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Abstract Arsenic is a naturally occurring toxic metalloid of global concern. Many studies have
indicated a doseeresponse relationship between accumulative arsenic exposure and the prev-
alence of diabetes mellitus (DM) in arseniasis-endemic areas in Taiwan and Bangladesh, where
arsenic exposure occurs through drinking water. Epidemiological researches have suggested
that the characteristics of arsenic-induced DM observed in arseniasis-endemic areas in Taiwan
and Mexico are similar to those of non-insulin-dependent DM (Type 2 DM). These studies
analyzed the association between high and chronic exposure to inorganic arsenic in drinking
water and the development of DM, but the effect of exposure to low to moderate levels of
inorganic arsenic on the risk of DM is unclear. Navas-Acien et al. recently proposed that a posi-
tive association existed between total urine arsenic and the prevalence of Type 2 DM in people
exposed to low to moderate levels of arsenic. However, the diabetogenic role played by
arsenic is still debated upon. An increase in the prevalence of DM has been observed among
residents of highly arsenic-contaminated areas, whereas the findings from community-based
and occupational studies in low-arsenic-exposure areas have been inconsistent. Recently, a po-
pulation-based cross-sectional study showed that the current findings did not support an asso-
ciation between arsenic exposure from drinking water at levels less than 300 mg/L and
a significantly increased risk of DM. Moreover, although the precise mechanisms for the
arsenic-induced diabetogenic effect are still largely undefined, recent in vitro experimental
studies indicated that inorganic arsenic or its metabolites impair insulin-dependent glucose
uptake or glucose-stimulated insulin secretion. Nevertheless, the dose, the form of arsenic
used, and the experimental duration in the in vivo studies varied greatly, leading to conflicting
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results and ambiguous interpretation of these data with respect to human exposure to arsenic
in the environment. Moreover, the experimental studies were limited to the use of arsenic
concentrations much higher than those relevant to human exposure. Further prospective
epidemiological studies might help to clarify this controversy. The issues about environmental
exposure assessment and appropriate biomarkers should also be considered. Here, we focus on
the review of mechanism studies and discuss the currently available evidence and conditions
for the association between environmental arsenic exposure and the development of DM.
Copyright ª 2011, Elsevier Taiwan LLC. All rights reserved.
Introduction

Arsenic is a naturally occurring toxic metalloid of global
concern. It can be found as inorganic and organic forms in
the environment. Inorganic forms of arsenic, which are the
predominant forms in surface and groundwater reservoirs,
are more toxic than the organic forms. Arsenic can be easily
solubilized in groundwaters, depending on pH, redox
conditions, temperature, and solution composition. Many
geothermal waters contain high concentrations of arsenic.
Natural arsenic in groundwater at concentrations greater
than the drinking water standard of 10 mg/L is not
uncommon. Man-made sources of arsenic, such as mineral
extraction and processing wastes, poultry and swine feed
additives, pesticides, and highly soluble arsenic trioxide
stockpiles, are also not uncommon and have contaminated
soil and drinking water [1,2]. Arsenic-contaminated food
is also a widespread problem worldwide [3]. It has been
described that data derived from population-based studies,
clinical case series, and case reports relating to ingestion
of inorganic arsenic in drinking water, medication, or
contaminated food or beverages show the capacity of
arsenate and arsenite to adversely affect multiple organ
systems [3]. An estimated 36 million people in the Bengal
Delta are at risk because of the consumption of arsenic-
contaminated water. The occurrence of arsenic contami-
nation in groundwater in Taiwan has been recognized for
several decades [1]. Epidemiological studies have demon-
strated that it was associated with chronic exposure to
arsenic in drinking water and increased rates of various
chronic diseases, including cancers; diseases of the nervous
system; peripheral vascular disease (blackfoot disease,
a peripheral artery disease); and endocrine dysfunction in
the United States and other countries [4,5]. Therefore, the
United States Environmental Protection Agency recom-
mended a reduction in the maximum contaminant level
from 50 mg/L to 10 mg/L for arsenic in public drinking water
supplies. In Taiwan, the areas along the southwestern coast
are known to have arsenic contamination in drinking-water
wells or undergroundwater, and hyperendemic occurrence
of peripheral vascular disease (as blackfoot disease) is
observed in the villages of these areas [5e7]. In these
areas, arsenic concentrations in drinking water are
measured and found to be in the range 0.35e1.14 mg/L,
with a median concentration of 0.78 mg/L, in the early
1960s [8].

Diabetes mellitus (DM) is a group of metabolic diseases
characterized by hyperglycemia resulting from defects in
insulin secretion by pancreatic b-cells and/or insulin action
on peripheral tissues. From the multivariable diabetes risk
score, it has been analyzed that the number of adults at
a high risk of diabetes was 38.4 million in 1991 and 49.9
million in 2001 in the United States [9]. The authors also
predicted the total diabetes burden to be 11.5% (25.4
million) in 2011, 13.5% (32.6 million) in 2021, and 14.5%
(37.7 million) in 2031 [9]. Insulin-dependent DM (IDDM
or Type 1 DM) is caused by autoimmune or idiopathic
destruction of the insulin-producing pancreatic b-cells,
leading to a severe deficiency of insulin (hypoinsulinemia)
and the elevation of blood glucose levels (hyperglycemia)
[10]. Various proinflammatory cytokines, such as interleukin-
1b, tumor necrosis factor a, interferon-g, and reactive
oxygen species, have been found to play important roles in
islet b-cell destruction. A key role played by nuclear factor
(NF)-kB signaling in cytokine-induced b-cell dysfunction and
death was also shown [11,12]. In addition, non-insulin-
dependent DM (NIDDM or Type 2 DM) is a multiorgan
disease with an unknown specific etiology (although hered-
itary factors, aging, and obesity are important risk factors)
that involves both peripheral insulin resistance in adipose,
liver, and muscle cells, and insufficient insulin production
because of pancreatic b-cell dysfunction [13]. It is estimated
that approximately 90e95% of diabetes cases are Type 2 DM,
whereas less than 10% of the cases are Type 1 DM and other
specific types.

Many studies have indicated that there is a dosee
response relationship between accumulative arsenic
exposure and prevalence of DM in the villages along the
south-western coast of Taiwan, where the inhabitants are
exposed to arsenic through drinking water (0.1e15 mg/L
and >15 mg/L every year). The incidence of DM in these
villages was two to five times higher than that in other areas
where arseniasis is non-endemic [14,15]. Moreover, similar
studies have been reported in Bangladesh, Sweden, and
the United States [16e18]. Therefore, chronic exposure
to arsenic implies a risk factor for DM in the arsenic-
contaminated environments. However, the detailed effects
and molecular mechanisms of arsenic-related DM remain
unclear.

Epidemiological research

Positive suggestions

In 1994, Lai et al. [14] first reported that chronic exposure
to inorganic arsenic from drinking water may be associated
with the prevalence of DM in the blackfoot diseasee
hyperendemic villages of Taiwan. The authors further sug-
gested the presence of a doseeresponse relationship
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between cumulative arsenic exposure and the prevalence
of DM; the multivariate-adjusted odds ratios were 6.61 and
10.05 for those who had cumulative arsenic exposures of
0.1e15.0 ppm/yr and greater than 15.0 ppm/yr, respec-
tively, compared with those who were unexposed [14].
Other research showed a link between the prevalence of
DM and the chronic consumption of groundwater, which
contains high levels of inorganic arsenic, and this finding
was later confirmed by several cross-sectional studies from
Taiwan [7,19e21]. In Bangladesh, the crude prevalence
ratio of DM among arsenic-exposed individuals with kera-
totic lesions was evaluated to be 4.4 (with a 95% confidence
interval of 2.5e7.7) [17]. Nabi et al. [22] further found that
the prevalence of DM among chronic arsenic-exposed indi-
viduals in Bangladesh, where the average levels of arsenic
in the drinking water and spot urine samples were
218.1 ppb and 234.6 ppb, respectively, was approximately
2.8 times higher than that in the unexposed individuals. In
caseecontrol data from a Swedish copper smelter study,
the odds ratios for DM with increasing arsenic exposure
categories (<0.5 mg/m3, 0.5 mg/m3, and >0.5 mg/m3)
were found to be 2.0, 4.2, and 7.0 (the unstratified test for
trend was weakly significant, pZ 0.03), respectively [16].
In Mexico, a caseecontrol study in an arseniasis-endemic
region also found that subjects with intermediate total
urinary arsenic levels (63.5e104 mg/g creatinine) were at
a twofold higher risk of diabetes (odds ratioZ 2.16; 95%
confidence intervalZ 1.23e3.79), but the risk was almost
three times greater in individuals with higher levels of total
urinary arsenic (odds ratioZ 2.84; 95% confidence inter-
valZ 1.64e4.92) [23]. Moreover, epidemiological researches
have suggested that the characteristics of arsenic-induced
DM in arseniasis-endemic areas in Taiwan and Mexico are
similar to those of Type 2 DM [19e21,23]. These findings
suggest that the ingestion of arsenic may predispose the
development of DM in arsenic-endemic areas.

The aforementioned epidemiological studies analyzed
the association between high chronic exposure to inorganic
arsenic in drinking water and the development of DM.
However, the effect of exposure to low to moderate levels
of inorganic arsenic on the risk of DM is unclear. Recently,
Navas-Acien et al. [24] reported that the odds ratio for Type
2 DM was 3.58 (95% confidence intervalZ 1.18e10.83),
when they compared participants at the 80th percentile
with those at the 20th percentile for the level of total
urinary arsenic (16.5 mg As/L vs. 3.0 mg As/L). Therefore,
the authors suggested a positive association between total
urine arsenic, which reflected the inorganic arsenic expo-
sure from drinking water and food, and the prevalence
of Type 2 DM in people with low to moderate arsenic
exposure.

The studies of Lai et al. [14] and Tsai et al. [7] have
indicated an increased prevalence of diabetes in women
compared with that in men occurred after 40 years of age in
areas with high levels of inorganic arsenic in drinking water.
For both men and women, the prevalence of DM increased
with age. The prevalence was slightly higher among men
than among women before 40 years of age. However, the
prevalence was higher among women than among men
thereafter (the age-adjusted prevalence was significantly
higher in women), especially in the postmenopausal phase
(>50 years of age, i.e. women who had low or deficient
estrogen levels) in areas with high levels of arsenic in
drinking water [7,14]. The study of Wang et al. [21] also
showed that the prevalence odds ratios of diabetes in the
arseniasis-endemic areas in Taiwan, in comparison with the
non-endemic areas, were consistently greater for women
than for men. It was also suggested that the association
between arsenic exposure (in a blackfoot diseaseeendemic
area) and DM was likely to be causal in women but not in
men [25]. Chiou et al. [5] showed that the prevalence of
microvascular diseases significantly increased with arsenic
exposure, especially at higher levels, and that the rela-
tionship was stronger in diabetic than in nondiabetic
subjects. For diabetic patients, the prevalence of micro-
vascular diseases among female subjects was greater
than that in male subjects for all categories of the arsenic
levels [5].
Weak points and negative suggestions

Epidemiological and scientific results indicate that the
diabetogenic role of arsenic is still debated upon. An
increased prevalence of DM has been observed among
residents of highly arsenic-contaminated areas, whereas
the findings from community-based and occupational
studies in low-arsenic-exposure areas have been inconsis-
tent [15,26e28]. A caseereference analysis on the death
records of Swedish art glass workers, who were regarded as
potentially exposed to arsenic, showed a slightly elevated
risk (ManteleHaenszel odds ratioZ 1.2, 95% confidence
intervalZ 0.82e1.8) for DM. This study provided limited
support for the possibility that occupational arsenic expo-
sure could play a role in the development of DM [26]. The
reviewed article by Tseng et al. [15] also stated that the use
of weak cross-sectional or caseecontrol study designs, the
use of glucosuria or DM death as diagnostic criteria, and the
lack of adjustment for possible confounding variables in
some studies are major limitations that weaken the
evidence for an association between arsenic exposure and
DM in studies from Taiwan, Bangladesh, and Sweden [15].
Similarly, a systematic review by Navas-Acien et al.
mentioned that the available evidence was inadequate to
establish a causal role played by arsenic in DM. They sus-
pected that methodological issues limited the interpreta-
tion of the association in the studies from Taiwan and
Bangladesh, and the evidence from occupational studies
and from the general populations in countries other than
Taiwan or Bangladesh was inconsistent [27]. Chen et al. [28]
also commented that the reason for inconsistent findings of
arsenic and DM in occupational studies may be related to
the “healthy worker effect” and the variation in exposure
measurement; age composition; patient number; accuracy
in diagnosis; and classification of underlying causes of
death, competing causes of death, and DM detection
methods. Moreover, the recent study by Kile and Christiani
indicated that one of the limitations in the analysis of an
association between arsenic exposure and DM has been the
use of total urinary arsenic as the exposure metric. They
further explained that the use of urinary arsenic as
a biomarker may cause difficulty in ascertaining historical
exposures that may be more relevant for the pathogenesis
of Type 2 DM, because urinary arsenic is a biomarker of
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short-term exposure with a half-life of approximately 3
days [29].

There have been no reports concerning DM in pop-
ulations known to be exposed to high levels of arsenic in
drinking water in Chile and Argentina, although this could
reflect a lack of research or be related to a publication bias
[30]. Recently, Chen et al. conducted a population-based
cross-sectional study using baseline data of 11,319 partici-
pants in Bangladesh to evaluate the association between
well water arsenic and total urinary arsenic concentration
and the prevalence of DM and glucosuria. The authors found
that more than 90% of the cohort members were exposed to
drinking water with an arsenic concentration less than
300 mg/L and observed no association between arsenic
exposure and the prevalence of DM and glucosuria: there is
no evidence of an association between well water arsenic
concentration, total urinary arsenic, or the composition of
urinary arsenic metabolites and glycosylated hemoglobin
(HbA1c) levels [31].

Basic research

In vitro experimental studies

Insulin, a metabolic hormone produced and secreted by the
pancreatic islet b-cells, triggers the principal responses to
lower blood glucose level by stimulating the uptake of
glucose into skeletal muscle and peripheral adipose tissue
as well as suppressing gluconeogenesis and glycogenolysis
in the liver. Insulin insufficiency causes deleterious effects
on glucose homeostasis, involved in the pathophysiological
processes of Type 1 and 2 DM [32]. Physiologically, glucose
transport into the pancreatic b-cells could induce insulin
secretion. The signal transduction pathway begins with the
entrance of glucose into the cell through a transporter
followed by glycolysis and leads to the production of
adenosine triphosphate, which, in turn, closes the adeno-
sine triphosphate-sensitive potassium channel and depo-
larizes and opens the voltage-dependent calcium channel
present in the cell membrane. A calcium flux through the
opened channels finally triggers exocytosis of insulin from
the b-cells [33,34]. On the other hand, oxidative stress is
induced under diabetic conditions through various path-
ways, including the electron transport chain in mitochon-
dria and the nonenzymatic glycosylation reaction, and is
likely to be involved in the progression of the pancreatic b-
cell dysfunction that develops in DM [11]. Pancreatic b-cells
are the most vulnerable to oxidative stress-induced damage
because they have lower levels of antioxidant enzymes,
such as glutathione peroxidase, superoxide dismutase, and
catalase [35]. Superoxide has been suggested to impair
glucose-stimulated insulin secretion in pancreatic b-cells in
which endogenous superoxide was released from the
mitochondria [36]. If excess oxidative stress is produced in
the pancreatic b-cells, it may be expected to impair insulin
secretion.

Although the cellular andmolecularmechanisms bywhich
arsenic induces its diabetogenic effect are still largely
undefined, recent in vitro experimental studies indicate that
inorganic arsenic or itsmetabolites impair insulin-dependent
glucose uptake or glucose-stimulated insulin secretion.
Table 1 presents several in vitro studies regarding the effects
of arsenic on insulin-dependent glucose uptake or glucose-
stimulated insulin secretion, published in the past 5 years.
The study by Diaz-Villasenor et al. [37] showed that the
incubation of isolated rat pancreatic islets with a subtoxic
concentration of arsenite (5 mM) for 72 hours significantly
inhibited glucose-stimulated insulin secretion and mRNA
expression. Diaz-Villasenor et al. further demonstrated that
subchronic low levels of arsenite (0.5e2 mM) impaired insulin
secretion by decreasing the oscillation of intracellular free
Ca2þ, thus reducing calcium-dependent calpain-10 partial
proteolysis of the synaptosomal-associated protein of
25 kDa (a member of the insulin secretory machinery) [38].
Yen et al. [39] also showed that arsenic trioxide (As2O3,
1e10 mM) induced the dysfunction of insulin secretion,
which may be mediated by oxidative stress in pancreatic b-
cells. Interestingly, a recent study by Fu et al. [40] showed
that the exposure of pancreatic b-cells to low levels of
arsenite (0.05e0.5 mM) impaired glucose-stimulated insulin
secretion. The authors further suggested that nuclear
factor-erythroid 2-related factor 2 activation and the
induction of antioxidant enzymes in response to arsenic
exposure impede reactive oxygen species signaling involved
in glucose-stimulated insulin secretion and thus disturbed
b-cell function [40]. These findings suggested that arsenic
contributes to the development of DM by impairing
pancreatic b-cell functions, particularly insulin synthesis
and secretion.

Insulin-stimulated glucose uptake by peripheral tissues
is a crucial process responsible for the regulation of post-
prandial blood glucose levels. Disruption of glucose
homeostasis can involve impaired glucose utilization and/or
insulin resistance by adipose tissue and skeletal muscle [50].
It has been indicated that arsenicals can alter signal trans-
duction factors, including p38 mitogen-activated protein
kinase (MAPK), phosphatidylinositol-3 kinase (PI3K) and its
downstream signals 3-phosphoinositide-dependent kinase-1
and PI3K-dependent phosphorylation of protein kinase B
(PKB/Akt), tumor necrosis factor-a, interleukin-6, and
NFkB, to affect insulin-stimulated glucose uptake in adipo-
cytes or skeletal muscle cells [51,52]. Disruption of insulin-
stimulated glucose uptake has been suggested to be the
response to chronic arsenic exposure for potential mecha-
nism to develop the Type 2 DM. Phenylarsine oxide, an
aromatic derivative of trivalent arsenic, has been shown to
inhibit insulin-stimulated glucose transport in adipocytes,
which may be associated with the inhibition of phosphory-
lation of endogenous phosphoproteins (p24 and p240)
[53e55]. Later reports demonstrated that phenylarsine
oxide inhibits the insulin-stimulated glucose transporter
(GLUT)4 translocation and triggers GLUT4 degradation in
adipocytes [56,57]. Moreover, the recent study by Scott
et al. [41] found that phenylarsine oxide stimulates glucose
uptake at low concentrations (3 mM, 30 minutes) but inhibits
glucose uptake at a higher concentration (40 mM) in L929
mouse fibroblast cells, which express only GLUT1. On the
other hand, insulin-stimulated p38 MAPK phosphorylation
has been shown to increase GLUT4 translocation, resulting
in an increase in glucose uptake [58,59]. Akt (PKB) signaling
expression is also one of the key steps in the activation of
GLUT4 and its translocation to the cellular membrane in
response to insulin [60,61]. Several studies have found that



Table 1 Arsenic: in vitro and in vivo experiments

Main references Experimental
cells/animals

Arsenic exposure Exposure dose
and duration

Results

In vitro experiments
[37] Isolated islets Arsenite 0.5e10 mM, 72 hr

or 144 hr
GSIS (5 mM, 72 hr) Y
Insulin mRNA levels Y

[38] b-Cells Arsenite 0.5e2 mM, 72 hr GSIS Y

Intracellular free [Ca2þ]i Y
SNAP-25 proteolysis Y

[39] b-Cells Arsenic trioxide (As2O3) 1e10 mM, 2e8 hr Insulin secretion Y

ROS generation [

ATP depletion and cell apoptosis

[40] b-Cells Arsenite 0.05e0.5 mM, 96 hr

GSIS Y

Nrf2 activity [

Intracellular GSH [

Glucose-stimulated intracellular
peroxide production Y

[41] Fibroblasts PAO 1e40 mM, 30 min Glucose uptake at low-dose PAO [

Glucose uptake at high-dose PAO Y

[42] Adipocytes Arsenite 50 mM, 4 hr ISGU Y

PDK-1 and Akt phosphorylation YMAsIII 2 mM, 4 hr
[43] Myoblasts Arsenic trioxide 0.1e0.5 mM Inhibition of myogenesis

Akt phosphorylation Y

[44] Wistar rat (_) Arsenite (ip) 5.55 ppm, 30 d Blood glucose levels [
Liver glycogen Y

[45] Wistar rat (_) Arsenite (og) 1.7 mg/kg, 90 d Blood glucose levels [
Plasma insulin levels [
HOMA-IR index [

Low insulin sensitivity
[46] C57BL/6 mice (_) Arsenite (po) 10 ppb, 50 ppb, 21 d Altered hexokinase II expression
[47] C57BL/6 mice (_) Arsenite (po) 25 ppm, 50 ppm, 56 d Impaired glucose tolerance
[48] C57BL/6 mice (_) Arsenite (po) 1e50 ppm, 8 wk Impaired glucose tolerance
[39] ICR mice (_) Arsenic

trioxide (po) (As2O3)
10 ppm, 5e12 wk Decreased plasma insulin

[49] LM/Bc/Fnn mice (\) Arsenate (ip) 9.6 mg/kg, 2 d Fasting plasma glucose [

Fasting plasma insulin [

HOMA-IR index [

Impaired glucose tolerance

[Z increase; YZ decrease; ATPZ adenosine triphosphate; GSHZ glutathione; GSISZ glucose-stimulated insulin secretion; HOMA-
IRZ homeostasis model assessment of insulin resistance; ipZ intraperitoneal; ISGUZ insulin-stimulated glucose uptake; MAsIIIZ
methylarsonous acid; Nrf2Z nuclear factor-erythroid 2-related factor 2; ogZ oral gavage; PAOZ phenylarsine oxide; PDK-1Z
1,3-phosphoinositide dependent kinase 1; poZ per oral in drinking water; ROSZ reactive oxygen species; SNAP-25Z synaptosomal-
associated protein of 25 kDa.
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exposure to high levels of arsenicals (phenylarsine oxide or
arsenite) can stimulate basal glucose uptake (insulin inde-
pendent) in adipocytes and skeletal muscle cells [62e65].
These effects of toxic concentrations of arsenicals were
associated with the activation of p38 MAPK or PI3K/Akt-
mediated signal pathways [62,63,65e67]. A study by Paul
et al. [42] demonstrated that short-term exposure to
arsenite and methylarsonous acid significantly inhibited
insulin-stimulated glucose uptake in adipocytes through a
3-phosphoinositide-dependent kinase-1/PKB/Akt-mediated
transduction pathway. Yen et al. [43] also found that low
doses of arsenic (As2O3, 0.1e0.5 mM) inhibited myogenic
differentiation and muscle regeneration through a PKB/Akt-
related signaling pathway. These findings suggested that
arsenic contributes to the development of DM or insulin
resistance by impairing insulin-stimulated glucose uptake.
In vivo experimental studies

Previous studies have investigated the alterations of blood
glucose and insulin levels in goats, rats, and mice treated
with arsenite or arsenate by means of food, drinking water,
or intraperitoneal injection [68e72]. However, the dose,
form of arsenic used, and the experimental duration in
these studies varied greatly, leading to conflicting results
and ambiguous interpretation of the data with respect to
human exposure to arsenic present in the environment.
Table 2 shows the potential responses for diabetogenic
effect associated with chronic exposure to arsenic in
animals published in the past 5 years. These studies
examined blood glucose or insulin levels in rats or mice
after exposure to inorganic arsenic through drinking water,
oral gavage, or intraperitoneal injection. Blood glucose and



Table 2 Arsenic: epidemiological research

Main Refs. Suggestions Location and As exposures Results

[14] Positive Taiwan: drinking-water As, 0.1e15 ppm/yr or
>15 ppm/yr

A doseeresponse relationship between
cumulative As exposure and the prevalence
of DM

[22] Positive Bangladesh: drinking waterdaverage As,
218.1 ppb; spot urinedaverage As, 234.6 ppb

The prevalence of DM among chronic
As-exposed subjects was approximately
2.8 times higher than that in the unexposed
subjects

[23] Positive Mexico: urinary As, 63.5e104 mg/g creatinine Twofold higher risk of DM
[16] Positive Sweden: occupational As (copper smelter)d

<0.5 mg/m3, 0.5 mg/m3, and >0.5 mg/m3
The odds ratios for DM with increasing As
exposure categories were 2.0, 4.2, and 7.0,
respectively

[24] Positive USA: median urine total As, 7.1 ppb The prevalence of Type 2 DM was 7.7%.
[26] Negative Sweden: occupational As exposure (art glass

workers)
Limited support for As exposure plays a role in
the development of DM

[31] Negative Bangladesh: drinking water, <300 ppb No association between As exposure and the
prevalence of DM and glucosuria

AsZ arsenic; DMZ diabetes mellitus.
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liver glycogen level were decreased in rats exposed to
5.55 ppm arsenite by intraperitoneal injection for 30
consecutive days [44,73]. Izuierdo-Vega et al. [45] found
that hyperglycemia, hyperinsulinemia, low insulin sensi-
tivity, elevated homeostasis model assessment of insulin
resistance, and increased pancreatic lipid peroxidation
were induced by oral administration of sodium arsenite to
rats at 1.7 mg/kg for 90 days. The authors also suggested
that subchronic exposure to inorganic arsenic induced
oxidative stress and oxidative damage in the pancreas, and
this could be implicated as a cause of insulin resistance
[45]. Moreover, the expression of hexokinase II in the renal
cortical glomeruli was significantly upregulated in C57BL/6
mice exposed to low levels of arsenic (10 ppb and 50 ppb)
through the drinking water for 21 days; altered hexokinase
II expression in the renal cortex has been demonstrated to
be associated with a variety of pathological conditions,
including DM [46]. An impaired glucose tolerance was also
observed in C57BL/6 mice exposed to a high level of arse-
nite (50 ppm) for 8 weeks; the authors further suggested
that mice are less susceptible than humans to the arsenic-
induced diabetogenic effect because of their ability to
more efficiently clear arsenic or its metabolites from target
tissues [47,48]. Yen et al. [39] reported that plasma insulin
levels were significantly decreased in ICR mice exposed to
arsenic trioxide (10 ppm) in drinking water for 5e12 weeks.
Recently, Hill et al. [49] showed that arsenate (9.6 mg/kg),
which was administrated by intraperitoneal injection to
maternal LM/Bc/Fnn mice on gestational Days 7.5 and 8.5,
significantly increased fasting plasma glucose and insulin
levels, glucose intolerance, and homeostasis model
assessment of insulin resistance.
Limitations and conclusions

Many epidemiological studies have indicated that exposure
to arsenic from drinking water in arsenic-contaminated
areas can induce DM, suggesting a possible role played by
high levels arsenic exposure in DM, whereas the effects of
exposure to lower concentrations of arsenic on diabetes are
unclear (Table 2). A recent study by Navas-Acien et al. [24]
found a positive association between total urinary arsenic
and the prevalence of Type 2 DM in a population in the
United States exposed to moderate levels of arsenic. The
authors further indicated that the issue of involvement of
arsenic in diabetes epidemic is a public health research
priority with potential implications for the prevention and
control of DM. Therefore, the environmental factors may
play an important role in DM development and prevention.

On the other hand, the detection of urinary arsenic has
been questioned to be not an appropriate biomarker to
ascertain historical exposures for the pathogenesis of Type
2 DM [29]. Moreover, the recent findings by Chen et al. [31]
did not support an association between arsenic exposure
through drinking water at levels less than 300 mg/L and
a significantly increased risk of DM. Therefore, further
prospective epidemiological studies may help to clarify the
controversy. The issues about environmental exposure
assessment and appropriate biomarkers should also be
considered.

The experimental studies were limited to the use of
arsenic concentrations much higher than those relevant to
human exposure. The current United States Environmental
Protection Agencyerecommended standard for arsenic in
drinking water is 10 ppb. The concentration range of inor-
ganic arsenic (arsenite) used in studies of glucose uptake
in cultured cells was 400e750,000 ppb and that of arsenite
in in vivo studies of glucose metabolism was 5,000e
100,000 ppb [27]. Nevertheless, several recent studies used
low levels of arsenic in the in vitro (0.05e0.5 mM) and
in vivo (10 ppb and 50 ppb) experiments (Table 1). More-
over, whether arsenic through the generation of oxidative
stress causes b-cell dysfunction and glucose metabolism/
homeostasis, and whether chronic arsenic exposure affects
the expression of the b-cell-related or glucose metabolism/
homeostasis-related signaling transduction molecules and
then alters blood glucose regulation and induces diabetes
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are unknown. These doubts, therefore, also need to be
clarified. Taken together, although the data from some
laboratory studies support the incidence and clinical
symptoms of arsenic-induced DM, many experimental data
are presented insufficiently and inadequately to explain the
epidemiological findings. It is important to identify the
appropriate cell and animal models that can mimic human-
exposed conditions in arsenic-contaminated areas, and thus
can clearly link arsenic exposure and DM.
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