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Abstract

We derive a Cauchy—Fantappie type formula which expresses the derivatives of holomorphic
functions at a point on a given analytic variety, in terms of the values of the function in an arbitrarily
small neighborhood of the curve which bounds the variety. The formula involves derivatives of
functions defined by integrals taken on boundaries of nearby analytic varieties. We also apply these
formulas to questions related to analytic functionals.
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1. Introduction

Let D c C? be a bounded open set with smooth boundaryan@ D) x D — C? a
smooth map withv (¢, z) = (y1(¢, 2), y2(¢, z)) defined for(z, z) € (dD) x D so that the
guantity

', 2)=@1— 2078, 2) + (S22 —z2)y2(5,2) #0  forevery(s,z) € (9D) x D.
Then for a functionf € O(D) (i.e., holomorphic in a neighborhood %),

f@)= / F)K(&,2) Adir~ndgz whenz e D, (1)

tedD
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where
K-t L (n(C,Z) f_?;yl(i,z)> '

(2ri)<[I"(¢, 2)] v2(8,2)  dcy2(8,2)

(To compute’;; Vi andég y2, We may use any extensionpf¢, z) to a neighborhood af D,
as a function of;, having restricted; to a compact subset dp.) This is the Cauchy—
Fantappie formula in the domai, associated to the map(see [4]).

Let us also consider a functiaf(z1, z2), holomorphic in a neighborhodd of D, and
let us setV = {(z1,22) € U: ¢(z1,z2) =0} andM =V N D. We assume thal¢ # 0
at the points ofdM = V N (aV), so thatV is smooth nead M, and thatV meetsa D
transversally, so thaM is a smooth curve. In this setting the following formula holds:

Fo) = / FOR2( @) forze M, 0
reaM
where

2(¢,z2) = 1 1 det()/l(az) ¢1(§,z))’

2ri I'(¢, 2) v2(¢.2)  ¢2(¢,2)
0¢/0¢2dl1 — 3¢ /3t1dE2
10/9¢11% + 196 /9C21%
and¢1(¢, 2), ¢2(¢, z) are holomorphic functions (with respect(@ z) in a neighborhood
of D x D), with the property

(L1, 82) — (21, 22) = (L1 — 20)P1(8, 2) + (L2 — 22)$2(¢, 2). (3

This is Cauchy—Fantappié type formulain (see [1,5]).

With the integral formula (2), we express the values of the functipnat the points
of M, in terms of the values of the function @d/. Since (2) holds only fo(z1, z2) € M,
we cannot differentiate it (with respect ta, z2), if we want to obtain a similar formula
for the derivatives of the functiong. Only certain combinations of derivatives gfcan
be expressed in such a way. For example, if the ppiatM is a regular point, then the
holomorphic vector field

ap 9 o D
— @@
dz1 "0z2 0dz2 "0z1
is tangential taV atz, and therefore

ap of 3 of
ot (2) %2 (2) 2 (2) ot (z)

0 9082(¢, 0 982(¢,
_ / f(;)(a—"’(z) (€2 09 ,\382¢ Z))ﬂ@). @)
z1 022

072 0z1
ceoM

B(¢1,82) =

However, we may apply to (1), any derivative of the fah= 351752 /3z;*3z;2. The result
is the formula

D f(z) = / fODK(,z) AdirAndey forze D. (5)

tedD
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Now what we will do in this paper, is to show that the integral of (5) (in the caseé/)
can be transformed to a certain combination of derivatives, evaluated 8t of functions
defined by line integrals, which are taken on the cu@d3) N {¢ = t} (wheret € C with
small|z|). Thus, in particular, we express the derivati@'sf (z) in terms of the values of
f in arbitrarily small neighborhoods of the curga1.

The construction is quite explicit and is based on a residue process. Similar residue
processes were first used by Stout in [5] and subsequently they were generalized in [1]
and [2]. (It is the type of residue process, which leads from formula (1) to (2); see [1].) To
make the presentation clear, we will start this reduction of the integrals with the case of the
first-order derivatives. But first, let us describe the residue process.

2. Theresidue process

Recall that for a continuous functiah : C — C,

d
lim / w ()L = 27iw(0).
e—0 T

|T|=¢

This follows from the inequality

/ (@ -v) "

It|=¢

} sup|¥ (t) — W (0)| - 2re = 2 sup|¥ (r) — ¥ (0)].

€ |r|=¢ |T|=¢

If the functiony is C1 then integration by parts shows that

dt 1 1
/W(r)?z— / W(t)d(;): / ;dlI/(T)

|T|=¢ |T|=¢ |T|=¢
/ 1/0v 811/ _ oV drt oV dt
= | S(Z=dr+—ar)= | ==+ | ==,
k3 0T 0T T 0T T
|T|=¢ |T]=¢ |T|=¢e

We claim that
. oV dt
lim — =
e—0 T T
|T|=¢

To prove this, notice that on the cirdle| = ¢, 1/t = T/¢2, and therefore

wdr 1 ow 1 o v
— —TdTt =— ———(O) TdT,
9t T 2 0T g2 0T
|T|=¢ |T|=¢ |T|=¢
where we have also used the fact tyi@F:s 7d7 =0.
Now the claim follows from the inequality
1 o Y ov
—/ ———(0) Tdt Znsup———()
g2 T rj=e| 0T

It|=¢
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Since
owd L4
P i 0),
ot T ot

It|=¢

it follows that

dt ov
li ¥(t) — =2ni—(0).
slino / (@) 72 T ©
|T|=¢e

More generally, the following lemma holds.

Lemma 1. For a C™ function¥ :C — C,

. dt 2wi oMY
I|m0/ (1) 0.
E—>

L Tl g

|T|=¢e
Proof. By Taylor's theorem,

14 14
v =v 0+ Lor+ Loz
T 0T

1/ 02w 92w 2w
Z(— O’ +2—— (Ot + — (072 ) +- -
+2<8‘L’2()T T 0Tt 8%2()T>+

m m

1 m G k=m—k 1 m
+m'2<k> ackagen ®OT T (m—l)!z(k)

" k=0 k=0

1
8n1l1/ 8”111/ .
X( /[8rkafm—k(”)_ dkgzm—k (0)}(1_s)mds>TkTm .

s=0

When we substitute this expansion®fr) in the integralﬁtl:e(d/(r)/t’"“) dt,we run
into integrals of the form

dt
k=l—k
/TT T+l O<Ii<m, 0<k<D.

|T|=¢
Since on the circlér| = ¢, T = £2/7, these integrals become

Lkgl—k dt — 20—k dt
m+l T rmH—2k+1"

[t|=¢ |t|=¢

It follows that the only case that the limit

im [ ek 4T
£—0 .L—m+l

|T|=¢

can be# 0 is whenk = = m, in which case each integral, and therefore this limit,7i$.2
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Since the coefficient of* /=¥ in Taylor’s expansion, in the cage=1 = m, is
10"y

ﬁ ar’" (0)1
the formula of the lemma will follow if we show that

1
' ' kem—k AT
/ ( /[W(ST)—W(O)}(l—S)mdS>T " W_)O

|t]=¢ ‘s=0

ase — 0.

But this follows from the fact that the above integral, in absolute value, is

21 ' '

<— su = T)— =
S m Mgg 8tkr'"—k( ) Brkat’"—k(

0)‘.
This completes the proof of the lemmar
Now we can prove the following theorem.

Theorem 1. Suppose that the functiah(¢) and the differential formz' (¢), defined and
being smooth fot in a neighborhood 08 D, satisfy the equation

E@)= % [©@)] wheng(¢)#0.

r:O(
¢e(@D)n{p=t}

More generally, if the function®;(¢), j =0, ..., m, and the differential forng (¢) are
defined and smooth farin a neighborhood o D, and satisfy the equation

1
(p(g))ym+t
Then, forf € O(D),

2w ™

/ FEE@)NdErNdlr=—+

m! at™
ce€dD

f(C)@(é“)ﬂ(é“))-

m

1 _
E(@) = ———0:|0; h 0,
©) ;}@@)),H ([©;)] wheng(¢) #
r:O(

3¢ 3¢
dey Adey = B2y, 2L aa+ 2 as). 6
fandio =Bt §2)A(8§l €1+8§2 §2) (6)

In carrying out the residue process, we will be working on the surfdeeDeforming
slightly this surface (away from the curd@/), if necessary, we may assume that=£ 0

then

m 1 a]
/ f(i)E(C)AdglAdQ:sz__

o Oj!8rf
€

f(C)@,/(C)ﬂ(C))-

¢e(@D)N{¢p=r}

Proof. Itis easy to check that
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at the points o D. Then (6) will hold in a neighborhood &fD. (Notice that the value
of the in'_[egralfgew f(g)E_'(g) Adi1 Adez remains unqhanged under small deformations
of aD, since the differential forny (¢) & (¢) Ad¢1 Adiz is d-closed.) Then

E@)Adtindl=0; [Wl)mﬂ@(i)ﬂ(i) A d¢(§)},
and therefore
do (%)
(p(g))ym+t

whereW is a neighborhood af D. (We also used our assumption thae O(D).) Using
(7), we can carry out the residue process:

f(§)5(§)/\d§1/\d§2=d;[f(§)@(€)/3(§)/\ } inWw-—V, (7)

[ roz@nrdanda=im [ @0 rdande

tedD ¢e(@D)Nflgp|>¢}
. do (&) }
=1 d 6 S A EA
im ;[f(;) ©B©) A S
te(@D)N(1¢I>¢)
de(¢)

= i ®
lim / FOO©BE) A S
e(@D)N{|p|=¢}

=i, [ (

Itl=e “¢e@D)N|p|=1}

A

In the above computation, we used Stokes's theorem, Fubini’s theorem, and Lemma 1,
applied to the functiow (r) = f(aD)mw:r} F@)O@)BQ).

The proof of the general statement of the theorem is proved in the same exactly way.
(Notice that this general statement does not follows directly from the first statement of the
theorem, but it is proved similarly. The point here is that the differential fd}m,s/qs/'“
are not assumed to be defined on the widdle—only their sum)_ 90, /¢/*1is.) O

drt
FOOWBW) |

. 2mi ™

m! ot™

f(§)@(€)ﬁ(€)).
ce@D)N{lgl=1)

3. Theformulafor thefirst-order derivatives

The starting point is the identity

- e(Vl(QZ) 5;)/1(§,z)>
("¢, 2)2] y2(¢,2) 3 v2(¢,2)

_ 1 5 [ de(n@,z) ¢1<;,z))}
(1.0 — G122 S L T(@D  \y.2) ¢22.2))]
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which holds at point$¢s, ¢2) and(zi, z2) wherevek (¢1, £2) — ¢ (z1, z2) # 0. The proof of
this identity is a straightforward computation, which depends on (3) (see [1,2] for similar
computations of more general type).

Thus
1
2tiK(,2)=——0, |82 8
niK (¢, z) 30— ¥ [R. 2] (8)
Differentiating (8) with respect to;, we obtain
0K (¢, 2) 1 = [39(5,1)} d¢/0z1
2 = 0 2 9
i 021 #() —¢(2) ¢ 9z1 * (9 (5) — ¢(2))? Z[ €2} ®)

Therefore, ifp (¢) #0,

’ O | 542 forze M. (10
R Z[ 021 %(M;))“[am (“)} orzeM. (10)

On the other hand, (5) with= (1, 0) gives
0K (¢, 2)
021

27

0
8—f(z)= / f(©)
21

tedD

Ader ANdEr.

Therefore, by (10) and Theorem 1, we obtain the following theorem.

A

and a similar formula holds for the derivativdg/9z5.

Theorem 2. For f € O(D) andz € M,

—(z)— / )2 “ Z)ﬂ(¢>+a—"’—
71 0T

f(C)Q(é“,Z)ﬂ(s“)),

cedM ¢e(@D)N{p=t}

Remarks. (1) If we compute the quantity

0 d d 0
—¢(z)—f(z) - —¢(z)—f(z)

by substituting the values of the derivativeg/dz1 and af/dz2, as these are given by
Theorem 2, we obtain (4), since the quantities which contain the derivatiyés).—o,
cancel each other. In this sense, Theorem 2 is an extension of (4).

(2) Notice that ifd¢/dz1 is zero at the point € M then the term which contains
the (3/d1).—p-derivative is not present in the formula. Thus at a pairt M, where

(d$)(z) =0,
a
—f(z)— / f(©&)

<j

082(¢,2)

9z

B) forj=12
teaM
(3) We arrived at the formula of Theorem 2, trying to compute the values of the

derivativesdf/dz1 and df/dzz. Of course, one way turn this around and view the
formula of Theorem 2 as a method to compute thé& t).—o-derivative of the function
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f;e(an)m{qs:f} F(©)2(¢, 2)B(¢). Notice that this is possible d¢)(z) # 0. For example,
if at the pointz € M, (0¢/9z2)(z) # 0, then
¢e(@D)n{p=t}

r=0(

1 af / asz(; 2)

7(8¢/8z2)(z)|: (z) = f@Q) ——— ,3(4“):|
cedM

0

aT

F(©)8R(, z)ﬁ(())

Here is a corollary of this formula: It/ is a neighborhood o and the sequence of
functionsf, € O(U) converges uniformly o/ to a functionf asn — oo, then

A

d
-

ot

0

aT

Jn(£)$2(8, z)ﬁ(@))
te@D)N{gp=1}

A

In particular, the ma@(C2) — C, defined by

f(C)Q(é“,Z)ﬂ(é“)).

¢e(@D)N{p=r}

d

T r=0<

is an analytic functional, carried by the compact&et(We proved this in the cases M
and(d¢)(z) # 0, but something more general holds, as we will see in Section 5.)
(4) Applying formula (2) with the holomorphic functidty/d¢1 in place off, we obtain

f

fo¢e, z)ﬁ(o) for f € O(C?),
te(@D)N{p=r}

—()— / —(C)Q(C 2)B(&).

teoM

Therefore, the formula of Theorem 2 is written in the following way:

/ —(4)9(4 DB(E@)

reaM
052 dp 0
/f(g) «, Z)ﬁ(§)+a—¢—

71 0T

redM N <;e(aD)m{¢:r}

f(§)9(€,z),3(€)),

which may be viewed as an “integration by parts” formula.
It also follows from this formula that the analytic functional, which we discussed in the
previous remark, is carried by the curigf.
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4. Theformulafor the higher-order derivatives

For a fixeds = (s1, s2), we apply the operat®* = 917%2/9z1*3z3* to both sides of (8)
and we obtain

1
i K&, 7)) =0 ——M—
K <¢(;) e Z)])

X (1) (Garma0 il el
g@ EErTEY A

where the sum is extended over the: (k1, k2) <s, i.e., 0< k1 < s1 and 0< ko < 52,

<Z> = (2) <Z> and s —k=(s1 — k1,52 — k).

Also
Qk( : ): S
PO —0@) @) — )T

where eachﬁ\]]‘."”(z) is an easily computed and quite explicit combination of derivatives of
the functiong, of order< |k| = k1 + k», evaluated at.
Thus

Ik k¢
() -
2riD°K (¢, z) = Z (s) Z (¢(§))1+1 I [D*2(, 2] forzeM. (11)

k<s

Combining (5), (11), and Theorem 1, we obtain the formula of the following theorem.

A

Examples. (1) Keeping in mind thak = K (¢, z) and$2 = £2(¢, z), we have

Theorem 3. For f € O(D) andz € M,

KAy gi
s S
D f<z>=2(k)2 ’j! 327

k<s j=0

fOD* 2, z)ﬂ(C)).
¢te(dD)N{p=r1}

2 2
o K 1 a;[a 9]
821 ¢(§) - ¢(Z) aZ]_
1 _ .09 02 2¢ } (9¢p/921)2
b 52220 +2 PV 5 2.
@) — $(2)2 5[ 071921 022 @) @R X

Therefore, forf € O(D) andz € M,

az(z) /f(g) 2 5(0)

teoM
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] ap 92 9%
+¥r ( / f(§)|:28—Z18—Zl+F~Qj|,3(§))
te(@D)N{gp=r)
21 ((22) 2
72| <3Z1> f F(©)RB(©) )

¢e(@D)N{¢p=t}

In particular, if at a point € M, 9¢/dz1 =0 andazqs/az% =0, then

32()_ / f(;) (; DB,

tedM
and also
af a8
a—(z)= / (@) — (&, 2B().
21 dz1
ceaM

For example, these formulas holdfifz1, z2) = z3 — 23 + 23 + z2 andz = (0, 0).
Here is another case. ¢f(z1, z2) = 22 — 25+ 23 + z2 then

0 2
2~ ( f(;)mr:,om(r:)) ’; o- | f(f:) (c 0B(@).
=0\ ewpinig=r) ceam
(2) Similarly,
O (= / -2 )
3Z%322 9= 8z%312
cedM
B] AP 9282
dt r:O( / 7@ [3Z2 322
ce(@D)N{g=r)
ap 92 9% )}
2= o
* 3Z2< 921 021 + 323 A
32 29 (¢ 92 | 9%
— =y
o2 r:O( / f@)[ 2< 021001 323 >
te@D)N(p=r)
d¢ ap 0%
27 Q
+ <8Z1> 022 * 0z1 021022 i|'3(§))
33 3 \2 d¢g
373 f:o((a_m> P / F©2B©) ).

¢e(@D)N{¢p=t}
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(3) Let us examine the formulas of Theorem 3, when
D ={(z1,22) € C% |z1]* + |z2* < R?},
Y. 2)=(@1—Z1,82—22), and ¢(z1,72) =22

ThenpB ({1, &2) = dz1 and, choosing; = 0 andgz = 1,

1 -1
£2(¢1,82,21,22) = = .
fe 27i |01 — z1)% + |82 — z2/?

Also (8) becomes

1
2niK(¢,z2) =
{2 —22

¥ [R(¢. 2]
and gives the following equation:

- B
1% S1q 52—
(r2=00) So\m/) o Laztazy "

r=0<
let us say, forf € O(C?).
However, (12) can be simplified, as a computation shows. Indeed,

A

unlessn = s2, and
‘L’=0<

[¢1l=R

These can be proved in the following way. First we compute

8S1+S2 K

Tl ———
S1q 52
077025

(21-,12)=(0,0)i|

This leads to the formula

$2 am
PIO= Z (fnz) at™m

m=0

f(¢1, D27 (¢, 7,0,0) dcl),
[£12=R2—|7|?

(12)

am
at’m

£z, ‘L’)@(Sl’sz_'").Q({l, 7,0,0) dfl) =0, (13)

£112=R2~|7|2

052
9152

f(e, 009224, 7,0,0) dcl>
[£112=R2—|7|2
a%2 f

ag (o 0D“92(£1,0,0,0)dz1. (14)
2

(s1+ 52— m)!
i (P + el

Esl‘f‘lz—.szfm
D127 Q (1, 7,0,0) = :

Therefore

(51452 —m)! 281+ 1l=s5o—m 2

(s1,52—m) _ 2 _ p2 __
QU127 3 (74, 1,0, O)_27”,Rz(sﬁszﬂn+l)§l T when|¢1]“ = R® —|7]°.
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Substituting this in the line integrals and transforming these integrals by settiag
(R?2 —|719)1/261? 0< 6 < 27, we can easily see why formulas (13) and (14) hold.
Hence (12) becomes

951152 952
T )= / 8 (61,006192(61,0,0,0 2

et Fea a¢
1oz Gi=k 2
_ s1! 0% f sy
=oqi Fzsz(gl’ 0) W, (15)
l&1l=R !

which of course can be checked independently (using only the one dimensional Cauchy
formula). Thus the formula of Theorem 3 is a generalization of (15), from the case
¢ (z1, z2) = z2 to more generap’s.

5. Applicationsto analytic functionals

According to the following lemma, derivatives of integrals of the kind, which occur in
the sum of the formula of Theorem 3, define analytic functionals. More precisely, in the
setting of Theorem 3, we can prove

Lemma 2. Let X (¢) be any smooth function defined foe= (¢1, ¢2) in a neighborhood of
the curve(d D) N {¢ = 0}. Then the ma@(C?) — C, which assigns to eacli € O(C?)
the quantity

am ‘
o™ =0

is an analytic functional.

f(€)X(§)ﬁ(§)>, (16)

¢e(@D)n{p=r1}

Proof. In the case
D={(z1,22) € C% |z1/* + 221 < R?} and ¢(z1,22) =22,

guantity (16) is equal to

A

Then, setting1 = (R? — |7|%)Y2¢!?, 0< 6 < 2r, the line integral becomes

am
at’m

1, )X(1, 1) dg).

£112=R2~|7|2

f1L, )X 1)do
|61 1P=R?~|z?
2n
- / F((R? = 12226 2) X ((R? = |x12) e, ) (R? = |2 2) Y% o
0=0
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Using this equation, it is easy to see that if the sequefice O(C?) converges to 0
uniformly on compact sets, then

A

The proof in the general case is similar. All we have to do is to use a partition of unity
in order to write the integral as a finite sum of integrals over small pieces of the curve
(0D) N {¢ =t} and to use appropriate local parametrizations of these pieces.

8m
at’m

Sn(C1, T)X (21, r)dC1> —~0 asn— oo.

[¢112=R2—|z|2

Now assuming thap € O(C?) with 0 € {¢ = 0} and usingy (¢, z) = ¢ — Z, define
TR, :0(C? — C by setting
‘L’=0<

for f € O(C?), wheresy, s» are nonnegative integers aml> 0, so that{¢ = 0} meets

the sphereSg = {|¢| = R} transversally. Then each term in the sum, and there]’g?g,

is an analytic functional. Conversely, we will show that every analytic functional can be
expanded in terms of theﬁrgﬁsz, provided thatR is sufficiently large. More precisely, we
will prove the following theorem.

K A%%(0) i

N
780 =X (1) L2

k<s j=0

fOD* 2, 0)/3(0)

ceSgN{gp=r1}

Theorem 4. Every analytic functional : O(C?) — C has an expansion of the form
T= Z CSl-,Sszf,sz
51,5220
for sufficiently largeR. Furthermore, the coefficients are given by the formula
1 9frhefp

Csq,50 —
12 sl!szlawilawgz

9

(w1,w2)=(0,0)

whereF (w1, wp) is the Fourier—Laplace transform af.

Proof. It suffices to show that

T(H= Y cunTi,(f) for feO@C?. (17)

51,5220
Recall that
F (w1, wo) = Ty, ¢, [eF101T5202]
the Fourier—Laplace transform @, is an entire function of exponential type, i.e.,
|F (w1, w2)| < AeBImIHY2)  for everyws, o, -

for some positive constantsand B.
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To deal with the convergence of the series in (17) (which is part of the conclusion),
we will need an estimate for the coefficients s,. It follows from (18) and Cauchy’s
inequalities (as in [3, p. 109]) that

(\/EEB)STHZ
T s1.52
s1ts5

[Cs1,50] S A for everysa, s2,

and therefore

Z (s1+ 52+ 1)!|csl,52|rilr;2 < o0, providedthatO<ry,r <
51,5220

1
3V2¢B (19)

Applying (5) to the functiore®* 122 of (¢1, ¢2) with (£, 2) = (£1 — 21, L2 — Z2), We
obtain

wilw? = / eSWItw2e (21,00 Adiy AdEy  for (w1, wp) € C2, (20)
CESR
where

ésl,sz(glv 42) =

1 gt [(El —Z)db— (52— 22) d&}
42973027 [ (161 — 2l + 182 — 221?)2

(z1,22)=(0,0)

(s1+s2+1)! L2 S
- 452 (|§1|2_|_|§2|2)51+sz+2(§1d§2—€2d§1)
:(Sl+sz+l)! 1

472 (1112 + (£ 12)2
- s1 - 52
( 3t ) ( 2 ) Grdba—B2din.  (21)

12112 + 122/ 12112 + 122/
On the other hand,
F(wy, wp) = Z Cop Wi W (22)
51,5220

Substituting (20) in (22) and interchanging the order of summation and integration, we
obtain

Fwn,w2)= Y oy / IR (81, 2) AdT1 AdQ

51,520 ceSk
— / €§1w1+§2w2|: Z Csy.57Es51.5, (1, {2)] ANdiy NdEo, (23)
e 51,5220

provided thatR > 3+/2¢B. At this point we are using the fact that the series
Z Csl,szésl,sz({ls £2)

51,5220

converges uniformly fofz1|2 + |z2|2 > R?, which follows from (19) and the expression of
&5,.5,(21, £2), as this is given by the last part of (21).
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Since (23) holds for every1, wo, it follows that, for f € O(C?),

T(f)= / [, §2)[ Y Conbisn (L, §2)}Ad§1/\d§2

ceSk 51,5220
= Y cum / F(81, 0y, (81, €2) AdE1L AdEa.
51,5220 ceSk

(We could not have concluded this, had we not interchanged the order of summation and
integration in (23).)
Finally the computations, which led to the formula of Theorem 3, show that

/ F@1 )8 5,01, 82) AdEL AdE2 =T (f).
CESR
and the required expansion of the theorem follows.

Comments. (1) As we pointed out in the above proof, part of the conclusion is the
convergence of the series in (17). Notice also that it is not immediately clear that the sum
chl,w?fyf)sz defines an analytic functional. This is justified only when (17) is proved.

(2) The above proof shows that any entire function of exponential type is the Fourier—
Laplace transform of an analytic functional of the fOE‘Cn.,sszf,sz- In particular, ifu is

any measure with compact supportdA then

[ r©auo= ¥ contio o forgeoc.

reC? 51,5220

In fact, ¢,, s, are the coefficients in the power series expansion of the entire function

. 1
/ T2 g1 (¢, £p), e, e = / 02 dp(L, £2).

(¢1.42)€C? (¢1.42)€C?
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