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This paper presents several new partial integral inequalities in two independent 
variables which can be used in the analysis of various problems in the theory 
of partial differential and integral equations as ready and powerful tools. An 
elementary technique of reducing the integral inequality to second order partial 
differential inequality and then integrating it by Riemann’s method is used to 
establish our results. 

1. INTRODUCTION 

Integral inequalities originally due to Peano and Gronwall, and their various 
generalizations (see, [2, 3, 111) h ave been extensively used in obtaining a priori 
bounds for solutions of differential and integral equations. An interesting and 
useful but apparently neglected generalization of Gronwall’s inequality in two 
independent variables is due to Wendroff given in [l, p. 1541. Wendroff’s 
inequality which has its origin in the field of partial differential equations has 
recently evoked lively interest as may be seen from the recent papers of Snow 
[22, 231, Young [25], Ghoshal and Masood [7], Headley [9], Chandra and 
Davis [5], Bondge and Pachpatte [4] and Pachpatte [19, 201, see also the mono- 
graph [24, pp. 130-1471 of W. Walter, which are motivated by certain applica- 
tions in the theory of hyperbolic partial differential and integrodifferential 
equations. Our objective here is to present a number of partial integral inequal- 
ities involving two independent variables which claim the following integral 
inequality as their origin. 

LEMMA 1 (Pachpatte [12]). Let u(t), f(t) and g(t) be real-valued nonnegative 
continuous functions defined on I = [0, a)) for which the inequality 
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holds, where uO is a nonnegative constant. Then 

u(t) < u. [ 1 + Lt f(s) exp ( L8 If(4 + &)I d’) ds] , 

Various applications of Lemma 1 and its variants may be found in [ 16- 181 
and in many other recent papers of the present author. Recently, J. C. Helton 
[lo] has obtained some useful generalizations of Lemma 1 by using product 
integration. In this paper an elementary method used by Snow [22] will be used 
to establish several fundamental integral inequalities in two independent 
variables. The resultant new class of inequalities will bring a great number of 
inequalities under one proof, so to speak, and may in general, be applied to 
study the boundedness, uniqueness, continuous dependence and other problems 
in the theory of partial integral and integrodifferential equations of the more 
general type. 

2. MAIN RESULTS 

In this section we state and prove our main results on partial integral inequal- 
ities related to the integral inequality established in Lemma 1. The proofs of 
the main results are along the lines for the one-variable case and involves second 
order partial differential inequalities which are integrated by using Riemann’s 
method [21, p. 1201. 

In our subsequent discussion we assume the following: 

(H,) +,Y), a@, y), &,Y), +,Y), P@,Y) and dx, Y) are re&valued 
nonnegative continuous functions defined on a domain D. 

(H,) Po(xo , yo) and P(x, y) be two points in D such that (x - x0) (y - yo) 
> 0 and R the rectangular region whose opposite corners are the points PO and P. 

A useful two independent variable generalization of Lemma 1 is embodied in 
the following theorem. 

THEOREM 1. Suppose (H,) and (H,) are true. Let v(s, t; x, y) and w(s, t: x, y) 
be the solutions of the characteristic initial value problem 

L[v] = v,t - MS, t) + b(s, 4 MS, 4 + ds, 91 u = 0, (1) 

and 

v(s, y) = w(x, t) = 1) 

M[w] = w,t - MS, t) c(s, t) - P(S, t)] w = 0, 
(2) 

w(s, y) = w(x, t) = 1, 
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respectively and let D+ be a connected subdomain of D which contains P and on 

which v  > 0 and w > 0. Then, if R C D+ and u(x, y) satisfies 

u(x, y) < a(x, y) + b(x, Y> [fzjy 4~~ t) 6 t) Q!S dt 
“0 yo 

(3) 

+ j'/"p(s, t) (j" jt q(5,4 45, s> 8 4) ds dt) s 
@+I yo % %I 

then u(x, y) also satisjies 

4x, Y) < a@, y) + b(x9 Y) [jzjy w ( s, 
"0 % 

t; x, y) /u(s, t) c(s, 4 + P(s, t) j; jy; 46 7) 0 

x [c(t, d + a(& $1 ~(5, rl; s, t) dt 4 ds dt . I I (4)’ 

The proof of this theorem is obtained by reducing the integral inequality (3) 
to a partial differential inequality and then integrating it by Riemann’s method 
for hyperbolic partial differential equations [21, p. 1201. The functions 
v(s, t; x, y) and w(s, t; x, y) involved in theorem are Riemann functions relative 
to the point P(x, y) for the self adjoint operators L and M respectively. There are 

R 

q-p0 'YO ) 

1 

FIGURE 1 

such functions and a domain D+ on which v > 0 since v = 1 and w > 0 since 
w = 1 on the vertical and horizontal lines through P and since v and w are 
continuous. The existence and continuity of the Riemann function is well 
known and may be demonstrated by the method of successive approximation 

(See PI)* 
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Proof. Define a function #(x, y) such that 

$w” ,Y) = #(%Yo) = 0, 

then we have 

+*y(x, Y) = 4% Y) 45 Y> + I+, Y) (j:j; !7K 77) 45,71) dt dl7) ’ 
0 

which in view of (3) implies 

Lk Y) G 4% Y) w, Y) + b(% Y) db Y)l 

+ 2% Y> ( s:,ly; 46 7) w5 7) + 45 7) 4@, 41 a 4) * 

Adding p(x, y) 4(x, y) to both sides of the above inequality we have 

+ P(X, Y> [4(x, Y> + j-IJy; df, 4 Ptk 4 + N~,II> 4(4, dl dt d”] ’ 

If we put 
(5) 

then we obtain 

$zy(x, Y) = +zYt% Y) + 4(x7 Y) M% Y) + 4% Y) 4(x, YN. (7) 

Using 4&x, y) d c(x, y) [a(x, Y) + b(x, Y) #k Y>l + P(? Y) 4Cx3 Y> from (5) 
and (b(x, y) < 4(x, y) from (6) in (7) we have 

i.e. 

$ZY(X> Y) d 4% Y) [4x7 Y) + dx, Y)l 
+ r&Y, Y) + &x9 Y) (4x, Y) + cd% YNI Q% Y) 

L[$] = &,(% y) - [p@, y> + 4% Y) (4% Y) + &, YNl ICI@, Y) 

< a(% Y) [4x, Y) + !zts tY)l* 
(8) 
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The operator L is self-adjoint and hyperbolic. For any twice continuously 
differentiable I/ and v the operator L satisfies the identity 

VW1 - WV1 = -($qJEz + (v#& . (9) 

Let P,, and P be any points as in theorem and label the directed sides and corners 
of the rectangle R as shown in Fig. 2. 

Using s and t as the independent variables, we integrate the identity (9) over 
R and use Green’s theorem to obtain 

z- I vt,hs ds - 
I 

t,bvt dt. 
c1+c4 %+CP 

This holds for any functions in Cs. 
For the particular function r,A defined earlier we have 4 = 0 on cs and # = 

I/* = 0 on c4 , so the right hand side in the above identity reduces to 

- s f&h- J‘ #vt dt. (10) 
Cl ca 

Now suppose v satisfies 

L[v] = ‘7&t - [p(s, t) + b(s, t) (c(s, t) + 4h 41 zJ = 0, (11) 
e,=l on Cl 9 (12) 

0, = 0 on cs. (13) 

Then (12) and (13 imply that 

v = 1 on cs. (14) 
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Since ZI 3 0 on R and $(Pr) = 0, by using (8) identity (10) becomes 

i.e., 

#(x, Y) < J-=J; 44 t) [c(s, 4 + !l(S> 91 es9 G x9 Y) h tit* 

Substituting this bound on I/(X, y) in (5) we obtain 

w41 = hz& Y> - [4x, Y) 4% Y> - PC% Y)14(% Y> 

< [a(~, y) c(x, Y) + p(x, Y) j-T’ a(~, t> [c(s, t> + ds, 414s, t; x, Y) ds dt] - 
4 % 

Again by following the same argument as above we obtain the estimate for 
4(x, y) such that 

Now substituting this bound on $(x, y) in (3) we obtain the desired bound in (4). 
Another interesting and useful generalization of Lemma 1 is embodied in the 

following theorem. 

THEOREM 2. Suppose (H,) and (Ha) are true. Let v(s, t; x, y) and W(s, t; X, y) 
be the solutions of the characteristic initial v&e problem 

L[v] = v,t - b(s, t) W, t) + P(S, t) + ds, t)l v = 0, 
(15) 

and 

v(s, y) = v(x, t) = 1 

M[w] = wst - b(s, t) c(s, t) w = 0, w(s, y) = w(x, t) = 1, (16) 

respectively and let D+ be a connected subdomain of D which contains P and on 
which v  > 0 and w > 0. Then, if R C D+ and U(X, y) sutisjies 

u(x, y) < a(x, y) + b(x, y) [szIy c(s, t) 4~3 t) ds dt 
$0 x3 
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then u(x, y) also satisjies 

U(X, y) < a(x, y) + b(x, y) [/‘/’ w(s, t; x, Y) [a(s, t) (c(s~ t) + p(sp t)) 
50 % 

t 44 t>P(s, t) jsjt 44,rl) k(5,d + p(& 7) + q(5,41v(~, 7; s, t) “0 yo 

The proof of this theorem follows by an argument similar to that in the proof 
of Theorem 1 with suitable modifications. We omit the details. 

We now apply Theorem 1 to establish the following interesting and useful 
integral inequalities which in turn are the further generalizations of the integral 
inequalities which in turn are the further generalizations of the integral inequal- 
ities recently established by Gollwitzer [8, Theorem I] and Pachpatte [13, 
Theorem 21. 

THEOREM 3. Suppose (H,) and (H,) are true. Let G(Y) be continuous, strictly 
increasing, convex and submultiplicative function for Y > 0, G(0) = 0, 

lim,,, G(r) = co for all (x, y) in D, 01(x, y), /3(x, y) b e p osa zve continuous functions t 
de&d on a domain D, and OL(X, y) + /I(x, y) = 1. Let v(s, t; x, y) and w(s, t; x, y) 
be the solutions of the characteristic initial value problem 

L[v] = v,t - [Ph t) + iB(s, t) W+, 4 8-%, 9) (4, t) + q(s, t))] z’ = 0, 

and 

v(s, y) = v(x, t) = I, 

M[w] = m,, - [B(s, t) G(b(s, 4 8% 9) c(s, t) - P(G 

w(s, y) = w(x, t) = 1, 

respectively and let D-t be a connected subdomain of D which 
which v  > 0 and w > 0. Then, if R C D+ and u(x, y) satisjies 

(19) 

t)] w = 0, 
(20) 

contains P and on 

4x, y) < a@, Y) + b(x, Y) G-l [J J c(s, t) G(uh t)) ds dt 
x0 %I 

(21) 

+ j’j’ PCS, t> ( jz; jy; t&C, d WC 4) d5 4) ds dt] t x0 YO 
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then u(x, y) also satisjies 

u(x, y) d a(~, y) + b(x, y) G-l [j”f” w(s, t; x, y) I,(,, t> G(& t) “-Ys> t)) 4, t> 
20 yo 

+ p(s, t) j; ju: a((, 7) G(a(t, rl) ~-Vv 7)) k(f, d + dk d] 
0 

x v(t, ‘I; s, t) df 4 ds dt . I I (22) 

Proof. Rewrite (21) as 

U(X, y) < 01(x, y) a(x, y) a+, y) + B(% Y> b(x9 Y) P% Y) 

x G-l 
u s 

’ ’ c(s, t) G(u(s, t)) ds dt 
“0 go 

+ j'j'~(s, 4 (j' jt Q(~>T> GO46 7)) dt 4) ds dt] . 
20 yo % 110 

Since G is convex, submultiplicative and monotonic we have 

GM+ Y)) < 4x, Y> G@@, Y) +G YN + Sk Y> Wx, Y> B-‘6~ YN 

= x 
[I s 

’ c(s, t) G(u(s, t)) ds dt (23) 
% %I 

The estimate given in (22) follows by first applying Theorem 1 with u(x, y) = 

a(~, y) G(a(x, y) C+G Y)), b(x, Y) = B(x, Y> W(x, Y) I~-‘(T YN and 4~~ Y) = 
G(u(x, y)) and then applying G-l to both sides of the resulting inequality. 

THEOREM 4. Suppose (H,) and (H,) are true. Let G(r) be a positive, continuous, 

strictly increasing, subadditive and submultiplicative function for r > 0, G(0) = 0 
for all (x, y) E D, and G-1 is the inverse function of G. Let v(s, t; x, y) and 
w(s, t; x, y) be the solutions of the characteristic initial value problem 

L[v] = v,t - [P(s, t) + GW, t)> k(s, t> + q(s, t>)l TJ = 0, 
(24) 

and 

v(s, y) = v(x, t) = 1. 

M[w] = W,t - [G(b(s, t)) c(s, t) - PCs, t)l w = 0, 
(25) 

w(s, y) = w(x, t) = 1) 
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respectively and let D+ be a connected subdomain of D which contains P and on which 
v  > 0 and w > o. Then, ;f  R C D+ and u(x, y) satis$es 

then u(x, y) also satisjies 

U(X, y) < G-l [G(a(x, y)) + G(b(x, Y)) [jz \’ WCS, t; x7 Y) /%4~, 9) 4~~ 9 
%' uo 

t PCS, t) JsJt G(a(E, 7)) [CCLT) + G, ~>Iv(t~ rl; s, t> df 4~1 dsdt]] a 
9 % 

(27) 
Proof. Since G is subadditive, submultiplicative and monotonic, we have 

from (26) 

(28) 

+ jzju PCS, t) (j’ jt ~(5, d GMt> 7)) d5 4) h dt] - 
% % % % 

The desired bound in (27) follows by first applying Theorem 1 to (28) with 
a(x, y) = G(a(x, y)), b(x, y) = G(b(x, y)) and u(x, y) = G(u(x, y)) and then 
applying G-l to both sides of the resulting inequality. 

Before closing this section, we apply Theorem 2 to establish the following 
integral inequalities similar to that proved in Theorems 3 and 4 which can be 
used in some applications. The proofs of the Theorems 3 and 4 can be adapted 
readily into this context. 

THEOREM 5. Suppose (H,) and (H,) are true. Let G(Y), (Y(x, y), @(x, y) be the 
same functions as defined in Theorem 3. Let v(s, t; x, y) and w(s, t; x, y) be the 
solutions of the characteristic initial value problem 

L[v] = vst - rB(s, t) G(b(s, t) B-Ys, t>) MS, t> + PCs, t> + ds> t)l v = 0, t29j 
v(s, y) = v(x, t) = 1, 

and 

wwwl = wst - ,8(s, t) G(b(s, t) P(s, t)) C(S, t) w = 0, 
(30) 

w(s, y) = w(x, t) = 1, 
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respectively and let D+ be a connected subdotnain of D which contains P and on 
which v  > 0 and w > 0. Then, if R C D+ and U(X, y) satisfies 

u(x, y) < a(x, y) + b(x, y) G-l [lDly c(s, 4 G(u(s, t)) ds dt 
"0 %I 

+ j's' P(S, t)(G(& 0) + B(s, 0 GW, 4 B-% 9) 
4 %I 

(31) 

then u(x, y) also satisJies 

U(X, y) < a(x, y) + b(x, y) G-l [/‘I’ w(s, t; x, Y) (4, t) G(a(s, 4 a+, t)> 
%I % 

x [c(s, t) + p(s> t)l + PCs, t> W(s, 4 P-% 9 PCS, t> 

X 1s ' ' 46,7> G(4C9 7) ~-Yt, 7)) 
4 % 

x ix5 7) + PC5 7) + d-5 7>1v(tl7; s, t) dt d71 ds dt] . (32) 

THEOREM 6. Suppose (H,) and (H,) are true. Let G and G-l be the same 
functions as defined in Theorem 4. Let v(s, t; x, y) and w(s, t; x, y) be the solutions 
of the characteristic initial value problem 

L[v] = v,t - G(b(s, 9) MS, t) + ~(s, t) + q(s, t)] v  = 0, 
(33) 

and 

v(s, y) = v(x, t) = 1, 

M[w] = W,t - G(b(s, t)) c(s, t) w = 0, 
(34) 

w(s, y) = w(x, t) = 1, 

respectively and let D+ be a connected subdomain of D which contains P and on 
which v  > 0 and w > 0. Then, if R C D+ and u(x, y) satis$es 

u(x, y) < a(x, y) + b(x, Y> G-l [J’s’ c(s, t) G(u(s, t)) ds dt 
+o %I 

+ j-’ f y  ~(s, t) (G(u(s, t)) + G(b(s, t)) 
xO*‘YO 

(35) 

X j-is:. dt, 7) W46,7)) dt 4) ds dt] , 
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then u(x, y) also satisjies 

< G-’ [%4x, Y)) + GW, Y)) [s:s,: WCS> t; .z, Y) lG(a(s, t)) [c(s, t) + P(S, t)] 
0 

+ G(b(s, t)) PCS, t) f/’ G(45,rl)) [c(t, 4 + P(E, rl) + d& 41 
% %I 

x v(4,~; s, t) d[ d7 ds dt 
I II 

. (36) 

We note that in the special case when p(x, y) = 4(x, y) = 0, Theorems 1-6 
reduces to the further generalizations of the integral inequality recently esta- 
blished by Snow [22]. In the special case when c(x, y) = 0, our results in 
Theorems 1-6 are new to the literature. 

3. SOME APPLICATIONS 

In this section we present some applications of our results to study the 
boundedness and uniqueness of the solutions of some nonlinear hyperbolic 
partial integrodifferential equations. These applications are not stated as theo- 
rems so as to obscure the main ideas with technical details. It appears that these 
inequalities will have as many applications for partial integral and integro- 
differential equations as the classical integral inequality given in Lemma 1 and 
its various generalizations have had for ordinary integrodifferential and integral 
equations. 

EXAMPLE 1. As a first application, we obtain the bound on the solution of a 
nonlinear hyperbolic partial integrodifferential equation 

%v(X, Y) =f(X> Y> ‘6 Y)) + h [x, y, u(x, y), j-;-; h(x, y, s, t, u(s, t)) ds dt] , 

with the given boundary conditions 
(37) 

4x, Yo) = &4> 4% 2 Y) = 4Y)J 44 == ady,) = 0, 

where all the functions are real-valued, continuous and defined on a domain D 
and such that 

I f(x, Y, 4 < 4x, Y) ! u I > (38) 

/ Qx, Y, s, t, u)l < 4(s, t) I 11 I > (39) 

; 4x3 Y, u, aI1 < P(X, A [I u 1 + I u II, (40) 
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where 4x, Y), P(X, Y) and q(x, Y) are as in (H,). The equation (37) is equivalent 
to the Volterra integral equation 

where ZL(X, y) is any solution of (37). Using (38)-(40) in (41) and assuming 

that Iad+ t I ~Y)I < a@,~), w h ere u(x, y) is as defined in (H,), we have 

I 4~ Y)I < 6 Y) + Jz Jy c(s, t) I a, t)l ds dt + Jz;J)(s, t) ( j u(s, t>l 
aI % 

+ jsjt s(E, 7) I45,7)I dM)dsdt. 
%I 110 

Now an application of Theorem 2 with b(x, y) = I yields 

I G, Y>I < a(~, Y> + Jz’Jv; =G, t; ~3 Y) Iu(s, t) I+, t) + P(S> QI 
0 

+ P(% 4 ,:Jyl 457) [44,7) + PK 4 + d4,7)1 (42) 
0 

x v(S, 7; s, t) dfd7 dsdt, 
I 

where v(s, t; X, y) and zu(s, t; X, y) are the solutions of the characteristic initial 
value problems (15) and (16) respectively with b(x, y) = 1. Thus the right hand 
side in (42) gives us the bound on the solution U(X, y) of (37) in terms of the 
known functions. 

If / Us] + 1 u,(y)1 < E, where E > 0 is arbitrary, then the bound obtained 
in (42) reduces to 

I u(x, r)i < c 11 t J’J” MS, c ~3 Y) [MS, t) + PCS, t)l %l % 

+ P(S, t) J'f [CC!, 7) + PK, 7) + q(5,7)145 7; st 4 dt 41 ds dt. 
20 % 

(43) 
In this case we note that, Example 1 implies not only the boundedness but the 
stability of the solution U(X, y) of (37), if the bound obtained on the right side in 
(43) is small enough. 
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EXAMPLE 2. As a second application, we discuss the uniqueness of the solu- 
tion of the nonlinear hyperbolic partial integrodifferential equation (37). We 

assume that the functionsf, k and h in (37) satisfy 

lf(~,Y,4-f(~>Y>q/ <4?Y)lu--l/ (9 

/k(x,y,s,t,u)-R(x,y,s,t,21)1 GQ(SYt)/~--ll (45) 

/ h[x, y, u, rl - h[x, Y, U; fll <PC%, Y> [I 24 - @ I + ; y - f II (46) 

where c(x, Y), p@, Y) and n(x, Y> are as in (Hi). The problem (37) is equivalent 
to the Volterra integral equation (41). Now if u(x, y) and ti((x, y) be two solutions 
of the given boundary value problem (37) with the same boundary conditions 
then we have 

’ u-c= 
JS 

’ {f(s, t, u) - f(s, t, I%)} ds dt 
x0 yo 

--h[s,t,@, jz;j, k(s, t, Z, ‘I, e> dS dv]/ ds dt. 
Using (44)-(46) in (47) we have 

1 u - U 1 < jzIjy; c(s, t) 1 u - a 1 ds dt 

-t jrjk t) (I u - P I -I- J‘ jt & 77) I u - @ l d[ d?j ds dt. 
%I % “0 %I 

Now a suitable application of Theorem 2 yields, / u - ii 1 < 0. Therefore 
u = E; i.e., there is atmost one solution of the problem. 

In concluding this paper we note that the inequalities and their applications 
presented here can be extended very easily to the corresponding vector pro- 
blems as in [7] and [23]. W e a so I note that there is no essential difficulty in 
obtaining 71 independent variable generalizations of the inequalities established 
in Theorems l-6 by using the technique used by Young in [2.5]. Since this 
translation is quite straight forward in view of the results of this paper and we 
omit the details. 
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