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a b s t r a c t

This study is devoted to constraint qualifications and strong Kuhn–Tucker necessary
optimality conditions for nonsmoothmultiobjective optimization problems. Themain tool
of the study is the concept of convexificators. Mangasarian–Fromovitz type constraint
qualification and several other qualifications are proposed and their relationships are
investigated. In addition, sufficient optimality conditions are studied.
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1. Introduction

In nonlinear programming with scalar-valued objective function, constraint qualifications play an important role in
deriving the Lagrange multiplier rules. For instance, constraint qualifications assure the existence of positive Lagrange
multipliers associated with the objective function, and this implies that the Fritz-John conditions and the Kuhn–Tucker
conditions are equivalent to each other. In multiobjective optimization problems, many authors have derived the necessary
conditions under the same constraint qualifications as are used in nonlinear programming with scalar-valued objective
function. In these approaches, however, we could not obtain positive Lagrangemultipliers associatedwith the vector-valued
objective function, namely, some of the multipliers may be equal to zero. This means that the components of the vector-
valued objective function have no role in the necessary conditions for efficiency. In order to avoid the case where some of
the Lagrange multipliers associated with the objective function vanish for a multiobjective optimization problem, several
approaches have been developed in recent years, and strong Kuhn–Tucker (K–T) necessary optimality conditions have been
obtained. We say that strong K–T conditions hold when the Lagrange multipliers are positive for all components of the
objective function.

Maeda [1] considered differentiable multiobjective optimization problems and gave strong K–T necessary conditions for
a Pareto minimum of a function over a feasible set defined by inequality constraints under a regularity condition. Later,
Preda and Chitescu [2] extended the results obtained by Maeda for the continuously differentiable case of the optimization
problem to the directionally differentiable case.

Recently, the notion of convexificators has been used to extend various results in nonsmooth analysis and optimization
(see [3–5]). Convexificators can be viewed as a weaker version of the notion of subdifferentials and thus are more amenable
to analysis and applications. Indeed, convexificators are in general closed sets, unlike the well-known subdifferentials
which are convex and compact objects. For a locally Lipschitz function, most known subdifferentials are convexificators and
these known subdifferentials may contain the convex hull of a convexificator; see, for instance, [3,6,7]. Therefore, from the
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viewpoint of optimization and applications, the descriptions of the optimality conditions in terms of convexificators provide
sharper results. For nonsmooth optimization problems, various results concerning Fritz-John type and Kuhn–Tucker type
necessary optimality conditions that use convexificators have been developed in [4,7–9]. In the framework of the locally
Lipschitz case, Li and Zhang [10] consider only inequality constraints and provide strong Kuhn–Tucker necessary optimality
conditions that are expressed in terms of upper convexificators, by imposing some convexity assumptions on the derivatives.

In this paper, by using the idea of convexificators, we study strong Kuhn–Tucker necessary optimality conditions
for a nonsmooth multiobjective optimization problem with inequality constraints and an arbitrary set constraint. We
propose first a nonsmooth analogue of the generalized Mangasarian–Fromovitz constraint qualification by using the
convexificators and for efficient solutions we derive stronger K–T type necessary conditions that are expressed in terms
of the convexificators. Moreover, we propose some other constraint qualifications and we explore the relationships among
them. Then, we give examples to show that the regularity conditions imposed on the upper convexificators are necessary
for our qualifications to guarantee nonemptiness of the Kuhn–Tucker multipliers set.

In this paper,we consider locally Lipschitz functions andwedonot assume that the directional derivatives of the objective
function and inequality constraints are sublinear in the second variable.

The outline of the paper is as follows. In Section 2, notation, definitions, and preliminaries are given. In Section 3, the
nonsmooth version of the Mangasarian–Fromovitz constraint qualification is given and the strong Kuhn–Tucker optimality
conditions are obtained.Moreover, other constraint qualifications are given and the relationships among these qualifications
are discussed.

2. Preliminaries

Throughout this paper, Rℓ is the usual ℓ-dimensional Euclidean space. Let x = (x1, . . . , xℓ) and y = (y1, . . . , yℓ) be two
vectors in Rℓ. Then,

x 5 y ⇐⇒ xi ≤ yi, i = 1, . . . , ℓ,
x ≤ y ⇐⇒ xi ≤ yi, i = 1, . . . , ℓ, and x ≠ y,
x < y ⇐⇒ xi < yi, i = 1, . . . , ℓ.

Let S be a nonempty subset of Rℓ. The convex hull of S, the closure of S and the convex cone (containing the origin of Rℓ)
generated by S are denoted by co S, cl S and cone S, respectively. The negative polar cone S− and the strictly negative polar
cone Ss are defined respectively by

S−
= {v ∈ Rℓ

| ⟨x, v⟩ ≤ 0∀ x ∈ S},
Ss = {v ∈ Rℓ

| ⟨x, v⟩ < 0∀x ∈ S}.

The contingent cone T (S, x) and the normal cone N(S, x) at x ∈ cl S are defined respectively by

T (S, x) =


v ∈ Rℓ

|∃tn ↓ 0 and vn → v such that x + tnvn ∈ S∀n

,

N(S, x) = T (S, x)− =


ξ ∈ Rℓ

|⟨ξ, v⟩ ≤ 0∀v ∈ T (S, x)

.

We recall the following definitions from [6].
Let f : Rℓ

→ R := R ∪ {+∞} be an extended real-valued function, x ∈ Rℓ, and let f (x) be finite. The lower and upper
Dini derivatives of f at x in the direction v ∈ Rℓ are defined, respectively, by

f −(x; v) := lim inf
t↓0

f (x + tv) − f (x)
t

,

f +(x; v) := lim sup
t↓0

f (x + tv) − f (x)
t

.

The function f : Rℓ
→ R is said to have an upper convexificator ∂∗f (x) ⊂ Rℓ at x ∈ Rℓ if ∂∗f (x) is closed and for each

v ∈ Rℓ,

f −(x; v) ≤ sup
ξ∈∂∗f (x)

⟨ξ, v⟩.

The function f : Rℓ
→ R is said to have a lower convexificator ∂∗f (x) ⊂ Rℓ at x ∈ Rℓ if ∂∗f (x) is closed and for each v ∈ Rℓ,

f +(x; v) ≥ inf
ξ∈∂∗f (x)

⟨ξ, v⟩.

The function f : Rℓ
→ R is said to have an upper regular convexificator ∂∗f (x) ⊂ Rℓ at x ∈ Rℓ if ∂∗f (x) is closed and for

each v ∈ Rℓ,

f +(x; v) = sup
ξ∈∂∗f (x)

⟨ξ, v⟩.
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The function f : Rℓ
→ R is said to have a lower regular convexificator ∂∗f (x) ⊂ Rℓ at x ∈ Rℓ if ∂∗f (x) is closed and for each

v ∈ Rℓ,
f −(x; v) = inf

ξ∈∂∗f (x)
⟨ξ, v⟩.

The notion of convexificators in [4] has been extended and used to unify and strengthen various results in nonsmooth
analysis and optimization. Along the lines of [11], we give now the definition of upper semi-regular convexificators which
will be useful in what follows.

The function f : Rℓ
→ R is said to have an upper semi-regular convexificator ∂∗f (x) ⊂ Rℓ at x ∈ Rℓ if ∂∗f (x) is closed

and for each v ∈ Rℓ,
f +(x; v) ≤ sup

ξ∈∂∗f (x)
⟨ξ, v⟩.

The function f : Rℓ
→ R is said to have a lower semi-regular convexificator ∂∗f (x) ⊂ Rℓ at x ∈ Rℓ if ∂∗f (x) is closed and

for each v ∈ Rℓ,
f −(x; v) ≥ inf

ξ∈∂∗f (x)
⟨ξ, v⟩.

Obviously, an upper (lower) regular convexificator of f at a point is an upper (lower) semi-regular convexificator of f at the
point and every upper (lower) semi-regular convexificator is an upper (lower) convexificator.

Moreover, for a locally Lipschitz function f : Rℓ
→ R the Clarke subdifferential ∂C f (x) [12], Michel-Penot subdifferential

∂�f (x) [13], Mordukhovich subdifferential ∂M f (x) [14] and Trieman subdifferential ∂T f (x) [15] are examples of upper semi-
regular convexificators. It has been shown [7, Example 2.1] that the convex hull of a convexificator of a locally Lipschitz
function may be strictly contained in these subdifferentials.

Now, we recall from [11] two classes of generalized convex functions, called ∂∗-pseudoconvex and ∂∗-quasiconvex
functions, which will be used in the sequel.

Let f : Rℓ
→ R be an extended real-valued function and let f have an upper semi-regular convexificator at x ∈ Rℓ;

(i) f is said to be ∂∗-pseudoconvex at x if for every y ∈ Rℓ and x ≠ y

f (y) < f (x) implies ⟨ξ, y − x⟩ < 0, ∀ξ ∈ ∂∗f (x).
(ii) f is said to be ∂∗-quasiconvex at x if for every y ∈ Rℓ

f (y) ≤ f (x) implies ⟨ξ, y − x⟩ ≤ 0, ∀ξ ∈ ∂∗f (x).

3. Strong Kuhn–Tucker conditions

In this section strong Kuhn–Tucker necessary conditions are given for a point to be a locally efficient solution. In order
to obtain the positivity of the multipliers associated with the objective function a generalized constraint qualification will
be assumed.

We consider the following multiobjective programming problem:
(P) min f (x) = (f1(x), . . . , fm(x))
s.t. g(x) = (g1(x), . . . , gn(x)) 5 0
x ∈ Q

where fi : Rℓ
→ R and gj : Rℓ

→ R are real-valued functions for i ∈ I = {1, . . . ,m} and j ∈ J = {1, . . . , n} and where Q is
a convex subset of Rℓ.

For convenience we introduce some notation which will be used in the sequel.

J(x̄) =


k ∈ J|gk(x̄) = 0


,

F =

m
i=1

co ∂∗fi(x̄),

F i
=


j∈I\{i}

co ∂∗fj(x̄),

G =


k∈J(x̄)

co ∂∗gk(x̄),

S =


x ∈ Rℓ

|g(x) 5 0, x ∈ Q

,

S i =


x ∈ Rℓ

|fj(x) ≤ fj(x̄), ∀j ∈ I \ {i}, g(x) 5 0, x ∈ Q

,

S◦
=


x ∈ Rℓ

|fj(x) ≤ fj(x̄), ∀j ∈ I, g(x) 5 0, x ∈ Q

.
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A point x̄ ∈ S is said to be a locally efficient solution for (P) if there exists no x ∈ S near x̄ such that f (x) ≤ f (x̄).
A point x̄ ∈ S is said to be a locally weakly efficient solution for (P) if there exists no x ∈ S near x̄ such that f (x) < f (x̄).

Definition 1. We say that the generalized Mangasarian–Fromovitz constraint qualification is satisfied at x̄ if for every i ∈ I ,

(CQ1) (F i)s


Gs  T (Q , x̄) ≠ ∅.

Now, we are ready to prove our result of strong Kuhn–Tucker type necessary conditions in terms of upper semi-regular
convexificators.

Theorem 1. Let x̄ be a locally weakly efficient solution for (P). Suppose that fi and gj are locally Lipschitz functions at x̄, and
admit bounded upper semi-regular convexificators ∂∗fi(x̄) and ∂∗gj(x̄) for all i ∈ I and j ∈ J . If (CQ1) holds at x̄, then there exists
(λ, µ) ∈ Rm

++
× Rn

+
such that

0 ∈

m
i=1

λico ∂∗fi(x̄) +

n
j=1

µjco ∂∗gj(x̄) + N(Q , x̄), (1)

µjgj(x̄) = 0, j = 1, . . . , n.

Proof. We claim that for every index i0 ∈ I there exists (λ, µ) = 0 which satisfies (1) and λi0 > 0. We proceed by
contradiction. Therefore there exists i0 ∈ I such that for every (λ, µ) = 0,

0 ∉ co ∂∗fi0(x̄) +


i∈I\{i0}

λico ∂∗fi(x̄) +


j∈J(x̄)

µjco ∂∗gj(x̄) + N(Q , x̄).

We assert that

0 ∉ co (F ∪ G) + N(Q , x̄). (2)

Indeed, if the assertion (2) is not true, then there exist λi ≥ 0, i ∈ I and µj ≥ 0, j ∈ J(x̄), not all zero, and ξi ∈ co ∂∗fi(x̄), ζj ∈

co ∂∗gj(x̄) and η ∈ N(Q , x̄) such that

m
i=1

λiξi +

j∈J(x̄)

µjζj + η = 0. (3)

By assumption we have λi0 = 0. Let v ∈ Rℓ be the vector which is satisfied in (CQ1) for the index i0. Then we obtain

0 =


i∈I\{i0}

λi⟨ξi, v⟩ +


j∈J(x̄)

µj⟨ζj, v⟩ + ⟨η, v⟩ < 0,

which is a contradiction. Then, the assertion (2) is true or equivalently

co (F ∪ G)


−N(Q , x̄) = ∅.

Since co (F ∪ G) is a compact and convex set andN(Q , x̄) is a closed and convex set it follows that by the separation theorem
there exist v ∈ Rℓ and α ∈ R such that

⟨ξ, v⟩ < α < ⟨η, v⟩, ∀ξ ∈ co (F ∪ G) , ∀η ∈ −N(Q , x̄).

By the definition of normal cone we obtain

v ∈ (N(Q , x̄))− = T (Q , x̄). (4)

Since N(Q , x̄) is a normal cone, then we conclude that α < 0 which implies

v ∈ (F ∪ G)s . (5)

For each i ∈ I and j ∈ J(x̄), since fi and gj admit an upper semi-regular convexificator it follows from (5) that

f +

i (x̄; v) < 0, i ∈ I,

g+

j (x̄; v) < 0, j ∈ J(x̄).

Using (4), we conclude that there exist tn ↓ 0 and vn → v such that

x̄ + tnvn ∈ Q , ∀n ∈ N. (6)
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Now suppose that ε > 0 is such that

f +

i (x̄; v) < −ε, i ∈ I, (7)

g+

j (x̄; v) < −ε, j ∈ J(x̄). (8)

It follows from (8) that, for all sufficiently large n,

gj(x̄ + tnv) − gj(x̄)
tn

< −ε. (9)

Let ℓj be the Lipschitzian constant for gj near x̄; then

gj(x̄ + tnv) ≤ gj(x̄ + tnvn) + ℓjtn∥v − vn∥.

Therefore

gj(x̄ + tnvn) − gj(x̄)
tn

≤
gj(x̄ + tnv) − gj(x̄)

tn
+ ℓj∥v − vn∥. (10)

Since vn → v, (9) and (10) are satisfied; thus for n large enough we have

gj(x̄ + tnvn) < gj(x̄). (11)

On the other hand, from (6) and the continuity of constraint functions we obtain that x̄ + tnvn is a feasible point for (P) for
all sufficiently large n.

Similarly, in view of (7) for all sufficiently large n

fi(x̄ + tnvn) < fi(x̄), ∀ i ∈ I,

which is a contradiction with locally weakly efficiency of x̄.
Since i0 was chosen arbitrarily, it follows that for every index i ∈ I there exists (λi, µi) = 0 such that (1) is satisfied and

λi
i > 0. Thus, by adding on these indices, the proof is complete. �

It is worth noting that Theorem 1 is not valid if the convex hull in (1) is removed. This fact is demonstrated by the following
example.

Example 1. Consider the following nonsmooth scalar optimization problem:

(P1) min f (x, y) = |x| + y2

s.t. g(x, y) = −|y| ≤ 0
Q = R2.

It is obvious that (x, y) = (0, 0) is the global minimum for (P1) and we have

f +((0, 0); (v1, v2)) = |v1|,

g+((0, 0); (v1, v2)) = −|v2|.

Hence, the objective and constraint functions admit bounded upper semi-regular convexificators as follows:

∂∗f (0, 0) = {(−1, 0), (1, 0)},
∂∗g(0, 0) = {(0, −1), (0, −1/2)}.

It is easy to verify that
co ∂∗g(0, 0)

s
∩ T (Q , (0, 0)) ≠ ∅

and it is trivial that there exists no µ ≥ 0 such that

0 ∈ ∂∗f (0, 0) + µ∂∗g(0, 0) + N(Q , (0, 0)).

In Theorem 1 we cannot replace the upper semi-regular convexificator with an upper convexificator. Let us illustrate this
with the following example.
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Example 2. Consider the following nonsmooth optimization problem:

(P2) min f (x) =

|x| sin
1
x

x ≠ 0,

0 x = 0,
s.t. g(x) = −x ≤ 0,

Q =


1

2nπ + π/2
: n ∈ N


∪ {0}.

Then x̄ = 0 is the global minimum for (P2). Moreover,

f +(0; v) = |v|,

f −(0; v) = −|v|,

g+(0; v) = −1.

Observe that the upper convexificators for f and g at x̄ are given as follows:

∂∗f (0) = {−1, −1/2},
∂∗g(0) = {−1},

So 
co ∂∗g(0)

s
∩ T (Q , 0) ≠ ∅.

Thus, there is no µ ≥ 0 such that

0 ∈ co ∂∗f (0) + µco ∂∗g(0) + N(Q , 0).

In what follows we are going to derive sufficient optimality conditions for (P) under the generalized convexity assumptions.

Theorem 2. Let x̄ be a feasible solution for (P) and Q be a convex set. Suppose that fi are ∂∗-pseudoconvex at x̄ for all i ∈ I and
gj are ∂∗-quasiconvex at x̄ for all j ∈ J(x̄). If there exist λ ≥ 0 (resp. λ > 0) and µ = 0 such that
(i) 0 ∈

m
i=1 λico ∂∗fi(x̄) +

n
j=1 µjco ∂∗gj(x̄) + N(Q , x̄), and

(ii) µjgj(x̄) = 0, j = 1, . . . , n

then x̄ is a globally weakly efficient (resp. efficient) solution for (P).

Proof. Suppose that x̄ is not the globallyweakly efficient (resp. efficient) solution for (P). Then there exists a feasible solution
x0 such that

f (x0) < f (x̄)

resp. f (x0) ≤ f (x̄)


.

Since all components of the objective function are ∂∗-pseudoconvex then

⟨ξi, x0 − x̄⟩ < 0, ∀ξi ∈ ∂∗fi(x̄), ∀i ∈ I (resp. ∃i ∈ I). (12)

On the other hand, for the feasible point x0 we have

µjgj(x0) ≤ 0 = µjgj(x̄).

By the ∂∗-quasiconvexity of gj, j ∈ J(x̄), we obtain

⟨ηj, x0 − x̄⟩ ≤ 0, ∀ηj ∈ ∂∗gj(x̄), ∀j ∈ J(x̄). (13)

Therefore for every ξi ∈ co ∂∗fi(x̄), ηj ∈ co ∂∗gj(x̄) and v ∈ N(Q , x̄) we have

0 >

m
i=1

λi⟨ξi, x0 − x̄⟩ +

n
j=1

µj⟨ηj, x0 − x̄⟩

≥

m
i=1

λi⟨ξi, x0 − x̄⟩ +

n
j=1

µj⟨ηj, x0 − x̄⟩ + ⟨v, x0 − x̄⟩.

This is a contradiction and the proof is complete. �

Let us now present some constraint qualifications and investigate their relationships. We show that some of these
qualifications ensure (CQ1). Consequently, they validate also the stronger Kuhn–Tucker necessary conditions for the
efficiency of problem (P). Let x ∈ Q be a feasible solution of problem (P).



556 M. Golestani, S. Nobakhtian / Computers and Mathematics with Applications 64 (2012) 550–557

We begin with the following two constraint qualifications which are the nonsmooth version of the Abadie constraint
qualification.

(CQ2) F−


G−


T (Q , x̄) ⊂
m

i=1 T (S i, x̄).
(CQ3) F−


G−


T (Q , x̄) ⊂ T (S◦, x̄).

The next two constraint qualifications can be considered as the nonsmooth types of the Cottle constraint qualification.
(CQ4) Gs  T (Q , x̄) ≠ ∅.
(CQ5) For all i ∈ I ,

(F i)s


G−


T (Q , x̄) ≠ ∅, and Gs


T (Q , x̄) ≠ ∅.

The following constraint qualification is a generalized version of the constraint qualification which is known as the
basic constraint qualification.
For every i ∈ I and for every λj ≥ 0, j ∈ I \ {i}, and µk ≥ 0, k ∈ J , not all zero, we have:

(CQ6) 0 ∉


j∈I\{i} λjco ∂∗fj(x̄) +
n

k=1 µkco ∂∗gk(x̄) + N(Q , x̄).

Now, we present the relationships between the qualifications introduced in this section.

Proposition 1. The following relations between constraint qualifications hold:
(1) (CQ3) implies (CQ2) ,
(2) (CQ1) implies (CQ4) ,
(3) (CQ1) implies (CQ2) ,
(4) (CQ1) holds if and only if (CQ5) holds,
(5) (CQ1) holds if and only if (CQ6) holds.
Proof. (1) Since

T (S◦, x̄) ⊂

m
i=1

T (S i, x̄),

obviously (CQ5) implies (CQ4).
(2) The proof is trivial.
(3) According to (CQ1) for i ∈ I ,

(F i)s


Gs


T (Q , x̄) ≠ ∅.

Now let

v ∈ (F i)s


Gs


T (Q , x̄).

By an easy calculation we have

v ∈ T (S i, x̄)
and we conclude that

F−


G−


T (Q , x̄) ⊂ (F i)−


G−


T (Q , x̄)

= cl

(F i)s

 
clGs


T (Q , x̄)

= cl

(F i)s


Gs


T (Q , x̄)


⊂ cl T (S i, x̄)
= T (S i, x̄).

(4) The proof is trivial.
(5) Obviously, (CQ1) implies (CQ6). Now, let (CQ6) hold. Therefore

0 ∉ co

F i

∪ G

+ N(Q , x̄). (14)

On the other hand, co

F i

∪ G

is a compact and convex set and N(Q , x̄) is a closed set. Thus the right hand side of (14)

is a closed and convex set in Rℓ. By the separation theorem there exists v ∈ Rℓ such that

⟨ϱ, v⟩ < 0, ∀ ϱ ∈ co

F i

∪ G

+ N(Q , x̄).

Thus,

⟨ξj, v⟩ < 0, ∀ξj ∈ co ∂∗fj(x̄), ∀j ∈ I \ {i},
⟨ζk, v⟩ < 0, ∀ζk ∈ co ∂∗gk(x̄), ∀k ∈ J(x̄),
⟨η, v⟩ ≤ 0, ∀η ∈ N(Q , x̄).

Hence, (CQ1) is satisfied. �

In conclusion of this section we summarize the relations among the presented constraint qualifications in Fig. 1.
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Fig. 1. Relations between various constraint qualifications.

Acknowledgment

The second author was partially supported by the Center of Excellence for Mathematics, University of Shahrekord, Iran.

References

[1] T. Maeda, Constraint qualifications in multiobjective optimization problems: differentiable case, J. Optim. Theory Appl. 80 (3) (1994) 483–500.
[2] V. Preda, I. Chiţescu, On constraint qualification inmultiobjective optimization problems: semidifferentiable case, J. Optim. Theory Appl. 100 (2) (1999)

417–433.
[3] V.F. Demyanov, V. Jeyakumar, Hunting for a smaller convex subdifferential, J. Global Optim. 10 (3) (1997) 305–326.
[4] V. Jeyakumar, D.T. Luc, Approximate Jacobian matrices for nonsmooth continuous maps and C1-optimization, SIAM J. Control Optim. 36 (5) (1998)

1815–1832. (electronic).
[5] V. Jeyakumar, D.T. Luc, S. Schaible, Characterizations of generalized monotone nonsmooth continuous maps using approximate Jacobians, J. Convex

Anal. 5 (1) (1998) 119–132.
[6] V. Jeyakumar, D.T. Luc, Nonsmooth calculus, minimality, and monotonicity of convexificators, J. Optim. Theory Appl. 101 (3) (1999) 599–621.
[7] X. Wang, V. Jeyakumar, A sharp Lagrange multiplier rule for nonsmooth mathematical programming problems involving equality constraints, SIAM

J. Optim. 10 (4) (2000) 1136–1148. (electronic).
[8] D.T. Luc, A multiplier rule for multiobjective programming problems with continuous data, SIAM J. Optim. 13 (1) (2002) 168–178. (electronic).
[9] A. Uderzo, Convex approximators, convexificators and exhausters: applications to constrained extremum problems, in: Quasidifferentiability and

Related Topics, in: Nonconvex Optim. Appl., vol. 43, Kluwer Acad. Publ., Dordrecht, 2000, pp. 297–327.
[10] X.F. Li, J.Z. Zhang, Stronger Kuhn–Tucker type conditions in nonsmooth multiobjective optimization: locally Lipschitz case, J. Optim. Theory Appl. 127

(2) (2005) 367–388.
[11] J. Dutta, S. Chandra, Convexificators, generalized convexity and vector optimization, Optimization 53 (1) (2004) 77–94.
[12] F.H. Clarke, Optimization and Nonsmooth Analysis, second ed., in: Classics in Applied Mathematics, vol. 5, Society for Industrial and Applied

Mathematics (SIAM), Philadelphia, PA, 1990.
[13] P. Michel, J.P. Penot, A generalized derivative for calm and stable functions, Differential Integral Equations 5 (2) (1992) 433–454.
[14] B.S. Mordukhovich, Y.H. Shao, On nonconvex subdifferential calculus in Banach spaces, J. Convex Anal. 2 (1–2) (1995) 211–227.
[15] J.S. Treiman, The linear nonconvex generalized gradient and Lagrange multipliers, SIAM J. Optim. 5 (3) (1995) 670–680.


	Convexificators and strong Kuhn--Tucker conditions
	Introduction
	Preliminaries
	Strong Kuhn--Tucker conditions
	Acknowledgment
	References


