R/I possesses a normal series R/I D R,,!I 
’ R, : P / are odd and I&/R, g L,(q), U,(q) o 

In any case, all involutions in P n R/I are conjugate in 
Q,(P n R/I) = 21/I and j NR(Z) : P n R ] 
N it follows that R, = I, while Z(P) c so / Z(P) n I / = q” (as 
Z(P) = h;;r x Z/, is elementary of order q3). Let x be an element of order 
p, p an odd prime, p / q - 1 with x E N&T). Then x E C(1) so C,(x) has 

order >q and C(x) covers Q,( T/J). S’ mce IT/J= &z(q) and x E N(Z) - ET, C(z) 
covers H/J (as C(X) covers sZ,(T/J)). By Lemma 2, C,(X) = 1 which contra- 

icts / CE(x)I 3 q. We have shown that C(y) C N(Z) as required. 
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5. FUSION OF INVOLUTIONS 

For the rest of the paper, we assume that 2 is not weakly closed in H with 
respect to G. In order to complete the proof of the theorem we have to show, 
therefore, that G g 2F,(q) under this assumption. 

LEMMA 5. We have that D = C&x& 1)) is a Sylow 2-subgroup of C&,,( 1)) 
and so LX&) 7Lc z for all z E 2. 

Proof. From Sec. 2, &(D) = 2, i = 4 or 5, and so 2 char D. The result 
now follows from Sylow’s theorem and our assumption that C(Z) = H for all 
ZEZ#. 

LEMMA 6. If C,(+(l)) is not a Sylow 2-subgroup of CG(+(l)) then 
all( 1) -o x for some z E P. 

Proof. Suppose CH(&l)) = CT(+(l)) is not a Sylow 2-subgroup of 
CG(a7(1)). By Sylow’s theorem there exists a 2-element b E N(C,(ol,))) with 
b2 E CH(c+(l)) but b E C(a,(l)) - CH(a7(1)). Clearly b normalizes the sub- 
group U,, x V, = Z(CH(q(l))). Recall that all involutions in Vi, - 2 are 
conjugate to ail(l) in H and all involutions in U,, x V, - U,, are conjugate 
to 01~( 1) in H. If the lemma is false, Zb n U,, = 1 (note that 2” n 2 = 1; 
otherwise, b E N(Zb n 2) and C,(b) # 1). Thus, b normalizes 
2 u (U,, x V, - U,,) and also U,, - 2, whence b normalizes 

which is impossible. 

(Ull - -0 = Ull 

LEMMA 7. If some involution x E Z is conjugate to an involution y E T - J 
(in G) then ~~~(1) wG x’ fey some x’ E 2s. 

Proof. Without loss we take y = a,(l) a12(t) for some t E K. Then 
C,(y) = C,(y) has order q8 and W = Q,(C,,( y)) = U,, x V, x V, is 
elementary of order q5. Under the assumption y wG z for some z E 2, there 
exists a 2-element v E C(y) n NH(C( y)) with v2 E C,(y) but ZI $ C,(y). 
Clearly v E N(W) - H. If v normalizes U,, x V, - U,, then v normalizes 
(U,, x V, - U,,) = U,, x V, = C,(y) n W. Thus, v E N( U,,). Now 
2” n 2 = 1 (as above) and 2” _C U,, - 2 by Lemma 5 and the fact that all 

. . 
involutions in U,, - U,, are conjugate to 01r,,( 1) in H. In this case olil( 1) -c z 
for all z E Z#. 

On the other hand, if v does not normalize U,, x V7 - U,,, ,01,(l) must be 
conjugate to an involution in U,, and/or an involution in W - W n J = 
W - (U,, x VT). This forces that CH(+(l)) is not a Sylow 2-subgroup of 
C(o1,(1)) for if a7( 1) -G e, e E U,, then / C,(e)/ > qi”, while if a,(l) mC h, 
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h E w - w A 9 then I C&z)1 = I C~(q(l))I = q* but cH(4lf) $ c,(h) 
(see Section 2). Lemma 6 gives the desired result in this case. 

LEMMA 8. We have that air(l) N ale(t)foY all t E RX. Bn fact, all ilzvolu- 
tions in e/;, aye conjugate in M = N(zi,,). 

P~of. ZTnder the assumption that Z is not weakly closed in H with 
respect to 6, there exists z E Z# with z conjugate to (at least) one of qr(l), 

%U)> orz(l)qz(t), t E K (using Lemma 5). It follows immediately from 
Lemmas 6 and 7 that ql( 1) wG x’ for some z’ E Z. Thus C = C(al,(B)) is 
not a Sylow 2-subgroup of C(qi(1)). choose c E C(oll,(l)) n N(C) - C 
with c a 2-element such that c2 E C. Then ZC n Z = 1 and so ZC C U,, - Z 
as Z(C) = Ull must be normalized by c. The lemma now follows from the 
fact that all involutions in Un - Z are conjugate in ATH($) = Iv,(C) = 

JVld %)- 

hMMA 9. W~enq=2,N(Z)=H~hile~q>>,1iV(Z):PHI =q-1. 
1% p-dcul~~~, N(Z) = J . L with J n L = 1,L = Q2 x is, u;h~e $I2 is 
cyclic of 0rdeT q - 1 and S, G Sz(q). Further, C(&) C lV(Zj = 35 and 
B = NG(T) = T . Q. is of ordeer q12(q - 1)8? whme Q, is the dil-ect product Oj 

two cydic groups of order q - 1. 

PYOO$ By Lemma 8, all involutions of Z are conjugate in @. Thus, all 
involutions of Z are conjugate in B = n?,(T) C AT,(Z) by a result of 
[3, p. 240]. Since C,(z) = H for all x E Z#, 1 N(Z) : M / = q - 1 (= 1 when 

e see that U,, is the only normal elementary Abelian s 
order 4’ which implies that U,, 4 B. By the Frattini argument, N(X) = B 
covers X(Z)/H and so j B / = q12(q - I>Z as obviously B 6 N(Z). It is 
clear that B is soluble, so we may choose a complement QO of T with 

9. 
Since QO normalizes [U,, , Q] = V,, there exists t E K” such that C(+i(i)) 

covers QJQ. It follows that Q1 = CoO(~rl(t)) is cyclic of order q - 1 as 
CG(oc,,(~)) E H. From Lemma 8, we see that qi(t) = 9 for some x E M = 
fV(i(r,) and z E 2s. Thus, TX is the normal Sylow 2-subgroup of CM(a,,(t)). 
In particular, Q1 normalizes TX and, therefore, centralizes .Z(P$ Now 
hi,, = C,l(Q1) x [U,, , Q1] = Z(Tx) x Z whi 1 f-J Gl = li;l 
as Qi normalizes Vi, . Hence, Qi Q QO as v 11) ad so 

.Q* = Ql x 9 
e have that Qr normalizes H/Jr Sk(g) and centralizes 

subgroup of H/J. It follows that [Qi , N] _C j and so N(Z)/J = H/J x $&J/j, 
where Qz is a complement ofQ in QO . The Frattini argument yields ,that N(Qz) 
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covers H/J, whence C(Q,) covers H/J. From Lemma 2, we see that 
C,(Q,) = 1, whence C(Qa) n N(Z)/Qa g Sx(q). Clearly 

G(Q,) = 4 4 C(Q2,) n NV-1 

and so CN(z,(Q2) = Qa x S, , where Sa E Sx(q). 

LEMMA 10. We have the following fusion of involutions in G: 

41) - %2(f) - aa a12(t,), for all t E K* and some 

fixed t, E K; 

“IOU) - 41) - ma(l) olra(u), for all u E K - {t,}. 

Proof. Recall from Section 2 that (wr , V,) is a Sylow 2-subgroup of 
NH(Q). Further, 52,((w, , V,)) = (wr , 2) is elementary of order 2q. Now 
Qa normalizes NH(Q) and so Qa centralizes an involution ala12(t’) for some 
t’ E K, and acts transitively on the other q - 1 involutions in (q , 2) - Z. 
Since wr N s +(I), (a,(l), Z) - Z also possesses two classes of involutions in 
N(Z); i.e., for some fixed t, E K, aa a12(t,,) +,(,) a,(l) a12(t) for all 
t E K - {to}, but the q - 1 involutions aa al,(t), t E K - {to> are conjugate 
in N(Z). 

A computation yields Q,(C) = (F, olz(t), as(t), a6(t) m5(t28)/ t E K) is of 
order q8 (where F = La(C) = Us x V, , so F Q M), Z(G$(C)) = U,,, and 
J2r(C n J) = (E, F) is of order q6. In NM(Z) there are precisely 5 conjugate 
classes of involutions in F with representatives: 

a,(l) EF - U, . 

Also in NM(Z) there are precisely two conjugacy classes of (nontrivial) 
cosets of F in Qr(C) which contain involutions. They have representatives 
a,(l) F and a,(l) F. The coset ~s( 1) F contains q3 involutions conjugate to 
olrr( 1) in H with representative c+( 1) and (q - 1) q3 involutions conjugate to 
an,(l) in H with representative a,(l) as(l). The coset a2( 1) F contains q3 
involutions conjugate to as(l) a,,(&,) and q3(q - 1) involutions conjugate to 
a2( 1) aI,( where t, E K - {to>. 

All that remains to be shown is that 01a( 1) mM +( 1) and a2( 1) F wM cl& 1) F. 
This follows because: 
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(a) 2 03 M but U,, Q M, 
(b) for any e E Us - u,, , (C(e) n Q,(C))’ = z, 

(c) for any involution e E (fxs(t)F 1 t E K*] (i.e., e E E - F), 

(C(e) n Q,(C))’ = Z. 

LEMMA 12. We have M/C E GL(2, q) and 

Further, all involutions in M - C are conjzkgate to alO( 1) Gz G. 

hoof. We know that T = CV, is a Sylow 2-subgroup of M and so T/C* 
a Sylow 2-subgroup of M/C, is elementary Abelian of order 9~ A simple com- 
putation shows that all involutions in T - C lie in j - C. Therefore, ah 
involutions in T - C are conjugate to 01?(i) in H and to &l) in G (by 
Lemma Ilj. 

Ail involutions in U,, are conjugate in M, so 

1 Ml = INnM; ~(q2- 1) =ql”.(g- L)2 

and 

/ -tic / = 4 _ (4 - 1)” (4 + 1). 

If x E T - C, C(x) n U,, = 2, which means that if T, is any other 
Sylow 2-subgroup of M besides T, T, n T = C (using the fact that 
N,(Z) = N,(T)). Thus, M/C is a T.I. group with Abelian Sylow 
2-subg;oups. 

If q = 2, i M/C 1 = 6, whence M/C E SL(2,2) = GL(2,2), and as 
CQ& 1) has precisely four conjugates in M, CM(~ro( 1)) covers M/C. The lemma 
is proved in this case. 

In the case q > 2, Suzuki’s result [9] yields that M possesses normal 
subgroups L,,L, with MDL,DL,QC,~M:L~~,/L,:C~ odd and. 
L,/L, s SL(2, q). However, as QO = p x Q1 , M/L, z SL(2, q) and so by 
Gaschutz’ theorem [5, Satz 1.17.41, iIF/@= GL(2, 4). Finally, q,,(l) has 
q3 - qz = q2(q - 1) conjugates in M and I C : Cc(olIO(l))~ = g” so 

The structure of GL(2, q) yields immediately that 

LEMrvrA 13. We have C(ol,,( 1)) C M. 
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Proof. Put X = Cc(alo(l)), Y = C,(ol,,(l)) and recall that D = CH(oliO(l)) 
is a Sylow 2-subgroup of X. 

Suppose that w” E Y for some w E U,, and x E X. We claim that w” E U,, . 
If not, wx E Y n C - F, and so w” is conjugate to an involution in a,(l) F. 
However, for anyf E CF(~s(l)), an easy computation yieldsL,(C,(ol,( l)f)) = 2. 
Thus, CD(~s( 1) f) is a Sylow 2-subgroup of C,(,,( 1) f), whence oIs( 1)fcan not 
be conjugate to any involution in U,, (as C,(,,(l)f) C D). We have wx E Vi, 
as required. 

For any w E U,#, , C,(w) C Y. Th is is clear because all involutions in U,, 
are conjugate in Y and for any 2 E Z#, C,(Z) = CH(~n,(l)) = D C Y. 

Finally we show that for any w E Vi, , C,(ol,(l) w) C Y. It is enough to 
consider w E 2 since C(a3( 1)) n Vi, = Dl((cxa( l), U,,)) = 2. Put y = 01a( 1) x 
for any z E 2. Since Y/Y n C e SL(2, q), 

is elementary Abelian of order 4 5. From the fact that U,, is weakly closed in 
Y with respect to X, it follows that 2 is weakly closed in C,(y) with respect 
to X. Thus, N,(C,(y)) _C N,(Z) n Cr( y) = C,(y) which implies (by 
Sylow) that C,(y) is a self-normalizing (Abelian) Sylow 2-subgroup of 
C,(y). An application of Burnside’s transfer theorem yields that C,(y) 
possesses a normal 2-complement R. We act on R with the four group 
(I, 41)), all f h 0 w ose involutions are conjugate to f+.(l). Clearly 
CR(~iz(l)) = 1, so if R f 1 we may assume without loss that CR(~s(l)) # 1. 
Thus, 01~a( 1) inverts an element of odd order in Cc(cxs( 1)). However, 

which forces aiz( 1) E Oa(C(a,(l))) as C(ols(1)) -c H. This gives a contra- 
diction to R # 1 and we conclude that C,(y) C Y. 

The conditions of Proposition 2 are satisfied (with Y = U,, , w = ma(l), 
W = Y and X = X) and we conclude, therefore, that U,, 4 X; i.e., 

ct%ltl)> c M. 

6. THE IDENTIFICATION OF G WITH 2F,(q) 

We divide this section into two parts depending on whether q > 2 or q = 2. 

CaseI. q>2 

Put N = iV(QJ and recall B = N(T) = T . Q0 . From the proof of 
Lemma 10, C(Q,) n NH(Q) = Q< ~i~~~(t’)) for some t’ E K. We put 
w = Wlalz(t’) and have LV~(~)(Q~) = Qs(w). Further, Cc(Q,) = 1, so 
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Lemma 12 shows that NM(QO) = QO( 2: w ) h ere B is an involution in M - T. 
We can now state the following. 

hMWA 14. The group Q. is self-celztralizing in G and N = N(QO) = 
Q&v, w), where (v, w) s II,, , the di~ed~ulg~ou~ of order 16. 

Pmof. We show first that C(Q,) = QO . From Lemma 9, CN&QZ) = 
Qa x S2 ) where S, s A’,+). The proof of Lemma 10 shows that or) ho ~~~(1) 
and so Qa -oQ as weC(Qa). Thus, C(Q) 3 Cfiizl(Q) = QoV5 . Since 
C(Z) n &(QZ) = Q x V5 for all z E Z+, C( ) must be a T.E. group. Applying 
Suzuki’s result [9] and using the fact that N(Z) n C(Q) = f&V5 we get 
C(Q)/Q g Sz(q). l+nce, C(Q) = Q x 8, , Sl c 
structure of S, z Sxjq) yields immediately that C( 

ur remarks above give us N = N(Q,) 3 Q&V, w). Lemma 12 implies 
v wG alO and as w mG 01ra(l), (VW) has even order and therefore possesses 
a unique involution i. Further, Coo(c) z [ZI, QO] z Q and we know i nor- 
malizes Coo(W) If i centralizes COO(v), U wG i wG 01& 1) as C&Q) = Q X V5~ 
On the other hand, if [i, C,,(V)] # 1, i inverts an element of odd order in 
C,(V). In particular i $ O,(C(v)) which implies, by Lemmas 12, 13, that 
i mG qo(l). Since w normalizes Coo(z), the same argument yieIds that. 
C&) = 1, as we have proved i wG ar,,( 1). 

As C(Q,) = QO and C,(i) = 1, N(Q,) = IV = &a . CN(i). Since Co,(w) = 
$I2 4 C,v(w), Q wG Q2 and N(Q) = (Q x S&W), we ha 
(i, W) . Qa . Now i wG ~~~(1) so by Lemma 82,13 w E 
O,(C,(i)) is a 2-group of maximal class. Thus; C,(i) is a 2-group of maximal 
class and as ‘z, + W, CAT(i) is dihedral. Further, GI(T) does not contain 
elements of order 16, so C,(i) is dihedral of order 8, 16. The proof of the 
Lemma is completed by showing (v, W) z D,, . 

It is enough to show that (vw)~ f 1. Since z’ E M - N(Z), o+~(I)~ = 
arr(t) G+Ju) for some t, u E K while (a,(t) +,(u))~ = aa(tr)j for some t, E K-, 
j E J Thus, (2&)j)(eJ* = o12(tlj) which imphes (CLILLI)’ # 1 as w E H - T 

while CH(az(tr)j) C T. The lemma is proved. 
Next we derive some results about the action of z on C. By definition, 

v E N n M - N(Z). Thus, Qv x Q = Qa , and as Q, normalizes 6(Q2”) n Cl,, 
C(Q”) n eli,, = VI,, , i.e., 2” = VI,. By Lemma 2, C,(Q) G J, so VSV = 
(as(P-2) +(t-%) a(t, u)l t E K, u is some fixed element of -K and a(t, u) E E 
(here a(t, u ) depends on t, u)). (This follows because V5 = C,-(Q) so V5” = 
C&Q) and VjV is Q-invariant.) Now 

[V5 , V,“] = ([c&y “7(t-2eu) a(t, u), ols(zu)]I t, v E K) 

= ([cd6(P+2) a,(t-%), a5(v)]j t, v E K) 

_ f(%o(t), %,(Q t E K) if * f 02 
- \(OdlO(t)~ t c K) if u = 0, 
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However, [V,“, V,] is v-invariant which implies u = 0 and 

Vjv = (a6(t) a(t)1 t E K, a(t) E E) = V,*. 

Further V& = V 1o , since u = 0. 
From’the proof of Lemma 10, Vsw - - (+(t) a,,(t)] t E K, q,(t) E E n F) = 

VT*. Put (Vs*)m = (ad(t) a(t)” / t E K, a(t)” E E) = V,*. Since 

[v4*, U,,] = 2, (V4”)V = v,* 

must cover T/J. Put ( T/?*)o = (c+(t) so(t)” j q,(t)” E E, t E K) = V,* and 
note that T = CVa*. We have the following table for the action of v, o on 
subgroups of T: 

Subgroup X VI, V, V,* V, v,* v4* c J 

X” VlO v,* v9 v,* v, v,* c 

Xw v9 VlO v3* v, v‘l* v,* J 

For each w E (w, v) define Z(w) to be the minimal length of w as a word in 
W, v. (Clearly Z(w) < 8 as (WV)* = 1). Using the table and the fact that 
B = (JQ,,) VI* = V,*(JQ,,) = V,*(CQ,) = (CQ,) V,* we have : if 
Z(vw) > Z(w) then vBw C BvwB and if Z(ww) 3 Z(w) then wBw C BwwB, for 
all w E (w, v). 

Since N(Z)/Qz . J c Sz(q), Qz . J C B and B/Q2 . J is a Sylow 2-normalizer 
of N(Z)/Q2 . J, N(Z) = B u BwB (’ i.e., Sz(q) acts doubly transitively on its 
Sylow 2-subgroups; see [S]). S imilarly, we have M = B u BvB. For if 
Ml C B so that Ml/C = O(M/C) then M/Ml g SL(2, q) and B/M, is a 
Sylow 2-normalizer of M/M, (and g a ain, SL(2, q) acts doubly transitively 
on its Sylow 2-subgroups; see [S] or [3, p. 411). 

By a result of Tits [ 111, the above two facts imply that 

(a) SBW C BwB U BswB for each s E {w, v} and w E (w, v). Clearly, we 
also have 

(b) sBs f B for s E {w, v}. 

Next we show G is simple. Suppose 1 + G, Q G. As 1 2 1 = q > 2, G2 
must be even as O(H) = 1. Thus at least one of oln,( l), a+,( 1) E G, . However, 

[41), 41) cdl>1 = a12(1) and 
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so 6, contains both ara( 1) and 01~a( 1). In particular, PI C G, and M’C G, ) where 
iM:M’j =q- 1 andM’/C-Z(2,q). ButQ~_CM-M’andQ_CHso 

Gz2 W(Z), W h w ence G, = G by the Frattini argument applied to the 
Sylow 2-subgroup T. We have 

(c) G is a simple group. 

Put C+ = (B, N) = (T, Q. , v, W) = (N(Z), M). From Section 5 it is 
clear that for any pair of involutions X, y E T with x mG y then x wGI y. Since 

C 6, and C(a,,(l)) C M C Gr it follows that C(x) _C 6, for each involution 
x E T. Clearly T is a Sylow 2-subgroup of 6, so G, contains the centralizer of 
each of its involutions. If Gi C G, Gr would be “strongly embedded in 6” and 
G would have one class of involutions, see [3, p. 3061. This is not the case so 
we get 

(d) G = (B, N). 

As the statements (a) and (b) b a ove remain valid if we replace each element 
x E (w, U) by x = x(B n N), Lemma 14, (a), (b), (c), (d) imply the following. 

LEMMA 1.5. The group G is a$nite simple grouf with a (B, IV)-$air of ratik 
2 such that N = N(Q,) and B = QoT = (B a? N) T. 

We remark that the term “rank 2” refers to the fact that N/B A N = N/Q0 
is generated by two involutions. 

It follows immediately from Lemma 15 and Theorem B of Fong and Seitz 
[I] that G g 21;‘,(g). 

LEMMA 16. Let T* = (IV’ n T; ~~(1))~ a subgroup of index 2 in T. Then 
foT any element x E T”, x of order fouy, we have that x +G as(l). 

Proof. A simple computation gives C’ = Qi(G) = (U, , a,(l), ~(~(1) a,,(i)) 
is of order 28. Further, [01~(1), ai( = ~~(1) ~~(1) c’, c’ E C’, and so 
~~(1) q,(l) E M’. The factor group M/C is a faithful extension of an elemen- 
tary group of order 8 by SL(2,2) z D, . If P is a Sylow 3-subgroup of A&, P 
fixes the coset 01~( 1) C’ (because (a5( l), C’)/IJ is the only elementary subgroup 
of C/F of order 14). Thus, 1 M : M’ 1 = 4 with 01~(1) $ M’. Put 

T* = (M’ n T, 01~( 1)) 

so / T : T* : = 2 and as(l) .$ T*. 
Let x be an element of order four in T*. Suppose x -G es(l), so 

X” wG Al,,. Since all cosets in M’ n T/C’ are conjugate to 014(l) a;(l) C’ 
and if y is an element of order four in 01&( 1) 01~(1) C’ then y” mG aiO( l), we 
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have x 6 M’ n T - C’. We next consider x E T* - C n T*. If x E J and 
xE contains involutions, x2 = olr,(l) so x +r 01~(1), whence x & as(l) (as 
as(l) E 4 H). On the other hand, if xE does not contain involutions (and 
x E Jh x2 -G 10 a! (1)asxE-H0/5(1)ol,(l)E.Inthecasex$J,asxE = aa(l 
for some c E C n T* - J, a simple computation shows (xE)~ = x2E = jE 
for some j E J, whence x2 -H cy,( 1) -G olro(l). 

Finally we consider the case when x E C’ -F. If XF does not contain 
involutions, x2 - o al,,(l). When XF does contain involutions, XF wM a,(l) F. 
But all elements of order four in a,(l) F lie in 01,( 1) E and so have square 
ar2(1). Thus, x +, +,(l) in this case as c+( 1) E +H 01s( 1) E. The lemma is 
proved. 

LEMMA 17. The group G possesses a normal subgroup G* of index 2 with 
G* E Jo, the Tits simple group. 

Proof. It is easily seen that T - T* possesses no involutions and so as(l) 
is an element of minimal order in T - T*. Thus, Lemma 16 and Harada’s 
transfer lemma [4, Lemma 161 yield that G possesses a subgroup G* of index 
2 with as(l) E G - G*. Now C&o1is(l)) = H n G* = H* is a faithful 
extension of a 2-group J* = J n H* of order 2Q and class 3 by a Frobenius 
group of order 20. Further, if P* is a Sylow 5-subgroup of H*, 

C,,(P*) = Z(H”) = (olr,(l)). 

Finally, (~lr,(l)) is not weakly closed in T* with respect to G* which implies 
G* # H*O(G*). It follows immediately from the author’s result [6] that 
G’“r9-. 

We conclude that G s 2F,(2) by using an unpublished result of J. Tits 
that Aut Y g 2F4(2), as clearly G C Aut G*. This completes the proof of the 
theorem. 
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