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Abstract

We derive a Cauchy–Fantappiè type formula which expresses the derivatives of holom
functions at a point on a given analytic variety, in terms of the values of the function in an arbi
small neighborhood of the curve which bounds the variety. The formula involves derivativ
functions defined by integrals taken on boundaries of nearby analytic varieties. We also app
formulas to questions related to analytic functionals.
 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Let D ⊂ C
2 be a bounded open set with smooth boundary andγ : (∂D)×D → C

2 a
smooth map withγ (ζ, z)= (γ1(ζ, z), γ2(ζ, z)) defined for(ζ, z) ∈ (∂D) ×D so that the
quantity

Γ (ζ, z)= (ζ1 − z1)γ1(ζ, z)+ (ζ2 − z2)γ2(ζ, z) �= 0 for every(ζ, z) ∈ (∂D)×D.
Then for a functionf ∈O(D̄) (i.e., holomorphic in a neighborhood ofD̄),

f (z)=
∫

ζ∈∂D
f (ζ )K(ζ, z)∧ dζ1 ∧ dζ2 whenz ∈D, (1)
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:

a

e

where

K(ζ, z)= − 1

(2πi)2
1

[Γ (ζ, z)]2 det

(
γ1(ζ, z) ∂̄ζ γ1(ζ, z)

γ2(ζ, z) ∂̄ζ γ2(ζ, z)

)
.

(To computē∂ζ γ1 and∂̄ζ γ2, we may use any extension ofγ (ζ, z) to a neighborhood of∂D,
as a function ofζ , having restrictedz to a compact subset ofD.) This is the Cauchy–
Fantappiè formula in the domainD, associated to the mapγ (see [4]).

Let us also consider a functionφ(z1, z2), holomorphic in a neighborhoodU of D̄, and
let us setV = {(z1, z2) ∈ U : φ(z1, z2) = 0} andM = V ∩ D. We assume thatdφ �= 0
at the points of∂M = V ∩ (∂V ), so thatV is smooth near∂M, and thatV meets∂D
transversally, so that∂M is a smooth curve. In this setting the following formula holds

f (z)=
∫

ζ∈∂M
f (ζ )Ω(ζ, z)β(ζ ) for z ∈M, (2)

where

Ω(ζ, z)= 1

2πi

1

Γ (ζ, z)
det

(
γ1(ζ, z) φ1(ζ, z)

γ2(ζ, z) φ2(ζ, z)

)
,

β(ζ1, ζ2)= ∂φ/∂ζ2dζ1 − ∂φ/∂ζ1dζ2
|∂φ/∂ζ1|2 + |∂φ/∂ζ2|2 ,

andφ1(ζ, z),φ2(ζ, z) are holomorphic functions (with respect to(ζ, z) in a neighborhood
of D̄ × D̄), with the property

φ(ζ1, ζ2)− φ(z1, z2)= (ζ1 − z1)φ1(ζ, z)+ (ζ2 − z2)φ2(ζ, z). (3)

This is Cauchy–Fantappiè type formula inM (see [1,5]).
With the integral formula (2), we express the values of the functionsf , at the points

ofM, in terms of the values of the function on∂M. Since (2) holds only for(z1, z2) ∈M,
we cannot differentiate it (with respect toz1, z2), if we want to obtain a similar formul
for the derivatives of the functionsf . Only certain combinations of derivatives off can
be expressed in such a way. For example, if the pointz ∈M is a regular point, then th
holomorphic vector field

∂φ

∂z1
(z)

∂

∂z2
− ∂φ

∂z2
(z)

∂

∂z1

is tangential toM at z, and therefore

∂φ

∂z1
(z)
∂f

∂z2
(z)− ∂φ

∂z2
(z)
∂f

∂z1
(z)

=
∫

ζ∈∂M
f (ζ )

(
∂φ

∂z1
(z)
∂Ω(ζ, z)

∂z2
− ∂φ

∂z2
(z)
∂Ω(ζ, z)

∂z1

)
β(ζ ). (4)

However, we may apply to (1), any derivative of the formDs = ∂s1+s2/∂zs11 ∂z
s2
2 . The result

is the formula

D
sf (z)=

∫
f (ζ )DsK(ζ, z)∧ dζ1 ∧ dζ2 for z ∈D. (5)
ζ∈∂D
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f

esidue
in [1]

].) To
of the
Now what we will do in this paper, is to show that the integral of (5) (in the casez ∈M)
can be transformed to a certain combination of derivatives, evaluated atτ = 0, of functions
defined by line integrals, which are taken on the curves(∂D)∩ {φ = τ } (whereτ ∈ C with
small |τ |). Thus, in particular, we express the derivativesDsf (z) in terms of the values o
f in arbitrarily small neighborhoods of the curve∂M.

The construction is quite explicit and is based on a residue process. Similar r
processes were first used by Stout in [5] and subsequently they were generalized
and [2]. (It is the type of residue process, which leads from formula (1) to (2); see [1
make the presentation clear, we will start this reduction of the integrals with the case
first-order derivatives. But first, let us describe the residue process.

2. The residue process

Recall that for a continuous functionΨ :C → C,

lim
ε→0

∫
|τ |=ε

Ψ (τ)
dτ

τ
= 2πiΨ (0).

This follows from the inequality∣∣∣∣∣
∫

|τ |=ε

(
Ψ (τ)−Ψ (0)) dτ

τ

∣∣∣∣∣� 1

ε
sup
|τ |=ε

∣∣Ψ (τ)−Ψ (0)∣∣ · 2πε= 2π sup
|τ |=ε

∣∣Ψ (τ)−Ψ (0)∣∣.
If the functionΨ isC1 then integration by parts shows that∫

|τ |=ε
Ψ (τ)

dτ

τ2 = −
∫

|τ |=ε
Ψ (τ) d

(
1

τ

)
=

∫
|τ |=ε

1

τ
dΨ (τ)

=
∫

|τ |=ε

1

τ

(
∂Ψ

∂τ
dτ + ∂Ψ

∂τ̄
dτ̄

)
=

∫
|τ |=ε

∂Ψ

∂τ

dτ

τ
+
∫

|τ |=ε

∂Ψ

∂τ̄

dτ̄

τ
.

We claim that

lim
ε→0

∫
|τ |=ε

∂Ψ

∂τ̄

dτ̄

τ
= 0.

To prove this, notice that on the circle|τ | = ε, 1/τ = τ̄ /ε2, and therefore∫
|τ |=ε

∂Ψ

∂τ̄

dτ̄

τ
= 1

ε2

∫
|τ |=ε

∂Ψ

∂τ̄
τ̄ dτ̄ = 1

ε2

∫
|τ |=ε

(
∂Ψ

∂τ̄
− ∂Ψ

∂τ̄
(0)

)
τ̄ dτ̄ ,

where we have also used the fact that
∫
|τ |=ε τ̄ dτ̄ = 0.

Now the claim follows from the inequality∣∣∣∣∣ 1

ε2

∫ (
∂Ψ

∂τ̄
− ∂Ψ

∂τ̄
(0)

)
τ̄ dτ̄

∣∣∣∣∣� 2π sup
|τ |=ε

∣∣∣∣∂Ψ∂τ̄ − ∂Ψ

∂τ̄
(0)

∣∣∣∣.

|τ |=ε
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Since ∫
|τ |=ε

∂Ψ

∂τ

dτ

τ
→ 2πi

∂Ψ

∂τ
(0),

it follows that

lim
ε→0

∫
|τ |=ε

Ψ (τ)
dτ

τ2
= 2πi

∂Ψ

∂τ
(0).

More generally, the following lemma holds.

Lemma 1. For aCm functionΨ :C → C,

lim
ε→0

∫
|τ |=ε

Ψ (τ)
dτ

τm+1 = 2πi

m!
∂mΨ

∂τm
(0).

Proof. By Taylor’s theorem,

Ψ (τ)=Ψ (0)+ ∂Ψ

∂τ
(0)τ + ∂Ψ

∂τ̄
(0)τ̄

+ 1

2

(
∂2Ψ

∂τ2
(0)τ2 + 2

∂2Ψ

∂τ∂τ̄
(0)τ τ̄ + ∂2Ψ

∂τ̄2
(0)τ̄2

)
+ · · ·

+ 1

m!
m∑
k=0

(
m

k

)
∂mΨ

∂τk∂τ̄m−k (0)τ
kτ̄m−k + 1

(m− 1)!
m∑
k=0

(
m

k

)

×
( 1∫
s=0

[
∂mΨ

∂τk∂τ̄m−k (sτ )−
∂mΨ

∂τk∂τ̄m−k (0)
]
(1− s)m ds

)
τ kτ̄m−k.

When we substitute this expansion ofΨ (τ) in the integral
∫
|τ |=ε(Ψ (τ)/τ

m+1) dτ , we run
into integrals of the form∫

|τ |=ε
τ kτ̄ l−k

dτ

τm+1 (0� l �m, 0 � k � l).

Since on the circle|τ | = ε, τ̄ = ε2/τ , these integrals become∫
|τ |=ε

τ kτ̄ l−k dτ

τm+1
= ε2(l−k)

∫
|τ |=ε

dτ

τm+l−2k+1
.

It follows that the only case that the limit

lim
ε→0

∫
|τ |=ε

τ kτ̄ l−k dτ

τm+1

can be�= 0 is whenk = l =m, in which case each integral, and therefore this limit, is 2πi.
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Since the coefficient ofτ kτ̄ l−k in Taylor’s expansion, in the casek = l =m, is

1

m!
∂mΨ

∂τm
(0),

the formula of the lemma will follow if we show that

∫
|τ |=ε

( 1∫
s=0

[
∂mΨ

∂τk∂τ̄m−k (sτ )−
∂mΨ

∂τk∂τ̄m−k (0)
]
(1− s)m ds

)
τ kτ̄m−k dτ

τm+1 → 0

asε→ 0.

But this follows from the fact that the above integral, in absolute value, is

� 2π

m
sup
|τ |�ε

∣∣∣∣ ∂mΨ

∂τkτ̄m−k (τ )−
∂mΨ

∂τk∂τ̄m−k (0)
∣∣∣∣.

This completes the proof of the lemma.✷
Now we can prove the following theorem.

Theorem 1. Suppose that the functionΘ(ζ ) and the differential formΞ(ζ ), defined and
being smooth forζ in a neighborhood of∂D, satisfy the equation

Ξ(ζ )= 1

(φ(ζ ))m+1 ∂̄ζ
[
Θ(ζ )

]
whenφ(ζ ) �= 0.

Then, forf ∈O(D̄),∫
ζ∈∂D

f (ζ )Ξ(ζ )∧ dζ1 ∧ dζ2 = 2πi

m!
∂m

∂τm

∣∣∣∣
τ=0

( ∫
ζ∈(∂D)∩{φ=τ }

f (ζ )Θ(ζ )β(ζ )

)
.

More generally, if the functionsΘj(ζ ), j = 0, . . . ,m, and the differential formΞ(ζ ) are
defined and smooth forζ in a neighborhood of∂D, and satisfy the equation

Ξ(ζ )=
m∑
j=0

1

(φ(ζ ))j+1 ∂̄ζ
[
Θj (ζ )

]
whenφ(ζ ) �= 0,

then ∫
ζ∈∂D

f (ζ )Ξ(ζ )∧ dζ1 ∧ dζ2 = 2πi
m∑
j=0

1

j !
∂j

∂τ j

∣∣∣∣
τ=0

( ∫
ζ∈(∂D)∩{φ=τ }

f (ζ )Θj (ζ )β(ζ )

)
.

Proof. It is easy to check that

dζ1 ∧ dζ2 = β(ζ1, ζ2)∧
(
∂φ

∂ζ1
dζ1 + ∂φ

∂ζ2
dζ2

)
. (6)

In carrying out the residue process, we will be working on the surface∂D. Deforming
slightly this surface (away from the curve∂M), if necessary, we may assume thatdφ �= 0



506 T. Hatziafratis / J. Math. Anal. Appl. 281 (2003) 501–515

ons

ma 1,

y way.
of the
at the points of∂D. Then (6) will hold in a neighborhood of∂D. (Notice that the value
of the integral

∫
ζ∈∂D f (ζ )Ξ(ζ )∧ dζ1 ∧ dζ2 remains unchanged under small deformati

of ∂D, since the differential formf (ζ )Ξ(ζ )∧ dζ1 ∧ dζ2 is d-closed.) Then

Ξ(ζ )∧ dζ1 ∧ dζ2 = ∂̄ζ
[

1

(φ(ζ ))m+1
Θ(ζ )β(ζ )∧ dφ(ζ )

]
,

and therefore

f (ζ )Ξ(ζ )∧ dζ1 ∧ dζ2 = dζ
[
f (ζ )Θ(ζ )β(ζ )∧ dφ(ζ )

(φ(ζ ))m+1

]
inW − V, (7)

whereW is a neighborhood of∂D. (We also used our assumption thatf ∈ O(D̄).) Using
(7), we can carry out the residue process:∫

ζ∈∂D
f (ζ )Ξ(ζ )∧ dζ1 ∧ dζ2 = lim

ε→0

∫
ζ∈(∂D)∩{|φ|>ε}

f (ζ )Ξ(ζ )∧ dζ1 ∧ dζ2

= lim
ε→0

∫
ζ∈(∂D)∩{|φ|>ε}

dζ

[
f (ζ )Θ(ζ )β(ζ )∧ dφ(ζ )

(φ(ζ ))m+1

]

= lim
ε→0

∫
ζ∈(∂D)∩{|φ|=ε}

f (ζ )Θ(ζ )β(ζ )∧ dφ(ζ )

(φ(ζ ))m+1

= lim
ε→0

∫
|τ |=ε

( ∫
ζ∈(∂D)∩{|φ|=τ }

f (ζ )Θ(ζ )β(ζ )

)
dτ

τm+1

= 2πi

m!
∂m

∂τm

∣∣∣∣
τ=0

( ∫
ζ∈(∂D)∩{|φ|=τ }

f (ζ )Θ(ζ )β(ζ )

)
.

In the above computation, we used Stokes’s theorem, Fubini’s theorem, and Lem
applied to the functionΨ (τ)= ∫

(∂D)∩{φ=τ } f (ζ )Θ(ζ )β(ζ ).
The proof of the general statement of the theorem is proved in the same exactl

(Notice that this general statement does not follows directly from the first statement
theorem, but it is proved similarly. The point here is that the differential forms∂̄Θj /φ

j+1

are not assumed to be defined on the whole∂D—only their sum
∑
∂̄Θj /φ

j+1 is.) ✷

3. The formula for the first-order derivatives

The starting point is the identity

1

[Γ (ζ, z)2] det

(
γ1(ζ, z) ∂̄ζ γ1(ζ, z)

γ2(ζ, z) ∂̄ζ γ2(ζ, z)

)

= − 1
∂̄ζ

[
1

det

(
γ1(ζ, z) φ1(ζ, z)

)]
,

φ(ζ1, ζ2)− φ(z1, z2) Γ (ζ, z) γ2(ζ, z) φ2(ζ, z)
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milar

y

s

f the
the
which holds at points(ζ1, ζ2) and(z1, z2) whereverφ(ζ1, ζ2)−φ(z1, z2) �= 0. The proof of
this identity is a straightforward computation, which depends on (3) (see [1,2] for si
computations of more general type).

Thus

2πiK(ζ, z)= 1

φ(ζ )− φ(z) ∂̄ζ
[
Ω(ζ, z)

]
. (8)

Differentiating (8) with respect toz1, we obtain

2πi
∂K(ζ, z)

∂z1
= 1

φ(ζ )− φ(z) ∂̄ζ
[
∂Ω(ζ, z)

∂z1

]
+ ∂φ/∂z1

(φ(ζ )− φ(z))2 ∂̄ζ
[
Ω(ζ, z)

]
. (9)

Therefore, ifφ(ζ ) �= 0,

2πi
∂K(ζ, z)

∂z1
= 1

φ(ζ )
∂̄ζ

[
∂Ω(ζ, z)

∂z1

]
+ 1

(φ(ζ ))2
∂̄ζ

[
∂φ

∂z1
Ω(ζ, z)

]
for z ∈M. (10)

On the other hand, (5) withs = (1,0) gives

∂f

∂z1
(z)=

∫
ζ∈∂D

f (ζ )
∂K(ζ, z)

∂z1
∧ dζ1 ∧ dζ2.

Therefore, by (10) and Theorem 1, we obtain the following theorem.

Theorem 2. For f ∈ O(D̄) andz ∈M,

∂f

∂z1
(z)=

∫
ζ∈∂M

f (ζ )
∂Ω(ζ, z)

∂z1
β(ζ )+ ∂φ

∂z1

∂

∂τ

∣∣∣∣
τ=0

( ∫
ζ∈(∂D)∩{φ=τ }

f (ζ )Ω(ζ, z)β(ζ )

)
,

and a similar formula holds for the derivative∂f/∂z2.

Remarks. (1) If we compute the quantity

∂φ

∂z1
(z)
∂f

∂z2
(z)− ∂φ

∂z2
(z)
∂f

∂z1
(z),

by substituting the values of the derivatives∂f/∂z1 and ∂f/∂z2, as these are given b
Theorem 2, we obtain (4), since the quantities which contain the derivatives(∂/∂τ)τ=0,
cancel each other. In this sense, Theorem 2 is an extension of (4).

(2) Notice that if ∂φ/∂z1 is zero at the pointz ∈ M then the term which contain
the (∂/∂τ)τ=0-derivative is not present in the formula. Thus at a pointz ∈ M, where
(dφ)(z)= 0,

∂f

∂zj
(z)=

∫
ζ∈∂M

f (ζ )
∂Ω(ζ, z)

∂zj
β(ζ ) for j = 1,2.

(3) We arrived at the formula of Theorem 2, trying to compute the values o
derivatives∂f/∂z1 and ∂f/∂z2. Of course, one way turn this around and view
formula of Theorem 2 as a method to compute the(∂/∂τ)τ=0-derivative of the function
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,

f

the
∫
ζ∈(∂D)∩{φ=τ } f (ζ )Ω(ζ, z)β(ζ ). Notice that this is possible if(dφ)(z) �= 0. For example

if at the pointz ∈M, (∂φ/∂z2)(z) �= 0, then

∂

∂τ

∣∣∣∣
τ=0

( ∫
ζ∈(∂D)∩{φ=τ }

f (ζ )Ω(ζ, z)β(ζ )

)

= 1

(∂φ/∂z2)(z)

[
∂f

∂z2
(z)−

∫
ζ∈∂M

f (ζ )
∂Ω(ζ, z)

∂z2
β(ζ )

]
.

Here is a corollary of this formula: IfU is a neighborhood ofD̄ and the sequence o
functionsfn ∈O(U) converges uniformly onU to a functionf asn→ ∞, then

∂

∂τ

∣∣∣∣
τ=0

( ∫
ζ∈(∂D)∩{φ=τ }

fn(ζ )Ω(ζ, z)β(ζ )

)

→ ∂

∂τ

∣∣∣∣
τ=0

( ∫
ζ∈(∂D)∩{φ=τ }

f (ζ )Ω(ζ, z)β(ζ )

)
.

In particular, the mapO(C2)→ C, defined by

f → ∂

∂τ

∣∣∣∣
τ=0

( ∫
ζ∈(∂D)∩{φ=τ }

f (ζ )Ω(ζ, z)β(ζ )

)
for f ∈O(C2),

is an analytic functional, carried by the compact setM̄ . (We proved this in the casez ∈M
and(dφ)(z) �= 0, but something more general holds, as we will see in Section 5.)

(4) Applying formula (2) with the holomorphic function∂f/∂ζ1 in place off , we obtain

∂f

∂z1
(z)=

∫
ζ∈∂M

∂f

∂ζ1
(ζ )Ω(ζ, z)β(ζ ).

Therefore, the formula of Theorem 2 is written in the following way:

∫
ζ∈∂M

∂f

∂ζ1
(ζ )Ω(ζ, z)β(ζ )

=
∫

ζ∈∂M
f (ζ )

∂Ω(ζ, z)

∂z1
β(ζ )+ ∂φ

∂z1

∂

∂τ

∣∣∣∣
τ=0

( ∫
ζ∈(∂D)∩{φ=τ }

f (ζ )Ω(ζ, z)β(ζ )

)
,

which may be viewed as an “integration by parts” formula.
It also follows from this formula that the analytic functional, which we discussed in

previous remark, is carried by the curve∂M.
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s of

.

4. The formula for the higher-order derivatives

For a fixeds = (s1, s2), we apply the operatorDs = ∂s1+s2/∂zs11 ∂z
s2
2 to both sides of (8)

and we obtain

2πiDsK(ζ, z)= Ds

(
1

φ(ζ )− φ(z) ∂̄ζ
[
Ω(ζ, z)

])

=
∑
k�s

(
s

k

)
Dk

(
1

φ(ζ )− φ(z)
)
∂̄ζ
[
Ds−kΩ(ζ, z)

]
,

where the sum is extended over thek = (k1, k2)� s, i.e., 0� k1 � s1 and 0� k2 � s2,(
s

k

)
=
(
s1

k1

)(
s2

k2

)
and s − k = (s1 − k1, s2 − k2).

Also

D
k

(
1

φ(ζ )− φ(z)
)

=
|k|∑
j=0

A
k,φ
j (z)

(φ(ζ )− φ(z))j+1 ,

where eachAk,φj (z) is an easily computed and quite explicit combination of derivative
the functionφ, of order� |k| = k1 + k2, evaluated atz.

Thus

2πiDsK(ζ, z)=
∑
k�s

(
s

k

) |k|∑
j=0

A
k,φ
j (z)

(φ(ζ ))j+1 ∂̄ζ
[
D
s−kΩ(ζ, z)

]
for z ∈M. (11)

Combining (5), (11), and Theorem 1, we obtain the formula of the following theorem

Theorem 3. For f ∈ O(D̄) andz ∈M,

Dsf (z)=
∑
k�s

(
s

k

) |k|∑
j=0

A
k,φ
j (z)

j !
∂j

∂τ j

∣∣∣∣
τ=0

( ∫
ζ∈(∂D)∩{φ=τ }

f (ζ )Ds−kΩ(ζ, z)β(ζ )
)
.

Examples. (1) Keeping in mind thatK =K(ζ, z) andΩ =Ω(ζ, z), we have

2πi
∂2K

∂z2
1

= 1

φ(ζ )− φ(z) ∂̄ζ
[
∂2Ω

∂z2
1

]

+ 1

(φ(ζ )− φ(z))2 ∂̄ζ
[
2
∂φ

∂z1

∂Ω

∂z1
+ ∂2φ

∂z2
1

Ω

]
+ 2

(∂φ/∂z1)
2

(φ(ζ )− φ(z))3 ∂̄ζ [Ω].

Therefore, forf ∈ O(D̄) andz ∈M,

∂2f

∂z2
1

(z)=
∫

f (ζ )
∂2Ω

∂z2
1

β(ζ )
ζ∈∂M
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+ ∂

∂τ

∣∣∣∣
τ=0

( ∫
ζ∈(∂D)∩{φ=τ }

f (ζ )

[
2
∂φ

∂z1

∂Ω

∂z1
+ ∂2φ

∂z2
1

Ω

]
β(ζ )

)

+ ∂2

∂τ2

∣∣∣∣
τ=0

((
∂φ

∂z1

)2 ∫
ζ∈(∂D)∩{φ=τ }

f (ζ )Ωβ(ζ )

)
.

In particular, if at a pointz ∈M, ∂φ/∂z1 = 0 and∂2φ/∂z2
1 = 0, then

∂2f

∂z2
1

(z)=
∫

ζ∈∂M
f (ζ )

∂2Ω

∂z2
1

(ζ, z)β(ζ ),

and also

∂f

∂z1
(z)=

∫
ζ∈∂M

f (ζ )
∂Ω

∂z1
(ζ, z)β(ζ ).

For example, these formulas hold ifφ(z1, z2)= z3
1 − z5

2 + z3
2 + z2 andz= (0,0).

Here is another case. Ifφ(z1, z2)= z2
1 − z5

2 + z3
2 + z2 then

2
∂

∂τ

∣∣∣∣
τ=0

( ∫
ζ∈(∂D)∩{φ=τ }

f (ζ )Ω(ζ,0)β(ζ )

)
= ∂2f

∂z2
1

(0)−
∫

ζ∈∂M
f (ζ )

∂2Ω

∂z2
1

(ζ,0)β(ζ ).

(2) Similarly,

∂3f

∂z2
1∂z2

(z)=
∫

ζ∈∂M
f (ζ )

∂3Ω

∂z2
1∂z2

β(ζ )

+ ∂

∂τ

∣∣∣∣
τ=0

( ∫
ζ∈(∂D)∩{φ=τ }

f (ζ )

[
∂φ

∂z2

∂2Ω

∂z2
1

+ ∂

∂z2

(
2
∂φ

∂z1

∂Ω

∂z1
+ ∂2φ

∂z2
1

Ω

)]
β(ζ )

)

+ ∂2

∂τ2

∣∣∣∣
τ=0

( ∫
ζ∈(∂D)∩{φ=τ }

f (ζ )

[
∂φ

∂z2

(
2
∂φ

∂z1

∂Ω

∂z1
+ ∂2φ

∂z2
1

Ω

)

+
(
∂φ

∂z1

)2
∂Ω

∂z2
+ 2

∂φ

∂z1

∂2φ

∂z1∂z2
Ω

]
β(ζ )

)

+ ∂3

∂τ3

∣∣∣∣
τ=0

((
∂φ

∂z1

)2
∂φ

∂z2

∫
ζ∈(∂D)∩{φ=τ }

f (ζ )Ωβ(ζ )

)
.
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(3) Let us examine the formulas of Theorem 3, when

D = {
(z1, z2) ∈ C

2: |z1|2 + |z2|2<R2},
γ (ζ, z)= (ζ̄1 − z̄1, ζ̄2 − z̄2), and φ(z1, z2)= z2.

Thenβ(ζ1, ζ2)= dζ1 and, choosingφ1 = 0 andφ2 = 1,

Ω(ζ1, ζ2, z1, z2)= 1

2πi

ζ̄1 − z̄1
|ζ1 − z1|2 + |ζ2 − z2|2 .

Also (8) becomes

2πiK(ζ, z)= 1

ζ2 − z2 ∂̄ζ
[
Ω(ζ, z)

]
and gives the following equation:

2πi
∂s1+s2K
∂z
s1
1 ∂z

s2
2

∣∣∣∣
(z1,z2)=(0,0)

=
s2∑
m=0

(
s2

m

)
m!
ζm+1

2

∂̄ζ

[
∂s1+s2−mΩ
∂z
s1
1 ∂z

s2−m
2

∣∣∣∣
(z1,z2)=(0,0)

]
.

This leads to the formula

D
sf (0)=

s2∑
m=0

(
s2

m

)
∂m

∂τm

∣∣∣∣
τ=0

( ∫
|ζ1|2=R2−|τ |2

f (ζ1, τ )D
(s1,s2−m)Ω(ζ1, τ,0,0) dζ1

)
,

(12)

let us say, forf ∈ O(C2).
However, (12) can be simplified, as a computation shows. Indeed,

∂m

∂τm

∣∣∣∣
τ=0

( ∫
|ζ1|2=R2−|τ |2

f (ζ1, τ )D
(s1,s2−m)Ω(ζ1, τ,0,0) dζ1

)
= 0, (13)

unlessm= s2, and

∂s2

∂τ s2

∣∣∣∣
τ=0

( ∫
|ζ1|2=R2−|τ |2

f (ζ1, τ )D
(s1,0)Ω(ζ1, τ,0,0) dζ1

)

=
∫

|ζ1|=R

∂s2f

∂ζ
s2
2

(ζ1,0)D(s1,0)Ω(ζ1,0,0,0) dζ1. (14)

These can be proved in the following way. First we compute

D(s1,s2−m)Ω(ζ1, τ,0,0)= (s1 + s2 −m)!
2πi

ζ̄
s1+1
1 τ̄ s2−m

(|ζ1|2 + |τ |2)s1+s2−m+1
.

Therefore

D(s1,s2−m)Ω(ζ1, τ,0,0)= (s1 + s2 −m)!
ζ̄
s1+1
1 τ̄ s2−m when|ζ1|2 =R2 − |τ |2.
2πiR2(s1+s2−m+1)
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Substituting this in the line integrals and transforming these integrals by settingζ1 =
(R2 − |τ |2)1/2eiθ , 0� θ � 2π , we can easily see why formulas (13) and (14) hold.

Hence (12) becomes

∂s1+s2f
∂z
s1
1 ∂z

s2
2

(0)=
∫

|ζ1|=R

∂s2f

∂ζ
s2
2

(ζ1,0)D(s1,0)Ω(ζ1,0,0,0) dζ1

= s1!
2πi

∫
|ζ1|=R

∂s2f

∂ζ
s2
2

(ζ1,0)
dζ1

ζ
s1+1
1

, (15)

which of course can be checked independently (using only the one dimensional C
formula). Thus the formula of Theorem 3 is a generalization of (15), from the
φ(z1, z2)= z2 to more generalφ’s.

5. Applications to analytic functionals

According to the following lemma, derivatives of integrals of the kind, which occu
the sum of the formula of Theorem 3, define analytic functionals. More precisely, i
setting of Theorem 3, we can prove

Lemma 2. LetX(ζ ) be any smooth function defined forζ = (ζ1, ζ2) in a neighborhood o
the curve(∂D) ∩ {φ = 0}. Then the mapO(C2)→ C, which assigns to eachf ∈ O(C2)

the quantity

∂m

∂τm

∣∣∣∣
τ=0

( ∫
ζ∈(∂D)∩{φ=τ }

f (ζ )X(ζ )β(ζ )

)
, (16)

is an analytic functional.

Proof. In the case

D = {
(z1, z2) ∈ C

2: |z1|2 + |z2|2<R2} and φ(z1, z2)= z2,
quantity (16) is equal to

∂m

∂τm

∣∣∣∣
τ=0

( ∫
|ζ1|2=R2−|τ |2

f (ζ1, τ )X(ζ1, τ ) dζ1

)
.

Then, settingζ1 = (R2 − |τ |2)1/2eiθ , 0� θ � 2π , the line integral becomes∫
|ζ1|2=R2−|τ |2

f (ζ1, τ )X(ζ1, τ ) dζ1

=
2π∫
f
((
R2 − |τ |2)1/2eiθ , τ )X((R2 − |τ |2)1/2eiθ , τ )(R2 − |τ |2)1/2eiθ i dθ.
θ=0
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Using this equation, it is easy to see that if the sequencefn ∈ O(C2) converges to 0
uniformly on compact sets, then

∂m

∂τm

∣∣∣∣
τ=0

( ∫
|ζ1|2=R2−|τ |2

fn(ζ1, τ )X(ζ1, τ ) dζ1

)
→ 0 asn→ ∞.

The proof in the general case is similar. All we have to do is to use a partition of
in order to write the integral as a finite sum of integrals over small pieces of the
(∂D)∩ {φ = τ } and to use appropriate local parametrizations of these pieces.✷

Now assuming thatφ ∈ O(C2) with 0 ∈ {φ = 0} and usingγ (ζ, z) = ζ̄ − z̄, define
T Rs1,s2 :O(C2)→ C by setting

T Rs1,s2(f )=
∑
k�s

(
s

k

) |k|∑
j=0

A
k,φ
j (0)

j !
∂j

∂τ j

∣∣∣∣
τ=0

( ∫
ζ∈SR∩{φ=τ }

f (ζ )Ds−kΩ(ζ,0)β(ζ )
)

for f ∈ O(C2), wheres1, s2 are nonnegative integers andR > 0, so that{φ = 0} meets
the sphereSR = {|ζ | = R} transversally. Then each term in the sum, and thereforeT Rs1,s2,
is an analytic functional. Conversely, we will show that every analytic functional ca
expanded in terms of theseT Rs1,s2, provided thatR is sufficiently large. More precisely, w
will prove the following theorem.

Theorem 4. Every analytic functionalT :O(C2)→ C has an expansion of the form

T =
∑

s1,s2�0

cs1,s2T Rs1,s2

for sufficiently largeR. Furthermore, the coefficients are given by the formula

cs1,s2 = 1

s1!s2!
∂s1+s2F
∂w

s1
1 ∂w

s2
2

∣∣∣∣
(w1,w2)=(0,0)

,

whereF(w1,w2) is the Fourier–Laplace transform ofT .

Proof. It suffices to show that

T (f )=
∑

s1,s2�0

cs1,s2T Rs1,s2(f ) for f ∈ O(C2). (17)

Recall that

F(w1,w2)= Tζ1,ζ2[eζ1w1+ζ2w2],
the Fourier–Laplace transform ofT , is an entire function of exponential type, i.e.,∣∣F(w1,w2)

∣∣�AeB(|w1|+|w2|) for everyw1,w2, (18)

for some positive constantsA andB.
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To deal with the convergence of the series in (17) (which is part of the conclus
we will need an estimate for the coefficientscs1,s2. It follows from (18) and Cauchy’s
inequalities (as in [3, p. 109]) that

|cs1,s2| �A
(
√

2eB)s1+s2
s
s1
1 s

s2
2

for everys1, s2,

and therefore∑
s1,s2�0

(s1 + s2 + 1)!|cs1,s2|rs11 r
s2
2 <∞, provided that 0< r1, r2<

1

3
√

2eB
. (19)

Applying (5) to the functioneζ1w1+ζ2w2 of (ζ1, ζ2) with γ (ζ, z) = (ζ̄1 − z̄1, ζ̄2 − z̄2), we
obtain

w
s1
1 w

s2
2 =

∫
ζ∈SR

eζ1w1+ζ2w2ξs1,s2(ζ1, ζ2)∧ dζ1 ∧ dζ2 for (w1,w2) ∈ C
2, (20)

where

ξs1,s2(ζ1, ζ2)=
1

4π2

∂s1+s2
∂z
s1
1 ∂z

s2
2

[
(ζ̄1 − z̄1) dζ̄2 − (ζ̄2 − z̄2) dζ̄1
(|ζ1 − z1|2 + |ζ2 − z2|2)2

]∣∣∣∣
(z1,z2)=(0,0)

= (s1 + s2 + 1)!
4π2

ζ̄
s1
1 ζ̄

s2
2

(|ζ1|2 + |ζ2|2)s1+s2+2 (ζ̄1dζ̄2 − ζ̄2dζ̄1)

= (s1 + s2 + 1)!
4π2

1

(|ζ1|2 + |ζ |2)2

×
(

ζ̄1

|ζ1|2 + |ζ2|2
)s1( ζ̄2

|ζ1|2 + |ζ2|2
)s2
(ζ̄1dζ̄2 − ζ̄2dζ̄1). (21)

On the other hand,

F(w1,w2)=
∑

s1,s2�0

cs1,s2w
s1
1 w

s2
2 . (22)

Substituting (20) in (22) and interchanging the order of summation and integratio
obtain

F(w1,w2)=
∑

s1,s2�0

cs1,s2

∫
ζ∈SR

eζ1w1+ζ2w2ξs1,s2(ζ1, ζ2)∧ dζ1 ∧ dζ2

=
∫

ζ∈SR
eζ1w1+ζ2w2

[ ∑
s1,s2�0

cs1,s2ξs1,s2(ζ1, ζ2)

]
∧ dζ1 ∧ dζ2, (23)

provided thatR > 3
√

2eB. At this point we are using the fact that the series∑
s1,s2�0

cs1,s2ξs1,s2(ζ1, ζ2)

converges uniformly for|ζ1|2 + |ζ2|2 �R2, which follows from (19) and the expression
ξs1,s2(ζ1, ζ2), as this is given by the last part of (21).
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Since (23) holds for everyw1,w2, it follows that, forf ∈O(C2),

T (f )=
∫

ζ∈SR
f (ζ1, ζ2)

[ ∑
s1,s2�0

cs1,s2ξs1,s2(ζ1, ζ2)

]
∧ dζ1 ∧ dζ2

=
∑

s1,s2�0

cs1,s2

∫
ζ∈SR

f (ζ1, ζ2)ξs1,s2(ζ1, ζ2)∧ dζ1 ∧ dζ2.

(We could not have concluded this, had we not interchanged the order of summati
integration in (23).)

Finally the computations, which led to the formula of Theorem 3, show that∫
ζ∈SR

f (ζ1, ζ2)ξs1,s2(ζ1, ζ2)∧ dζ1 ∧ dζ2 = T Rs1,s2(f ),

and the required expansion of the theorem follows.✷
Comments. (1) As we pointed out in the above proof, part of the conclusion is
convergence of the series in (17). Notice also that it is not immediately clear that th∑
cs1,s2T Rs1,s2 defines an analytic functional. This is justified only when (17) is proved
(2) The above proof shows that any entire function of exponential type is the Fo

Laplace transform of an analytic functional of the form
∑
cs1,s2T Rs1,s2. In particular, ifµ is

any measure with compact support inC2 then∫
ζ∈C2

f (ζ ) dµ(ζ )=
∑

s1,s2�0

cs1,s2T Rs1,s2(f ) for f ∈ O(C2).

In fact,cs1,s2 are the coefficients in the power series expansion of the entire function∫
(ζ1,ζ2)∈C2

eζ1w1+ζ2w2 dµ(ζ1, ζ2), i.e., cs1,s2 = 1

s1!s2!
∫

(ζ1,ζ2)∈C2

ζ
s1
1 ζ

s2
2 dµ(ζ1, ζ2).
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