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1. INnTRODUCTION

The Ree groups *F(q) are the fixed points of a certain automorphism of the
Chevalley groups of type F, over a finite field K = GF(q), where g = 22+,
7 > 0. Ree [7] showed that the groups 2F,(q) are simple if ¢ > 2, while
Tits [12] showed that 2F(2) is not simple but possesses a simple subgroup 7~
of index 2.

In this paper, we give a characterization of the Ree groups in terms of the
centralizers of involutions in the center of a Sylow 2-subgroup. Namely, if
H(g) denotes the centralizer of each involution in the centre of a Sylow 2-sub-
group of 2F,(g), we have the following.

TuroreM. Let G be a finite group which possesses a subgroup H =~ H{q) so
that for every involution z € Z(H)we have H = Cy(3). Then one of the following
possibilities holds:

() GoFiq),q = 2" n >0,
(i) ¢=2and G = H"O(G).
(i) ¢>2and Z(H) <1 G (with | G: H||q— 1).

The notation of this paper will follow [3], and we will follow [7] in regard
to the structure of 2F(g). In particular, if X, , X, are subsets of a finite group
X, Xy ~x X; means X; = x'Xox = X, for some xe X, while L (X} is
defined by Ly(X) = X and L(X) = [X, L, _(X)] for each # > 2.

2. TaE STRUCTURE OF H o~ H(g)

Since we will only consider the structure of H(g) and not that of 2F,(g}, we
will identify H with H(q).

Let K = GF(g) be a finite field of characteristic 2 and order g = 227+,
n > 0. Further, let K* denote the multiplicative group of K. As is well
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known, K admits and automorphism 6 such that 262 = 1. In [7], Ree gives
generators ay(t); 7 = 1,..., 12, 1€ K, for a Sylow 2-subgroup 7' = T(g) of
2F,(q). He also shows Z(T) = {oys(#)| £ € K is elementary of order ¢g. Using
the definition of the «,(¢) and the commutator relations for the Chevalley
groups of type F, (see [7, p. 404]) all commutators [o(f), o{(#)] can be com-
puted. From Ree’s work, it is straightforward to show that H = C,, (a5(t))
is independent of our choice of ¢ € K*. !
Further, in the notation of [7],

H =T, o(w(l, —1, ©)) = Way' * Wy, s h(X34’,t1—26 . X34,t—1)l te K>
=T, w,, k(t)| te K.

Below we list relations between the generators of H:

1. For all t, u ¢ K we have:

(2) o(t) o) = aft + u) = a(w) oit), ¢ = 2, 3,7,8,9,10, 11, 12
(£ = an(£21Y), [oy(2), oy(w)] = (% + 10*°);
(£ = ag(t?), [oy(2), u(u)] = o(tu -+ t1*);
as(t)? = oyp(#077), [a5(2), ag(u)] = ot + tu?);
ag(£)? = agy(£201), [o(2), cg()] = oy (% + £%9).

(b)  [oa(2), ()] = [o010(2), a(w)] = [0(2), cg(u)]
= [og(t), ar(1)] = ayo(tm);

[o10(£), oy ()] = [og(2), cp(10)] = ouyy (F02);

[oeg(2), cey(#)] = oy (106%%) oy (3PP HY) vy (#2015

[oa(2), o)) = onyo(tue) cuqs (%) (%),

[oes(2), oy ()] = og(F2a) oty (uP0F22) 00y (220201,

[os(8), ()] = oy (), [o5(2), ctg(®e)] = otyo(tm),

[ots(2), ctg()] = (), [o5(2), cxg(ur)] = oxg(t2e);

[o(2), ()] = oo(P0t) o0y (£200) oy (2% 22)

[o(2), ()] = ou(20®%) atyo(£2ms);

[og(2), ()] = oug(124%%) ctg(£20) 00yp(#20+ 1)

[os(2), ()] = or(tur);

[o(2), oa(w)] = our(tur) ouyy(20+10%) cuyo(£294%0)

[o(2), 0 ()] = o5(#%0) otg(2u™) cuy(12°) g2+
oy (20F12042) (1204292011,

[oa(2), 0a(u)] = o5(2%02) org(f24) cur(£°°) oeg(£20H100) crg(£20H104)
augo(F20H1142) o o(£20422041),

[o(2), o ()] = og(tue) oy (£20uP0H) ooy (£UP0T2) og(20+1070+1)
ooy (F20F Ly 202) py (£20+1A042) oy | (£204+17/4043)
0o (120 2%03),

All other commutators [a,(2), o)) = 1,4,7 = 1,..., 12.
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2. Put A(#) = h(ysy s y1-20 * Xae.u—) for each u € K*. Then
hu)| uwe K* o= K*,

and for each 7 € K, u € K* we have the following action of A(x) on 7"

() ous(f) o3(%) auyo(t) o) () l(t)
GO ag(t) o) g (%) ag(i® L) o(120F)  oug(20)
o) ot os5(#) oy(2) o) at)  oylt)
A o 2)  aft) ag(12) (1) op(u ) g (s299)

3. Put w; = w(w(l, —1, 0)); then w;? = 1 and for each t € K

() = agp(t), g (1) = augt), ayg(£) = o(?),
os(£) = o5{t), oq(£)* = ag(2), o)™ = ay{2).
Further, for each u € K*, h(u)*r = h(u).

4. S = {oy(t), wy, Wu) te K, u e K*) o~ Sz(g), the Suzuki simple
group (described in {8]). (This is probably most easily seen by showing that
the Sylow 2-subgroups of .S are T.L. sets and then using Suzuki’s result [9].)

From these relations, we can describe the structure of H using the following
notation:

Uy = {a(t), o4 (8),r agol)| € K
V, = (ol KD, i— 1 12;
T = U, = o),

Z = Z(H) = Z(T) = Upy = Vyy ;
E=Us=];

O = h(w)l ue K.

(Note that T' = Uj is a Sylow 2-subgroup of H.)

We have that H is a faithful split extension of the 2-group [ of class 3 and
order ¢'° by the group S ~ Sz(g) of order ¢*(g — 1)(g -+ 1). A Sylow 2-sub-
group 7T of H has order ¢*2, Ny(T") = 1" - O, where O is cyclic of order ¢ — 1
and Z = Z(T) = Z(H) is elementary of order g. The subgroup £ = ' is
elementary of order ¢° with Cy(E) = (£, V) of order ¢® and £2,(C(E)) = E.
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Also Z =Ly(J) =[], J1L U, <T and V.2 =V, for each ¢ = I,...,, 12.
Note that T, is elementary abelian for 7 =2,3,7,8,9, 10, 11, 12, but
Viee Vyee V= Vg are “Suzuki 2-groups” of order g%

Some Properties of S == Sz(q) (see [8])

The groups Sz(g) are simple if ¢ > 2, while S%(2) is a Frobenius group of
order 20. A Sylow 2-subgroup V, of § is non-Abelian of order g7
(V) =V, = Z(V,) = V,'is elementary of order ¢ with Ng(V) =0 - V.
For each involution ay() € V,, C{as(2)) = V5 . The other conjugacy classes
of maximal local subgroups of S are Frobenius groups of order
g+ V2q+1),4q—V2g+1),2(g — 1) (the latter having N¢(Q) =
O<{w,> as a representative). If S; C S then either S, is conjugate to a subgroup
of one of the maximal subgroups above or §; =~ Sz(¢,), where ¢, | g. Finally,
each outer automorphism of S is induced by a field automorphism of the
underlying field K.

With regard to the action of S on J, we have Cy(S) = V; (of order ¢?)
while if ¢ > 2 S acts indecomposably on both E and J/E.

The Conjugacy Classes of Involutions in H

In E — Z there are two classes of involutions (in H) with representatives
on(1), agg(1). Put € — Cylan(1)) = Crlop(1)) and D — Cylagg(1)) —
Cr{oqe(1)). We have C = (V|1 % 3> is of order ¢ and class 5
with Z(C) = Ly(C) = Uy and put F = Ly(C) = Vg, Vig s Vig, Vo, Vi
so F is elementary Abelian of order ¢°. Note that F' <| T. Further, there are
precisely 29 — 1 cosets of E in | which contain an element of order four
whose square is oay(l). Similarly, D = (V; |7 5 1,4> is of order
g Z(D) = Z X Vi and Ly(D) = Z if ¢ > 2 while Ly(D) = Z if ¢ = 2.
Finally, if e £ — U,, we have Cr(e) = C,(e) (of order ¢°) while
ec ENF — Uy, = Uy — Uy implies e ~y oy9(1) and e e Uy; — Z implies
e~y ogy(1).

In J— E there is one class of involutions with representative o, (1) and
there are precisely (¢2 + 1)(g — 1) + 1 = ¢® — ¢ + ¢ cosets of £ in [ which
contain involutions. We have that Cy(ay(l)) = Cplay(1)) =<V, |i =
1,2,6,7,9,10, 11, 12> is of order ¢% and with center <Z, V};, V> elementary
of order ¢2. Also, £2,(Cr(xy(1))) has index ¢ in Cr{a (1)) so that Cr(ay(1)) =
1 (Crlo(1)) - V5 -

Finally in T — [ there are ¢ classes of ‘involutions with representatives
(1) oo(t), t € K. For each t € K, C(os(1) 0yo(2)) = Crpan(1)) = Cprlep(1)) =
V;1i=1,2,5,6,7,10, 11, 12). Further, Z(Cr(x;(1))) = <{Z, Vi1, Vo is
elementary Abelian of order ¢% while ,(Cr(a(1))) = Vo, Virs Vios Vo, Voo
is elementary of order ¢°.



CHARACTERIZATION OF REE GROUPS %F(g) 345

To summarize, we list representatives of the conjugate classes of involutions
in H — Z and some properties of their centralizers:

Involution x Iocation | Culx)| Z(Cy(x))
a34(1) E—-Z gt Z X Vy=Ugy
(1) E—-Z gl Z X Vi
a{1) J—E g8 Uy X V5

(1) aa(B), H—] g Ui XV,
te K

3. A PreLiMINARY REsurT

The idea used in the proof of Proposition 2 is due to Suzuki [10]; the first
result is well known (see [10] also).

ProrositioN 1. Let w, v be involutions in a finite group X with {(wv) of
even order. If i is the unique involution in {wv) then {w, v) C Cx{(7) and either

wl ~ W and vi~v or Wi~ and vl ~ w.
X X X X

ProposirioN 2. Let Y be a 2-subgroup of a finite gvoup X. Suppose that
YCWC X so that for every xe€ X and y € Y with y°c W, we have y*€ Y.
Further, suppose there is an involution we W — Y with Clw,) C W for all
w, €<{w, Y *. Then Y <1 X.

Proof. Note that ¥ <1 W, whence <w, Y is a group of order 2| Y |.
Suppose V 41 X, 80 Y £ 1. There exists xe X with Y® s V. If
l=#ae¥*NW, acY*NY so that a centralizes Z(Y*) == 1(as ¥V is a
2- group) whence Z(Y®) C W by assumption and so Z(Y*) C V. But then if

# be Z(Y9, Cy(b)y C Wso Y*C W, whence Y® = V. Thus, Y* N\ W = 1.

Let v be an involution in Y and put v = y*. Then v 4y w by assumption
so (vw) has even order. Let ¢ be unique involution in {vw). Note that
i€ Cy(w) C W. By Proposition 1, either @i ~y v or i ~ .

Ifowi~yv, aswie W, wie Y, whence i € Yw. By assumption CX(@} cw
s0 v € W which contradicts v € Y?and Y2 N W = 1.

We may assume, therefore, that ©7 ~; ©. Hence, vi € Y* (asie Cy{v) C W?)
soie V?, whenceie W Y* = |, a contradiction. The proposition is proved.
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4. Tre Cases (ii) AND (iil) OF THE THEOREM

For the rest of the paper, we suppose G, H satisfy the hypotheses of the
theorem. We use the same notation as in Section 2; as well, C(X) and N(X)
will denote Cy(X), Ny(X) respectively, for any subset X of G.

Levva 1. A4 Sylow 2-subgroup T of H is a Sylow 2-subgroup of G.

Proof. 1f T is not a Sylow 2-subgroup of G, by Sylow’s theorem there
exists a 2-group 7y with |T,: 7] =2. Let yeT; — 1T, so y¢ H. As
Z(T) = Z char T < T,,y € N(Z), whence Cz(y) # 1, contradicting our
assumption.

Lemma 2. Let x be an element of order p, p an odd prime, with x € N(Z). If
C(x)y N N(Z) covers H ] then C,(x) = 1.

Proof. By assumption, C(Z) = H. Clearly | = Oy(H) <t N(Z) and
since H/J = Sz(g), if x is as in the statement of the lemma, x ¢ H. If
E, = C,(x) #£ 1, as Cx(x) <1 Cy(x) we have | By | = ¢*and so B, X Z = E.
It follows that E, contains an element e ~y oy1(1) and so x permutes the
2q — 1 cosets of E in | which possess an element of order 4 whose square
ise. As | N(Z): H||g—1,p]g— 1 and so Cjg(x) +# 1.

On the other hand, if Cjg (%) 7 1, as Cy(%)/Ey <1 C(x)/Ey, | Cs(x)/E, | = ¢*.
Thus C(x) contains cosets of E, which contain only elements of order four,
and so By =~ 1.

We have proved that if C,(x) 5= 1 then | C)(x)| = ¢® and Ey X Z = E.
However, C/(E,) = C(E), so [Cy(x), Eg] # 1. But [C)(x), E]] C[], E] = Z,
and, hence, Z N C,(x) = 1 which is a contradiction. The lemma is proved.

In the rest of this section, we will show that if Z is weakly closed in H with
respect to G, then G satisfies either conclusion (ii) or (iii) of the Theorem.

LevMa 3. If z is an involution in Z and () is weakly closed in H with
respect to G then G = H - O(G), where O(G) = 1 if ¢ > 2. In particular if
g = 2 and Z is weakly closed in H then G = H - O(G).

Proof. The first statement follows immediately from Glauberman’s
theorem [2]. If ¢ = 2, Z = <2} is of order 2 and the last statement follows. If
g > 2 and O(G) s~ 1, since Z contains a four group there exists an involution
z e Z with C(2) N O(G) +# 1. But then H N O(G) = 1 which contradicts the
structure of H. Hence, if ¢ > 2, O(G) = 1 as required.

The proof of the next lemma uses an idea of Suzuki [10].

Levva 4. If ¢ > 2 and Z is weakly closed in H with respect to G then
Z <1G,andso | G:H||qg— 1.



CHARACTERIZATION OF REE GROUPS 2F,(g) 347

Proof. Suppose ¢ > 2, Z is weakly closed in H but Z 41 G. By Lemma 3,
for each involution ze€Z there exists g€ G with 2z o 2% € H (cotherwise
G = HC N(Z)). As Z C C(2%) = H?, it follows that 29 C H so 29 = Z.
Thus, N(Z)D H and if 2¢ € H for any ge G, 2 Z, we have g7 € Z. If we
show that C(e(1) ay5(2)) € N(Z) for each t € K, the assumptions of Proposi-
tion 2 will be satisfied (with X = G, Y = Z, W = N{(Z)yand w = (1)) and
we can conclude that Z <1 G.

Let y = (1) ay,{#) for any te K, P = Cy(y) and 4 = Cy(y) . Note
that P is a normal Sylow 2-subgroup of Cy(z(y) = 4 N N(Z). Under the
assumptions of the lemma, we want to prove that 4 C N(Z}. We argue by
way of contradiction and assume Z <1 4.

Since Z is weakly closed in H, Z is weakly closed in P and so P (of order ¢%)
is a Sylow 2-subgroup of 4. By assumption 4 contains more than one Sylow
2-subgroup. Among all Sylow 2-subgroups of 4, choose a Sylow 2-subgroup
P, of A so that | P N P, | is maximal. Put I = P, N P and note that
1#(ywCL

Suppose 1 52 g€ Z NI Let ae 4 with P* = P, so z = z,* for some
%€ Z. Thus, z € Z(P)* = Z(P;) so P; C H, contradicting AN 4 = P. We
have shown that I N Z = 1.

Next we prove that JC 4(f)/] is a T.1. group in the sense of Suzuki [9]. Put
R = 1IC (D). Clearly ZI C R N P and so Z is weakly closed in B N P, whence
RN Pis a Sylow 2-subgroup of R. Clearly Z¢C R (but Z* L I), whence
R N P is not the only Sylow 2-subgroup of R;i.e., RN P 41 R. Let R, bea
Sylow 2-subgroup of R with Ry, "{(RNP) =R NP1 Thenif 4,isa
Sylow 2-subgroup of A with 4, 2 R, , wehave 4, " PO 1 i.e,

A NP> |P,NP].

By the maximality of | P, N P|, we must have A4; = P which means
R(PNRYCP so R(PNR) is a 2-group. This forces B = PN R as
PN R is a Sylow 2-subgroup of R. The distinct Sylow 2-subgroups of R/J
therefore have trivial intersection with each other; i.e., R/f isa T'I. group. As
ZIJI is elementary of order ¢ > 2, Suzuki’s result ([9], Theorem 2} yields
that R/I possesses a normal series R/I 1> R/l > Rg/I > I/I, where | R: R, |,
[ Ry : T are odd and R,/R, ~ Ly{(q), Us(q) or Sz{q).

In any case, all involutions in PN R/I are conjugate in R/{ so
(PN RID = ZIIl and | Ny(Z) : PN R| = ¢ — 1. From the structure of
H it follows that Ry, = I, while Z{(P) C R so | Z(P) NI | = ¢? (as
Z(P) = Uy; X V, is elementary of order ¢*). Let x be an eclement of order
#, p an odd prime, p | g — 1 with x € Np(Z). Then x e C(I) so Cg(x) has
order >>¢ and C{x) covers £2,(T]). Since H| J ~ Sz(g) and x € N(Z} - H, C(x)
covers H/ J (as C(x) covers 2,(T/])). By Lemma 2, C,(x) = 1 which contra-
dicts | Cg{x)] = g. We have shown that C(y) C N(Z) as required.
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5. FusioN oF INVOLUTIONS

For the rest of the paper, we assume that Z is not weakly closed in H with
respect to G. In order to complete the proof of the theorem we have to show,
therefore, that G = 2F,(¢q) under this assumption.

LemmA 5. We have that D = Cy(oyo(1)) s a Sylow 2-subgroup of Cg(oq(1))
and so oy(1) g 2 for all z e Z.

Proof. From Sec.2,L{D) = Z, i =4 or 5, and so Z char D. The result
now follows from Sylow’s theorem and our assumption that C(z) = H for all
zel”,

Lemma 6. If Cy(a (1)) is not a Sylow 2-subgroup of Cgloy(1)) then
ay1(1) ~¢ 2 for some z € Z*.

Proof. Suppose Cylaf1)) = Cr{ay(1)) is not a Sylow 2-subgroup of
Cs(e(1)). By Sylow’s theorem there exists a 2-element b € N(Cy(o))) with
B e Cy(ay(1)) but be Clo(1)) — Cula,(1)). Clearly b normalizes the sub-
group U;; X V; = Z(Cy(x,(1))). Recall that all involutions in Uy, — Z are
conjugate to ay;(1) in H and all involutions in Uy; x V,; — Uj; are conjugate
to a(1) in H. If the lemma is false, Z° N Uy = 1 (note that Z° N Z = 1;
otherwise, b € N(Z* N Z) and Cyub) 5+ 1). Thus, b normalizes
ZU(Uy; X V, — Uyp) and also Uy; — Z, whence b normalizes

<U11 — Z> = U11

which is impossible.

Lemma 7. If some involution z € Z is conjugate to an involutionye T — |
(in G) then oyy(1) ~¢ 2’ for some 2’ € Z7.

Proof. Without loss we take y = ay(l) oe(t) for some € K. Then
Cu(y) = Cr(y) has order ¢ and W = Qy(Cy(y)) = Uy X V; X V, is
elementary of order ¢°. Under the assumption y ~ 2 for some 2 € Z, there
exists a 2-element v e C(y) N Ny(C(y)) with v2e Cy(y) but v¢ Cy(y).
Clearly v e N(W) — H. If v normalizes U, x V; — U,, then v normalizes
Uy X Vg — Upy = Uyy X Vo = Cy(y) " W. Thus, veN(U,). Now
Z° N Z =1 (as above) and Z¥ C Uy; — Z by Lemma 5 and the fact that all
involutions in U;; — Uy, are conjugate to ayg(1) in H. In this case o1(1) ~g 2
for all 2 € Z#.

On the other hand, if v does not normalize U,y x V, — Uy, a (1) must be
conjugate to an involution in U,y and/or an involution in W — Wn | =
W — (U X V). This forces that Cy(a,(1)) is not a Sylow 2-subgroup of
Clo(1)) for if o(l) ~¢ e, e € Uy then | Cyle)l = ¢, while if oy(1) ~g 4,
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heW — WA ] then | Cu(h) = | Cala(D)] = ¢ but Clan(1)) 5 Calh)
{see Section 2). Lemma 6 gives the desired result in this case.

Levma 8. We have that oy (1) ~ ayy(2) for all t € K*. In fact, all involu-
tions in Uy are conjugate in M = N(Uy).

Proof. Under the assumption that Z is not weakly closed in H with
respect to G, there exists z € Z# with z conjugate to (at least) one of ay{1),
ar(1), ao{l)oqs(t), £€ K (using Lemma 5). It follows immediately from
Lemmas 6 and 7 that o4(1) ~¢ & for some 2’ € Z. Thus C = C{a{1)) is
not a Sylow 2-subgroup of C{ag(1)). Choose ¢e Clay (1)) N N(C)— C
with ¢ a 2-element such that € C. Then Z° N Z = land so Z¢C Uy, — Z
as Z(C) = U,y must be normalized by ¢. The lemma now follows from the
fact that all involutions in U;; — Z are conjugate in Ny(T) = N {C) =
Ne(Uyy).

Lemva 9. Wheng =2, N(Z) =Hwhiledf ¢ > 2, | N(Zy: H| = ¢ — 1.
In particular, N(ZY= J-L with JNL = 1,L =0, X 8, where J, is
cyclic of order g — 1 and Sy S2(q). Further, C(Qy) " N(Z) =L and
B = N(T) = T -Qyts of order ¢**(q — 1), where O, is the diveci product of
two cyclic groups of order ¢ — 1.

Proof. By Lemma 8§, all involutions of Z are conjugate in G. Thus, all
involutions of Z are conjugate in B = N{(T) C N (Z) by a result of Burnside
[3, p. 2401. Since Cy(z) = Hforallze Z#, | N(Z): H| = g — 1 (= 1 when
g =2).

We see that U, is the only normal elementary Abelian subgroup of 7" of
order ¢% which implies that U,; <i B. By the Frattini argument, N(T') = B
covers N(Z)/H and so | B| = ¢**(g — 1)* as obviously BC N(Z). It is
clear that B is soluble, so we may choose a complement O, of T with
QeNH =Q.

Since Q, normalizes [Uy,; , O] = V,, there exists # € K* such that Cay;(2))
covers Q/O. It follows that Q; = Cyp (ayy(f)) is cyclic of order ¢ — I as
Co(oygy(2)) = H. From Lemma 8§, we see that a() = 2* for some x e M =
N(Uy,) and z € Z#. Thus, T% is the normal Sylow 2-subgroup of Cjgo(£)).
In particalar, (3, normalizes 7% and, therefore, centralizes Z{T%). Now
Uy = Cy, (Q1) X [Up, Q4] = Z(T*) X Z which implies C(Q1) N Uy = Vyy
as (, normelizes V. Hence, Q; <1y as {, normalizes V,y, and sc
Oo =0y X 0.

We have that O, normalizes H/J ~ Sz(g) and centralizes QJ/], a Hall
subgroup of HJ J. It follows that [Q, , H] C Jand so N(Z)/] = H|] x O, ]/ ],
where 0, is a complement of Q in Qp . The Frattini argument yields that N(Q;)
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covers H/J, whence C(Q,) covers HJJ. From Lemma 2, we see that
Cy(0Q,) = 1, whence C(Q,) N N(Z)/Q, ~ Sz(g). Clearly

Ca(Qs) = S: <1 C(Qx) N N(Z)

and so Cy(z)(Qs) = O, X S, where S, ~ Sz(g).

LemmMa 10.  We have the following fusion of involutions in G:
ay1(1) ~ ayo() ~ o9(1) 0q5(%p), for all t € K* and some

fixed ty e K;
ogo(1) ~ o(1) ~ ax(1) eyp(w), for all u e K — {z,}.

Proof. Recall from Section 2 that {(w,, V;> is a Sylow 2-subgroup of
Ny(Q). Further, £,({wy, V;5») = {wy, Z) is elementary of order 2g. Now
O, normalizes Ny(Q) and so O, centralizes an involution w;a,,(¢") for some
t' € K, and acts transitively on the other ¢ — 1 involutions in {w, , Z) — Z.
Since wy ~g ay(1), {ay(1), Z> — Z also possesses two classes of involutions in
N(Z); ie., for some fixed £, € K, ay(1) oy5(fy) #on(z) @(1) agp(f) for all
te K — {#,}, but the ¢ — 1 involutions (1) ay5(2), £ € K — {t,} are conjugate
in N(Z).

A computation vields 2,(C) = (F, ay(2), ag(t), ag(t) o5(t%)| £ € K> is of
order ¢® (where F =Ly(C) = Uy X V,, so F <q M), Z(8,(C)) = Uy, and
2(Cn J) = (E,F>is of order ¢% In N,(Z) there are precisely 5 conjugate
classes of involutions in F with representatives:

(1) eZ
ay(l)e Uy — Z

ago(l) € Uy — Uy
ag(l) € Uy — Uy

al)eF — U,.

age(1) o og(1)

oqe(1) T og(1)

Also in Ny (Z) there are precisely two conjugacy classes of (nontrivial)
cosets of F in £2,(C) which contain involutions. They have representatives
og(1) F and ay(1)F. The coset og(1) F contains ¢® involutions conjugate to
oq4(1) in H with representative og(1) and (¢ — 1) ¢® involutions conjugate to
oqe(1) in H with representative og(1) og(1). The coset op(1)F contains g3
involutions conjugate to ay(1) oy5(2,) and ¢3%(g — 1) involutions conjugate to
(1) oqa(ty), where £; € K — {t,}.

All that remains to be shown is that ag(1) ~p; (1) and (1) F' ~ 7 0g(1) F.
This follows because:
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(a) Z <4 Mbut Uy, <1 M,
(b) foranyee Uy — Uy, (Cle) N 2(CYY = Z,
(c) for any involution e € {ag(2) F | t € K*} (le, e c E — F),

(Cle) N Q(C)) — 2.
Lemma 12, We have M|C ~ GL(2, q) and

Caa(oao(1))/ Colmo(1)) 22 SL(2, ¢)-
Further, all involutions in M — C are comjugaie to o, o(1) in G.

Proof. We know that T = CV is a Sylow 2-subgroup of M and so T/C,
a Sylow 2-subgroup of M/C, is elementary Abelian of order g. A simple com-
putation shows that all involutions in 7 — C lie in | — C. Therefore, all
involutions in 7' — C are conjugate to (1) in H and to a,{l) in G (by
Lemma 11).

All involutions in Uy are conjugate in M, so

| M| =[HOM] (@ —1)=¢%(g— 17
and
| MICl=q-(g— 1@+ 1.

fxeT — C, Clx)y n Uy = Z, which means that if 7, is any other
Sylow 2-subgroup of M besides T, T; N T = C (using the fact that
Ny(Z) = Npy(T)). Thus, M/C is a T.I. group with Abelian Sylow
2-subgroups.

If ¢q=2,|M/C| =6, whence M/C = SL(2,2) = GL{2,2), and as
aq4(1) has precisely four conjugates in M, Cyr{ogo(1)) covers M/C. The lemma
is proved in this case.

In the case ¢ > 2, Suzuki’s result [9] yields that M possesses normal
subgroups L, , L, with M > Lit>L, << C,V ML, |, Ly: C} odd and
LofL, ~ SL{2, ¢). However, as 0y =0 X Oy, M|L,~ SL(2, q) and so by
Gaschutz’ theorem [5, Satz 1.17.4], M/C = GL(2, ¢). Finally, ay(1) has
g% — ¢* = ¢*(qg — 1) conjugates in M and | C : Celogy(1))] = ¢* so

| Carloyo(1)) * Celano{))] = g(g — 1)(g + 1)
The structure of GL(2, ¢) yields immediately that
Cra(ono(1))/Coloao(1)) == SL(2, g).

Lemma 13, We have Clay(1)) € M.
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Proof. Put X = Cg(oe(1)), Y = Cpr{oqe(1)) and recall that D = Cy(oy(1))
is a Sylow 2-subgroup of X.

Suppose that w® € Y for some w € Uy, and x € X. We claim that w® € Uy, .
If not, w* e Y N C — F, and so «® is conjugate to an involution in ag(1) F.
However, for any f€ Cp(xg(1)), an easy computation yields Ly(Cp(ag(1)f)) = Z.
Thus, Cp(ag(1) f) is a Sylow 2-subgroup of Cy(ag(1) f), whence ag(1) f can not
be conjugate to any involution in Uy, (as Cp(ag(1) f) C D). We have w* e Uy,
as required.

For any w e Uf;, Cx(w) C Y. This is clear because all involutions in Uy,
are conjugate in Y and for any z € Z#, Cx(2) = Cy(a(1)) = DC Y.

Finally we show that for any we Uy, Cy(op(1) w) & Y. It is enough to
consider @ € Z since C(og(1)) N Uy = O'(Kog(l), Upyp) = Z. Puty = (1) 2
for any x € Z. Since Y/Y N C =~ SL(2, g),

Cy(9) = Cp(y) = <& V1o, Vo, Vs, Vip

is elementary Abelian of order ¢° From the fact that U, is weakly closed in
Y with respect to X, it follows that Z is weakly closed in Cy( y) with respect
to X. Thus, Nx(Cy())C Ny(Z) N Cy(y) = Cy(y) which implies (by
Sylow) that Cy(y) is a self-normalizing (Abelian) Sylow 2-subgroup of
Cy(y). An application of Burnside’s transfer theorem yields that Cx(y)
possesses a normal 2-complement R. We act on R with the four group
Loy(1), ag(1)p, all of whose involutions are conjugate to a;p(1). Clearly
Crloqs(1)) = 1, so if R % 1 we may assume without loss that Cr(ag(1)) # 1.
Thus, a;5(1) inverts an element of odd order in Cg(wxg(1)). However,

| H N Colog(1))] = ¢

which forces a5(1) € O5(Ceg(1))) as C(og(1)) ~¢ H. This gives a contra-
diction to R # 1 and we conclude that C,(3)C Y.

The conditions of Proposition 2 are satisfied (with ¥ = Uy, w = ay(1),
W =Y and X = X) and we conclude, therefore, that Uy, <1 Xj ie.,
Cloag(1)) € M.

6. TuE IDENTIFICATION OF G WITH 2F(q)

We divide this section into two parts depending on whether ¢ > 2 or g = 2.

Casel. g>2
Put N = N(Q,) and recall B = N(T) = T-Q,. From the proof of

Lemma 10, C(Q,) N Ny(Q) = O<wyu,(t'))y for some t' € K. We put
w = wo(t) and have Nyz)(Qp) = Qlw). Further, C(Qy) =1, so
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Lemma 12 shows that N, {Q,) = Qy(v> where v is an involution in M — 7.
We can now state the following.

Lemma 14, The group Qy is self-centralizing in G and N = N(Q,) =
O, wd, where (v, wy =~ Dyq, the dihedral group of order 16.

Proof. We show first that C(Qg) = O, . From Lemma9, Cy(0,) =
05 X S, , where S, == Sz(g). The proof of Lemma 10 shows that w ~g apy{1)
and so Oy ~c0 as wel(Q,). Thus, C(Q)D Crnixn(Q) = C,V;. Since
Clz) N C(Q) = O x Vyfor all e Z#, C(Q) must be & T.I. group. Applying
Suzuki’s result [9] and using the fact that N(Z) N C(Q) = G,V we get
C(Q)Q == Sz(g). Hence, C(Q) =Q X 8y, S22 Sx(q) as O~ Q,. The
structure of S o~ Sz(g) yields immediately that C(Q,) = §, .

Our remarks above give us N = N{Q,) 2 0y(v, w)>. Lemma 12 implies
o ~¢ aq{1) and as w ~g a;5(1), (vw) has even order and therefore possesses
a unique involution 7. Further, Cg (¢) 2 [v, Qo] 22 O and we know ¢ nor-
malizes Cyp (v). If i centralizes Co,(0), v ~g i~ (1) as Cy(Q) =0 x V.
On the other hand, if [/, C 0,(0)] # 1,7 inverts an element of odd order in
Co(v). In particular ¢ ¢ Oy(C{v)) which implies, by Lemmas 12, 13, that
i ~g ay(l). Since w normalizes Cp (7), the same argument yields that
Co (1) = 1, as we have proved i ~¢ o(1).

As C(0y) = Qpand Cp (i) = 1, N(Qp) = N = Q4 * Cx(2). Since C (w) =
0, <1 Cufw), 0~ 0y and N(Q) = (Q X Sy)w, we have that Cy(w) —
{wy Qs Now i~go(l) so by Lemma 12,13 w e O,(C(7)), whence
O(Cy(z)) is a 2-group of maximal class. Thus, Cy(?) is a 2-group of maximal
class and as v« w, C\(i) is dihedral. Further, £2,(7) does not contain
elements of order 16, so Cy(7) is dihedral of order 8, 16. The proof of the
Lemma is completed by showing (v, o) o< Dy, .

It is enough to show that (vw)* =4 1. Since ve M — N(Z), ap(1) =
oiy4(2) a5 o{0s) for some ¢, u € K while (og(#) 0q0(#))* = p(8;) f for some ¢, € K,
je J. Thus, (a{t,) /)™ = ay(t, j) which implies (vw)t # 1 as we H — T
while Cy(ay(t;)7) € T. The lemma is proved.

Next we derive some results about the action of v on C. By definition,
ve N "M — N(Z). Thus, 0% X O =0, , and as O, normalizes C(Q%) N Uy,
ClOYN Uy = Vyy, Le, Z2 =V, . By Lemma 2, C(0*)C ], so V' =
{og(t2972) o (120 of 2, u)| £ € K, u is some fixed element of K and of#, u) € £
(here off, u) depends on ¢, #)>. {This follows because ¥V, = C(0) so V.,* =
Co(Q7) and V? is Q-invariant.) Now

s V'l = ([o(82) ont~20u) o2, ), a5(v)]] £, v € K
= {[og(t7%) q(1720), ()] £ v € KO

. §<0‘10(t)a ol te K> if u # 0,
T [ oye(t) te K> if u = 0.
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However, [V;?, V] is v-invariant which implies # = 0 and
Vo = ag(t) ft)| te K, (t) e EY = V*-.

Further, Vi, = Vy,, since u = 0.
From the proof of Lemma 10, V® = {o,(f) ()| t € K, ay(t) e ENF) =
Vo* Put (V*)e = {oy(t) (t)? | L€ K, oft)* € E> = V,*. Since

[V4*’ Um] = Z, (V4*)v = V1>'F

must cover I/]. Put (V;*)® = {og(t) op{t) | p(t)* € E, t € K> = V3* and
note that 7' == CV,;*. We have the following table for the action of v, w on
subgroups of T*

Subgroup X V3, ¥, [ Ve Vyx C ]

Xv Vi V& Vo, V& V, V¥ C

Xe Vy Vio Vit Vs Ve Ve J

For each w € (w, v) define I(z) to be the minimal length of « as a word in
w, v. (Clearly I(w) < 8 as (wv)® = 1). Using the table and the fact that
B = (JQo) Vi* = Vi*(JQy) = V5*(CQo) = (CQy) Vs* we have: if
[(vw) = l(w) then vBw C BvwB and if [(ww) > I(w) then wBw C BowwB, for
all w e {w, v>.

Since N(Z)/Q, - | == Sz(q), Q, - ] C B and B/Q, - [ is a Sylow 2-normalizer
of N(Z)]Q, * ], N(Z) = B U BwB (i.e., Sz(q) acts doubly transitively on its
Sylow 2-subgroups; see [8]). Similarly, we have M = B U BuB. For if
M, C B so that M,/C = O(M|C) then M/M, > SL(2,q) and B/M, is a
Sylow 2-normalizer of M/M, (and again, SL(2, q) acts doubly transitively
on its Sylow 2-subgroups; see [8] or [3, p. 41]).

By a result of Tits [11], the above two facts imply that

(a) sBw C BwB U BswB for each s € {w, v} and w € {w, v). Clearly, we
also have

(b) sBs =% B for se{w, v}.

Next we show G is simple. Suppose 1 == G, <1 G. As | Z | = ¢ > 2, G,
must be even as O(H) = 1. Thus at least one of ay(1), x;,(1) € G, . However,

[oer(1), ctg(1) o%(1)] = yy5(1) and
[aa(1) 4a(Z0) o5(1)] = ay0(1) ags(1) aa(1) ~ur aq(1),
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so (3, contains both o4(1) and «yy(1). In particular, H C G, and M'CG,, where
MM | =q—1and M'[C=SL2,q). Bt OC M — M and Q C H s0
Gy 2<{N(Z), My whence G, = G by the Frattini ar gument applied to the
Sylow 2-subgroup T. We have

(c) G is a simple group.

Put Gy = (B, Ny =<{T,0,,v, 0y = (N(Z), M>. From Section 5 it is
clear that for any pair of involutions x, y € T with & ~ y then x ~¢, ¥. Since
HC Gy and Cloye1)) € M C G it follows that C(x) C G, for each involution
x e T. Clearly T'is a Sylow 2-subgroup of G so G, contains the centralizer of
each of its involutions. If G, C G, G, would be “strongly embedded in &’ and
G would have one class of involutions, see [3, p. 306]. This is not the case so
we get

d) G =B, N>.

As the statements (a) and (b) above remain valid if we replace each element

x € {w, v) by ¥ = x(B N N), Lemma 14, (a), (b), {c), (d) imply the following.

Lemma 15, The group G is a finite simple group with a (B, N)-pair of rank
2 such that N = N(Qp) and B = QT = (BN N) T.

‘We remark that the term “rank 2" refers to the fact that NJBN N = N/Q,
is generated by two involutions.
It follows immediately from Lemma 15 and Thecrem B of Fong and Seitz

[1] that G ~ 2F(q).

CaseIl. g = 2

Levma 16, Let T = (M' N T, ay(1)>, a subgroup of index 2 in T. Then
for any element x € T*, x of order four, we have that x ~¢ as(1).

Proof. A simple computation gives C' = Q,(C) = (U, , a,(1), e5(1) o5{1}>
is of order 28 Further, [og(1), ay(1)] = (D) {1}’ ¢’ C’, and so
og(1) o5(1) € M". The factor group M/C is a faithful extension of an elemen-
tary group of order 8 by SL(2, 2) o~ Dy . If P is a Sylow 3-subgroup of M, P
fixes the coset az(1) C' (because {oy(1), C">/F is the only elementary subgroup
of C/F of order 16). Thus, | M : M’ | = 4 with ag(1) ¢ M. Put

T* = (M N T, (1))

so | T:7T*| =2 and (1) ¢ T*

Let x be an eclement of order four in T*. Suppose & ~g (1), so
x% ~g ay(1). Since all cosets in M’ N T/C’ are conjugate to o,(1) ax{1) C”
and if y is an element of order four in a,(1) w;(1) C’ then ¥ ~g oy (1), we
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have x¢ M' T — C'. We next consider xe T* — CNT* If xe J and
xE contains involutions, x% = a;5(1) s0 & 747 as(1), whence x 4 a5(1) (as
a5(1) E <1 H). On the other hand, if xE does not contain involutions (and
x € ), 2% ~g ago(l) as xE ~p a5(1) (1) E. Inthe case x ¢ J, as xF = ay(1) cE
for some ce C N T* — ], a simple computation shows (xE)* = x*F = jE
for some j € J, whence x* ~p a,(1) ~g aye(1).

Finally we consider the case when x€ C' — F. If xF does not contain
involutions, &2 ~g a;4(1). When xF does contain involutions, xF ~y, og(1) F.
But all elements of order four in ag(1) F lie in (1) E and so have square
ay5(1). Thus, x ~g a5(1) in this case as o (1) E +&y a5(1) E. The lemma is
proved.

Lemma 17. The group G possesses a normal subgroup G* of index 2 with
G* =~ 7, the Tits simple group.

Proof. It is easily seen that T — T possesses no involutions and so «(1)
is an element of minimal order in 7' — T*. Thus, Lemma 16 and Harada’s
transfer lemma [4, Lemma 16] yield that G possesses a subgroup G* of index
2 with 1) e G — G*. Now Cguoyo(l)) = HN G* = H* is a faithful
extension of a 2-group J* = J N H* of order 2° and class 3 by a Frobenius
group of order 20. Further, if P* is a Sylow 5-subgroup of H*,

Cp(P*) = Z(H?) = {oqx(1))-

Finally, {oq5(1)> is not weakly closed in 7 with respect to G* which implies
G* £ H*O(G*). It follows immediately from the author’s result [6] that
G*~=J.

We conclude that G =~ 2F,(2) by using an unpublished result of J. Tits
that Aut 7 o< ?F,(2), as clearly G C Aut G*. This completes the proof of the
theorem.
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