
p ()
URL: http://www.elsevier.nl/locate/entcs/volume62.html 18 pages

A Fully Abstract Model for Mobile Ambients

M. Coppo M. Dezani-Ciancaglini

Dipartimento di Informatica, Università degli Studi di Torino
corso Svizzera 185, 10149 Torino, Italia,
{coppo,dezani}@di.unito.it

Abstract
Aim of this paper is to investigate the possibility of developing filter models for calculi
representing mobility. We will define a model for a variant of the Ambient Calculus. This
model turns out to be fully abstract with respect to a notion of contextual equivalence which
takes into account the ambients at top level.

1 Introduction

The Ambient Calculus [7], a calculus of computation that allows active processes
to move between sites and interact with then, has been successfully proposed as a
model for the Web. Owing to its interest a number of studies on various founda-
tional aspects of this or derived systems have been recently developed. The subjects
of these investigations have been mainly type systems (finalized to the proof of var-
ious properties like safe communications [8] or security [6,14,5]), proof systems
[9], abstract interpretations [16] and flow analysis [11]. No attempt has been done,
up to now, of defining denotational-like models of the calculus.

One main difficulty in defining models of the Ambient Calculus is that of find-
ing an abstract counterpart to the notion of mobility. A promising tool for over-
coming this difficulty seems the notion of “logical” semantics in which domains
are described by abstract filters of logical formulas expressing properties of the
terms of the calculus. The calculus itself can then provide the basic tools for the
description of its semantics.

In this paper we investigate the possibility of developing filter models for calculi
representing mobility. We will define, in particular, a model for a variant of the
Ambient Calculus. This model turns out to be fully abstract with respect to the
notion of contextual equivalence defined in [15].

The “logical” approach to denotational semantics goes back to [21], and has
been advocated in [1] as a general paradigm unifying, among other things, type as-

1 Partially supported by MURST Cofin ’99 TOSCA.

c©2002 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82415257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

M. Coppo, M.Dezani-Ciancaglini

signments, logic of programs and logical characterization of processes behaviors,
such as Hennessy-Milner logic. This semantics can be introduced through a type
assignment system, with types ordered by an inclusion relation. Types are intended
as logical formulas representing properties of terms, and type inclusion as impli-
cation. The interpretation of a term corresponds then to the filter of all types that
can be assigned to it. The set of all filters of types (which is a domain) determines
a denotational model of the calculus, in the sense that the denotation of a term can
be given in a compositional way. This construction has been first applied in [3] and
[2] to obtain models of the λ-calculus. In the same line are the studies concern-
ing extensions of λ-calculus by means of operators with concurrent features like
[20,4,12,13]. In [4], in particular, the intersection type operator is seen as the basic
tool to represent nondeterministic choice in the “may” perspective.

In [18] Hennessy presents the first denotational model of higher-order concur-
rent processes based on a compromise between type systems and modal logic. The
resulting filter model turns out to be fully abstract with respect to an operational
semantics based on a notion of testing and “may” convergence. A similar result has
been proved in [17] for a kernel of the language FACILE. A filter model for higher-
order processes which is adequate but not complete with respect to the “must”
testing as been proposed in [19]. The same approach is used in [10] to build a filter
model of the π-calculus which is fully abstract for “may” convergence.

In this paper we consider a language called the Selfopening Ambient Calculus,
which extends the system of [7] by increasing the opening capabilities of processes.
While in the Ambient Calculus a process can open only processes running at its
same level, in our system a process has also the capability, exercising a new action
called so , of opening its enclosing ambient, rising itself one level up. The so action
is strongly related to the acid operation of [7] and it is not internally representable in
the standard Ambient Calculus. However, as it will be remarked in the conclusion,
our model is also adequate for the standard Ambient Calculus, but in this case
completeness fails.

The type system used for the definition of the model can also be seen as a
proof system to express ambient and process properties. Proof systems with these
aims have also proposed by Cardelli and Gordon (see e.g. [9]). In particular [9]
introduces a proof system including modal operators. The logic language of [9]
is quite different from ours since it is more powerful in expressing properties of
ambients, but it fails to directly express properties like “P is able to perform an
open action”. Moreover the system of [9] can express intensional properties (like
P is the null process) and it is then not suitable to be taken as a basis for the
construction of a model of contextual semantics, where properties need to have an
extensional meaning.

2 The Language

The calculus of Selfopening Mobile Ambients is an extension of the calculus of
Mobile Ambients [7]. In the standard Ambient Calculus there is a symmetry in the

2

M. Coppo, M.Dezani-Ciancaglini

moving capabilities (an ambient can entering and exiting other ambients), but the
opening action has no symmetrical counterpart. A process P can open an ambient
b occurring at its same level (i.e. concurrent with b) by exercising an action open b.
But a process has no way of opening the ambient a in which he is running raising
itself one level up. This kind of action, allowed by the so primitive, seems indeed
reasonable in a distributed environment, in which there should not be, at least at the
highest levels, any hierarchical structure and then a symmetry of both moving and
opening capabilities should be expected.

In this paper we have only considered an essential kernel language for repre-
senting mobility, leaving out in particular the operators for restriction and commu-
nication. Their introduction should be possible following the lines of [10].

Ambients and Processes

Let A be a set of ambient names ranged over by a, b, c . . . and M be the set of
actions, ranged over by m , n , . . . , containing in a, out a, open a and so a for all
ambients a ∈ A. The set P of processes (ranged over by P, Q, R, . . .) is defined
by

P ::= 0 | M.P | A[P] | P
∣∣P | !P .

We assume that “.” takes precedence over “|”. So m .α
∣∣ β is read (m .α)|β. We

will write m as short for m .0.
As customary, the relation of structural congruence ≡ is defined as the minimal

reflexive, transitive and symmetric relation which is a congruence and moreover:
• satisfies !P ≡!P

∣∣P ;
• makes the operator

∣∣ commutative, associative, with 0 as zero element.

The behavior of processes is represented by the reduction relation defined in
Figure 1. Note that the so action allows a process to open its enclosing ambi-
ent. This operation is orthogonal to the other ones (in , out , open) and cannot be
internally simulated in the standard Ambient Calculus.

Remark 2.1 Cardelli and Gordon in [7] discuss the primitive acid whose reduction
rule is:

a[acid.P
∣∣Q] → P

∣∣Q
They reject acid since it allows to entrap an ambient into a location it can never exit.
For instance the process (νk)[k[]

∣∣ a[in b.acid.in k]] entraps the ambient b since:

(νk)(k[0]
∣∣ a[in b.acid.in k])

∣∣ b[P] →∗ (νk)k[b[P]]

Now, owing to the restriction (νk), b[P] can have no more interactions with the rest
of the environment and, in particular, cannot move from k. Similarly we can use
so to entrap an ambient b:

(νk)(k[0]
∣∣ a[in b.so a.in k])

∣∣ b[P] →∗ (νk)k[b[P]]

3

M. Coppo, M.Dezani-Ciancaglini

(red in) a[in b.P
∣∣Q]

∣∣ b[R] → b[a[P
∣∣Q]

∣∣R]

(red out) a[b[out a.P
∣∣Q]

∣∣R] → a[R]
∣∣ b[P

∣∣Q]

(red selfopen) a[so a.P
∣∣Q] → P

∣∣Q

(red open) open a.P
∣∣ a[Q] → P

∣∣Q

(R− par) P → Q ⇒ P
∣∣R→ Q

∣∣R

(R− amb) P → Q ⇒ a[P] → a[Q]

(R− ≡) P ′ ≡ P ′ P → Q Q ≡ Q′ ⇒ P ′ → Q′

Fig. 1. Reduction

the only difference being that so requires as argument the name a of the ambient
to be open from inside. We think that entrapping can be avoided introducing a
suitable type system which forbids occurrences of ambients which are arguments
of so inside the scope of restrictions.

Observational Equivalence

In the ambient calculus the natural candidates to represent observables are the am-
bients. The following definition of observational preorder takes the notion of ob-
servable proposed in the original system [15].

Definition 2.2

(i) We say that process P exhibits an ambient a, notation P ⇓ a if P →∗ a[Q]
∣∣R

for some processes Q, R.
(ii) P � Q if for all context C[] and ambients a: C[P] ⇓ a ⇒ C[Q] ⇓ a.

(iii) P ∼= Q if P � Q and Q � P .

Remark 2.3 Note that P → Q implies Q � P , but in general P ∼=/ Q. For instance
let P1 = open a

∣∣ a[b[0]] and P2 = b[0]. Then P1 → P2 but P1
∼=/ P2 (take C[] as

[−]).

3 Types

Like in type assignment systems for polymorphic λ-calculus, types are seen as
properties of type free objects rather than domains in which objects live. Types
are intended to provide partial informations about the processes they are associated
with. Our language of types must be expressive enough to completely characterize
process behaviors. We need so to consider both the ambient, action and parallel

4

M. Coppo, M.Dezani-Ciancaglini

composition as type constructors. Moreover the intersection type constructor is
added to represent nondeterminism.

The set T of types (ranged over by α, β, γ, . . .) is then defined by

T ::= ω | M.T | A[T] | T
∣∣ T | T ∧ T .

Type ω represents a property that is true of all processes. Note that α
∣∣ β is the type

of a process which can show both properties α and β in two components running in
parallel, while α∧ β is the type of a process which can show, in a nondeterministic
way, both properties α and β but, in general, along different reduction paths. We
assume that ∧ has the lowest precedence.

In connecting types to processes we must consider two distinct formal systems.
One is to represent the logical structure of types, determined by their entailment
relation (denoted ≤), and one to assign types to processes.

The logical structure of types is formalized as a partial order relation represent-
ing entailment. We write α ≤ β to mean that property α entails property β. We
write α � β if α ≤ β ≤ α. Then � is the equivalence relation induced by ≤. The
formal rules for type entailment are represented in Figure 2.

Note that, as pointed out in Remark 2.3, the execution of an action corresponds
to a loss of capabilities. This is formalized by the axioms of the group “Reduction”.
Rule (out− in) takes into account the fact that, in rule (red in), after the consump-
tion of the in a action, the process inside a is always allowed to perform a sequence
out a, in a of actions. A similar motivation holds for rule (in− out). Intersection
represent “may” nondeterminism. A process has type α∧β if it can possibly exhibit
both property α and property β. Axiom (.

∣∣
2) is crucial to represent this. Axioms

(ω1), (ω2) and rule (cg −
∣∣) imply that α

∣∣ β ≤ α, i.e. parallel composition corre-
sponds to increase of capabilities. Moreover using (∧ − id), (ω1), (

∣∣ 1), (cg −
∣∣),

(∧− ≤), (ω2), we get

α
∣∣ β ≤ α

∣∣ β ∧ α
∣∣ β ≤ α

∣∣ω ∧ ω
∣∣ β ≤ α ∧ β,

i.e. capabilities in parallel are ”better” than capabilities in alternative.
Types will be always considered modulo �. Note that � is preserved by both

intersection and parallel composition with ω. The operators
∣∣ and ∧ are associa-

tive so, for instance, we can write unambiguously α
∣∣ β

∣∣ γ. Parallel composition
of types are also considered modulo permutations, and intersection of types are
considered modulo permutations and repetitions (rules (∧− id), (∧− l), (∧− r)).

A parallel composition α1

∣∣ . . .
∣∣αn will sometimes be denoted by −→α in vector

notation. An intersection of types α1 ∧ . . .∧ αn will be denoted by
∧
i∈{1...n} αi. In

this case β ∝
∧
i∈{1...n} αi denotes that β ≡ αi for some i ∈ {1 · · ·n}.

A crucial technical notion is that of normal type.

Definition 3.1 (i) The set N ⊂ T of normal types is defined inductively in the
following way:
(a) ω ∈ N .

5

M. Coppo, M.Dezani-Ciancaglini

• Commutativity and distributivity of
∣∣

(
∣∣ 1) α

∣∣β � β
∣∣α (

∣∣ 2) (α
∣∣ β)

∣∣ γ � α
∣∣ (β

∣∣ γ)

• Axioms for ω

(ω1) α ≤ ω (ω2) α � α
∣∣ω

• Distributivity of ∧

([]∧) a[α ∧ β] � a[α] ∧ a[β] (
∣∣∧) α

∣∣ (β ∧ γ) � (α
∣∣ β) ∧ (α

∣∣ γ)

(.∧) m .(α ∧ β) � m .α ∧m .β

• Sequentialization

(.
∣∣
1) m .α

∣∣β ≤ m .(α
∣∣ β) (.

∣∣
2) m .α

∣∣ n .β � m .(α
∣∣ n .β) ∧ n .(m .α

∣∣ β)

• Reduction

(in) a[in b.α
∣∣β]

∣∣ b[γ] ≤ b[a[α
∣∣ β]

∣∣ γ] (out) a[b[out a.α
∣∣β]

∣∣ γ] ≤ a[γ]
∣∣ b[α

∣∣β]

(selfopen) a[so a. α
∣∣β] ≤ α

∣∣ β (open) open a.α
∣∣ a[β] ≤ α

∣∣β

(out−in) in a.out a.in a.α ≤ in a.α (in−out) out a.in a.out a.α ≤ out a.α

• Congruence

(cg − [])
α ≤ β

a[α] ≤ a[β]
(cg − act)

α ≤ β

m .α ≤ m .β
(cg −

∣∣)
α ≤ γ β ≤ δ

α
∣∣ β ≤ γ

∣∣ δ

• Transitivity

(trans)
α ≤ β β ≤ γ

α ≤ γ
• Logical

(∧ − id) α ≤ α ∧ α (∧ − l) α ∧ β ≤ α

(∧ − r) α ∧ β ≤ β (∧− ≤)
α ≤ α′ β ≤ β′

α ∧ β ≤ α′ ∧ β′

Fig. 2. Type Entailment Rules

6

M. Coppo, M.Dezani-Ciancaglini

(b) ω
∣∣φ ∈ N where φ ∈ N .

(c) m .φ ∈ N where φ ∈ N .
(d) a[φ] ∈ N where φ ∈ N .
(e) φ

∣∣ a[ψ] ∈ N where φ, ψ ∈ N .
(ii) A normal type is easy if is either ω or of the form (c).

Also normal types are seen modulo permutations, repetitions and parallel com-
position with ω. Let φ, ψ, ξ, χ... range over normal types. In general a normal type
different from ω has the form φ

∣∣ a1[ψ1]
∣∣ . . .

∣∣ an[ψn] (or φ
∣∣−−→a[ψ] in vector notation)

where φ is easy or is missing (or, equivalently, is ω) and n ≥ 0.
Normal types do not contain intersections. A normal type represents a process

in which, in each ambient a, there is at most one action that can be possibly per-
formed. Nondeterminism is left, however, since different actions can be enabled at
the same time in different ambients.

Definition 3.2 Let �0 be the equivalence relation defined by the rules obtained by
replacing ≤ by �0 in the rules (

∣∣ 1), (
∣∣ 2), (ω2), ([]∧), (

∣∣∧), (.∧), (.
∣∣

2) (trans)
of Figure 2.

We can show by structural induction on types that each type is �0 equivalent,
modulo permutation and parallel composition with ω, to a unique type which is
an intersection of normal types. This equivalence can be obtained by repeatedly
”pushing out” intersections, essentially by means of ([]∧), (

∣∣∧)a and (.∧).

Lemma 3.3 For all α ∈ T there are normal types φ1, . . . , φn (n ≥ 1) such that
α �0

∧
i∈{1...n} φi. The type

∧
i∈{1...n} φi is called the normal form of α, denoted

nf(α), and it is unique modulo permutations and parallel compositions with ω.

Ambients are inactive with respect to normal forms in the following sense.

Lemma 3.4 Let φ,
−−→
a[ψ] be normal types. Then φ ∝ nf(α) iff φ

∣∣−−→a[ψ] ∝ nf(α
∣∣−−→a[ψ]).

Lemma 3.5 Let nf(α) =
∧
i∈I φi. Then

(i) nf(a[α]) =
∧
i∈I a[φi].

(ii) nf(m .α) =
∧
i∈I m .φi.

(iii) Let nf(β) =
∧
j∈J ψj . Then nf(α

∣∣ β) =
∧
i∈I,j∈J nf(φi

∣∣ψj).
(iv) nf(nf(α)

∣∣β) = nf(α
∣∣ β).

The entailment relation can be specialized to normal types. Let ≤N⊂ N × N
denote this relation, defined by the rules of Figure 3.

In the rules for ≤N the r.h.s. is naturally a normal type whenever the l.h.s. is
normal, except for rules (openN) and (selfopenN), since the parallel composition
of two normal types is not normal, in general. Note that in rule (selfopenN) the
normal type ψ can be ω or, equivalently, it can be missing.

We need some technical definitions and lemmas.

7

M. Coppo, M.Dezani-Ciancaglini

• Commutativity and distributivity of
∣∣

(
∣∣ 1N) φ

∣∣ψ �N ψ
∣∣φ provided φ

∣∣ψ is normal

(
∣∣ 2N) (φ

∣∣ψ)
∣∣ ξ �N φ

∣∣ (ψ
∣∣ ξ) provided (φ

∣∣ψ)
∣∣ ξ is normal

• Axioms for ω

(ω1N) φ ≤N ω (ω2N) φ
∣∣ω �N φ

• Sequentialization

(.
∣∣N

1) m .φ
∣∣−−→a[ψ] ≤ m .(φ

∣∣−−→a[ψ])

• Reduction

(inN) a[in b.φ
∣∣−−→c[ψ]]

∣∣ b[ξ] ≤N b[a[φ
∣∣−−→c[ψ]]

∣∣ ξ]

(outN) a[b[out a.φ
∣∣−−→c[ψ]]

∣∣ ξ] ≤N a[ξ]
∣∣ b[φ

∣∣−−→c[ψ]]

(selfopenN) a[so a.φ
∣∣−−→c[χ]]

∣∣ψ ≤N ξ
∣∣−−→c[χ] for all ξ ∝ nf(φ

∣∣ψ)

(openN) open a.φ
∣∣ a[ψ] ≤N ξ for all ξ ∝ nf(φ

∣∣ψ)

(out−inN) in a.out a.in a.φ ≤ in a.φ

(in−outN) out a.in a.out a.φ ≤ out a.φ

• Congruence

(cg−[]N)
φ ≤N ψ

a[φ] ≤N a[ψ]
(cg−actionN)

φ ≤N ψ

m .φ ≤N m .ψ

(cg−
∣∣N)

φ ≤N φ′ ψ ≤N ψ′

φ
∣∣ a[ψ] ≤N φ′ ∣∣ a[ψ′]

• Transitivity

(transN)
φ ≤N ψ ψ ≤N ξ

φ ≤N ξ

Fig. 3. Entailment Rules for Normal Types

8

M. Coppo, M.Dezani-Ciancaglini

Definition 3.6(i) A characteristic pair (c.p. for short) is a pair 〈m ,
−−→
a[φ]〉 where

m is an action and
−−→
a[φ] is a parallel composition of ambients containing normal

types.
(ii) A characteristic sequence (c.s. for short) is a sequence S = P1, . . . ,Pn of c.p..

Definition 3.7 Let φ be an easy type. The c.s. associated to φ, Sφ is defined in the
following way:

(i) Sω = ε

(ii) Sm .(φ

∣∣−−→a[ψ]) = 〈m ,
−−→
a[ψ]〉 · Sφ where φ is easy and · denotes concatenation (if

−−→
a[ψ] has no elements we take it as ω).

Note that if φ = m 1.(m 2.(µ
∣∣−→b[ξ])

∣∣−−→a[ψ]) then Sφ = 〈m 1,
−−→
a[ψ]〉·〈m 2,

−→
b[ξ]〉·Sµ

and so on. It is easy to see that there is a one-one correspondence between easy
types and c.s.. If S is a c.s. let τS denote the easy type corresponding to S . So
τS

φ ≡ φ and vice-versa.
Let S1, S2 be c.s., the shuffle product S1||S2 is the set of all their possible inter-

leavings. The proof of the following property is routine.

Lemma 3.8 Let φ, ψ be easy types. Then ξ ∝ nf(φ
∣∣ψ) iff Sξ ∈ Sφ||Sψ.

A crucial lemma representing the entailment properties of normal types is the
following.

Lemma 3.9 Let φ, ψ, ξ, χ be normal types such that φ ≤N ψ and ξ ≤N χ. Then
for all ν ∝ nf(ψ

∣∣χ) there is µ ∝ nf(φ
∣∣ ξ) such that µ ≤N ν.

Proof. It is enough to prove the lemma assuming φ ≤N ψ and ξ ≡ χ. The gen-
eral property can be easily obtained by transitivity. The proof is then by induction
on the proof of φ ≤N ψ. The most difficult cases are when ≤N has been obtained
by rules (openN) and (selfopenN). We discuss the former case. The proof of the
latter is similar.

Let φ = open a.ρ
∣∣ a[σ] and ψ ∝ nf(ρ

∣∣σ). By rule (openN) we have
open a.ρ

∣∣ a[σ] ≤N ψ. Using Lemma 3.4 it can be assumed w.l.o.g. that ρ, σ and ξ
are easy, and in this case also ψ must be easy. Moreover, by Lemma 3.4 we assume
that ξ = m .ξ′, otherwise the proof is trivial. Let now

ζ ∝ nf(ψ
∣∣ ξ)

i.e., by Lemma 3.5(4), ζ ∝ nf(ρ
∣∣σ

∣∣ ξ). This means that Sζ ∈ Sρ||Sσ||Sξ. More-
over let S1 be the c.s. obtained by eliminating from Sζ the elements of Sσ, in the
same order in which they occur in Sσ. Then we must have τS1 ∝ nf(ρ

∣∣ ξ), and
ζ ∝ nf(σ

∣∣ τS1).

Now let’s note that, by Lemma 3.5(2), for each type µ ∝ nf(ρ
∣∣ ξ) we have

that open a.µ
∣∣ a[σ] ∝ nf(open a.ρ

∣∣ a[σ]
∣∣ ξ).

In fact, by (.
∣∣

2), open a.ρ
∣∣ a[σ]

∣∣ ξ �0 open a.(ρ
∣∣ ξ)

∣∣ a[σ] ∧ α for some type α.

9

M. Coppo, M.Dezani-Ciancaglini

(ω) � P : ω (m)
� P : α

� m .P : m .α

(amb)
� P : α

� a[P] : a[α]
(
∣∣)

� P : α � Q : β

� P
∣∣Q : α

∣∣ β

(!)
� P : α �!P : β

�!P : α
∣∣ β

(≤)
� P : α α ≤ β

� P : β

Fig. 4. Type Inference Rules

So open a.τS1

∣∣ a[σ] ∝ nf(open a.ρ
∣∣ a[σ]

∣∣ ξ), and then

open a.τS1

∣∣ a[σ] ≤N ζ

since ζ ∝ nf(σ
∣∣ τS1). ✷

The main lemma of this section relates normal forms and ≤N to ≤.

Lemma 3.10 Let α ≤ β. Then for all ψ ∝ nf(β) there exists φ ∝ nf(α) such
that φ ≤N ψ.

Proof. By induction on the proof of α ≤ β. The most difficult case is that of
rule (cg −

∣∣) which is handled using Lemmas 3.9 and 3.5(3). ✷

Corollary 3.11 Let φ, ψ be normal types. Then φ ≤ ψ iff φ ≤N ψ.

4 Type Inference

Being our types strongly similar to processes it is to very natural to devise type
assignment rules. They are represented in Figure 4. Let �− denote inference in the
system obtained from the rules of Figure 4 by eliminating (≤).

Notice that the system � only has introduction rules for the various constructors.
Elimination rules are replaced by rule (≤), which also introduces and eliminates ∧
(see Proposition 4.5).

The following is a sort of normal form for deductions: the proof is by induction
on deductions.

Lemma 4.1 If � P : α then there is a type α′ such that �− P : α′ and α′ ≤ α.

As usual we can prove by a simple induction on deductions a generation lemma.

Lemma 4.2 (Generation Lemma) (i) � 0 : α iff α � ω;

10

M. Coppo, M.Dezani-Ciancaglini

(ii) � m .P : α iff �− P : β and m .β ≤ α for some β;
(iii) � a[P] : α iff �− P : β and a[β] ≤ α for some β;
(iv) � P

∣∣Q : α iff �− P : β, �− Q : γ and β
∣∣ γ ≤ α for some β, γ;

(v) � !P : α iff �− P : βi (1 ≤ i ≤ n) and β1

∣∣ . . .
∣∣ βn ≤ α for some β1, . . . , βn.

Previous lemma says that the types of a term can be obtained in a uniform way
from the types of its subterms, and this will guarantee the compositionality of the
filter model we will build in the next section.

Since we are in a “may” perspective, it is natural that a process P offer all the
ambients offered by one of its reducts Q (may be more). At the type assignment
level this means that types are preserved under subject expansion. Of course subject
reduction should not hold; for example, the reduction of a process P with the rule
(red open) produce a process that in general offers less ambients (and so has less
types). Instead congruent processes have the same types. Both properties can be
proved by induction on the definitions of ≡ and→∗ using Lemma 4.2.

Lemma 4.3 (Subject Congruence) P ≡ Q and � Q : α ⇒ � P : α.

Lemma 4.4 (Subject Expansion) P →∗ Q and � Q : α ⇒ � P : α.

Lastly we can shown by structural induction on processes using Lemma 4.2 that
the standard rule of intersection introduction

(∧I)
� P : α � P : β

� P : α ∧ β

is admissible in our system.

Proposition 4.5 (Admissibility of (∧I)) � P : α and � P : β imply � P : α ∧ β,
i.e. rule (∧I) is admissible.

5 The Filter Model

We capitalize on the type assignment system of previous section for defining a filter
model of the ambient calculus. We mainly follow the development line of [10].

Let 〈D;�〉 be a preorder. A subset L of D is a filter if L is a non-empty upper
set, i.e., l ∈ L and l � l′ imply l′ ∈ L, and every finite subset of L has a greatest
lower bound in L.
Consider the set T of types with the inclusion ≤ defined in Section 3. The greatest
lower bound of a finite non-empty set of types is the intersection of the types in the
set.

We can observe that the set F(T) of filters over T is a model of P in the
following sense. For all P define

[[P]] = {α ∈ T
∣∣ � P : α}.

11

M. Coppo, M.Dezani-Ciancaglini

From rules (ω), (≤) and the admissibility of (∧) we have that [[P]] ∈ F(T) for all
P . Subject expansion can now be rephrased into the following statement:

if P →∗ Q then [[P]] ⊇ [[Q]].

The filter model is naturally ordered by subset inclusion. The inclusion on
filters induces an ordering on terms.

Definition 5.1 Let P,Q ∈ P . P �F Q if and only if [[P]] ⊆ [[Q]].

The order relation �F can be easily characterized by means of the deducibility
of types as follows.

Proposition 5.2 Let P,Q ∈ P . P �F Q if and only if, for all α, � P : α implies
� Q : α.

We will prove that the filter model exactly mirrors the operational semantics,
i.e., that it is adequate and complete, i.e. it is fully abstract.

Adequacy

The adequacy proof requires a double induction on types and deductions. Follow-
ing a standard methodology, we split this induction by introducing a realizability
interpretation of types as sets of terms. The underlying idea is that a process P
belongs to the interpretation of a type α if and only if α can be derived for P .

First we give an interpretation of normal types, and then we build the inter-
pretation of all types, taking into account Lemmas 3.3 and 3.10. In defining the
interpretation of types we will use a somewhat stronger notion of reduction over
processes.

Definition 5.3 The reduction relation � over P is defined by adding to the rules
of Fig. 1 the following rules:

(seq) m .P
∣∣Q� m .(P

∣∣Q)

(red− out−in) in a.out a.in a.P � in a.P

(red− in−out) out a.in a.out a.P � out a.P

(R− act) P �∗ Q ⇒ m .P �∗ m .Q

It is easy to verify that � does not modify the notion of convergence, i.e. that
P ⇓ a iff if P �∗ a[Q]

∣∣R for some processes Q, R.
A standard induction on the definition of � shows that the subject expansion

property holds also with respect to� reductions.

Lemma 5.4 P �∗ Q and � Q : α ⇒ � P : α.

12

M. Coppo, M.Dezani-Ciancaglini

The interpretation of normal types as sets of terms is given by structural induc-
tion.

Definition 5.5 The interpretation of normal types is defined by:

(i) [[ω]] = P
(ii) [[m .φ]] = {P | P �∗ m .Q such that Q ∈ [[φ]]}.

(iii) [[a[φ]]] = {P | P �∗ a[Q]
∣∣R such that Q ∈ [[φ]]}.

(iv) [[φ
∣∣ a[ψ]]] = {P | P �∗ Q

∣∣ a[R] such that Q ∈ [[φ]] and R ∈ [[ψ]]}.

We need to prove the soundness of the normal type inclusion relation with re-
spect to the interpretation of normal types. To this aim we need the following
Lemma, whose proof is similar to that of Lemma 3.9.

Lemma 5.6 Let φ, ψ be normal types. Then P ∈ [[φ]] and Q ∈ [[ψ]] imply P
∣∣Q ∈

ξ for all ξ ∝ nf(φ
∣∣ψ).

The soundness of the type inclusion relation can be shown by induction on ≤N

definition. The most interesting case are axioms (openN) and (selfopenN), which
can be handled using Lemma 5.6.

Lemma 5.7 Let φ, ψ be normal types. Then φ ≤N ψ implies [[φ]] ⊆ [[ψ]].

We can now define the interpretation of all types.

Definition 5.8 The interpretation of arbitrary types is defined by:

[[α]] =
∧

φ∝nf(α)

[[φ]].

From Lemmas 3.10 and 5.7 we get the soundness of the type inclusion relation
with respect to the interpretation of types.

Lemma 5.9 If α ≤ β then [[α]] ⊆ [[β]].

As expected the type interpretation perfectly matches the type assignment sys-
tem.

Theorem 5.10 (Soundness and completeness of �) � P : α iff P ∈ [[α]].

Proof. Soundness is proved by induction on the derivation of � P : α, using
Lemma 5.9 for rule (≤).
As for completeness, by definition it sufficies to show that if P ∈ [[φ]] then � P : φ,
when φ is normal. This proof can be done by structural induction on φ using Sub-
ject Expansion with respect to�∗ (Lemma 5.4). ✷

Now we are able to characterize convergency by means of typing.

Lemma 5.11 (Resource property) � P : a[ω] iff P ⇓ a.

13

M. Coppo, M.Dezani-Ciancaglini

Proof. � P : a[ω] iff (by Theorem 5.10) P ∈ [[a[ω]]] iff (by Definition 5.5)
P � a[Q]

∣∣R for some processes Q,R. ✷

We can now conclude the adequacy proof.

Theorem 5.12 (Adequacy) If P �F Q then P � Q.

Proof. If C[P] ⇓ a then by Lemma 5.11 we get � C[P] : a[ω]. This together
with P �F Q imply � C[Q] : a[ω], so we can conclude C[Q] ⇓ a using again
Lemma 5.11. ✷

Completeness

Our completeness proof relies on building processes T x,yφ , where φ is a normal type
and x, y are fresh ambient names with respect to φ. Their intended behavior is such
that, for all normal types φ, x[P]

∣∣T x,yφ ⇓ y iff � P : φ. The process P under
testing is formerly enclosed in an ambient x for technical convenience.

In building these terms it is useful to have a process which converges to z iff it
is in parallel with a process which converges to both x and y.

Lemma 5.13 Let w be a fresh ambient name. Let’s define

Hx,y⇒z = w[in x.out x.in y.out y.z[outw]].

Then Hx,y⇒z
∣∣P ⇓ z iff P ⇓ x and P ⇓ y.

The processes T are defined by structural induction on normal types.
In defining them we assume to have an unlimited source of ambient names, and

to be able to pick new ambients names without clashing with the ambient names
occurring in the processes we are testing.

Definition 5.14 [Test Terms] Let φ be a normal type and x, y ambient names.The
processes T x,yφ are defined inductively on φ in the following way:
• T x,yω = p[in x.out x.y[out p]]

• T x,yin a.φ = a[p[in x.so p.out a.in v.in z]]∣∣ v[z[open x.t[out z.out v.open v.open a]]]
∣∣ open t

∣∣T z,yφ

• T x,yout a.φ = p[in x.so p.in v.in a.in z]∣∣ v[a[z[open x.t[out z.out v.open v.open a]]]]
∣∣ open t

∣∣T z,yφ

• T x,yopen a.φ = p[in x.so p.a[in v.in z]]∣∣ v[z[open x.t[out z.out v.open v]]]
∣∣ open t

∣∣T z,yφ

• T x,yso a.φ = p[in x.so p.in v.in z.in a]∣∣ v[z[a[open x.t[out z.out v.open v]]]]
∣∣ open t

∣∣T z,yφ
14

M. Coppo, M.Dezani-Ciancaglini

• T x,y
φ

∣∣ a[ψ]
= p[in x.in a.so p.out x.in v.inw]∣∣ v[w[open a.t[outw.out v.open v]]]

∣∣ open t
∣∣T x,qφ

∣∣Tw,zψ

∣∣Hq,z⇒y

• T x,ya[ψ] = T x,y
ω

∣∣ a[ψ]

• T x,y
ω

∣∣φ = T x,yφ

where we assume that all ambient names (p, q, v, w, x, y, z, . . ., except a) intro-
duced in the definition of each T x,yφ are fresh. We call them the extra names of
T x,yφ , denoted EN(T x,yφ).

Note that all the terms T x,yφ are reducible only if they are running in parallel
with an ambient which exhibit x at top level and that their reduction is needed to
produce a process which exhibits y at top level. So all of them must interact with x
in the proper way to do the job, as the following Lemma shows.

Lemma 5.15 Let φ be a normal type andQ be a process containing no occurrences
of any ambient name belonging to EN(T x,yφ) different from x. Then

Q
∣∣T x,yφ ⇓ y implies Q→∗ x[P]

∣∣Q′ and � P : φ.

Proof. The proof is by induction on the normal type φ. If φ ≡ ω the proof is
easy. The induction step is by cases on φ. As a sample we give the case in which φ
is in a.φ. The proof of the other cases is similar.

Let
S = a[p[in x.so p.out a.in v.in z]]∣∣ v[z[open x.t[out z.out v.open v.open a]]]

∣∣ open t

then T x,yin a.φ = S
∣∣T z,yφ . Since Q

∣∣S
∣∣T z,yφ ⇓ y, by induction hypothesis we have

(1) Q
∣∣S →∗ z[P]

∣∣Q′

where � P : φ. By construction all names occurring in S cannot occur in Q except
x and a. Then note that to have (1) the following facts are needed.
• v must be opened, there is no way for z to exit v. But v can be opened only if
open v is exercised.

• This is possible only by allowing ambient t to exit at top level, exercising the
actions out z.out v, and being opened. But this is possible only if open x is
exercised first.

• To exercise open x we must have ambient x in z, but only p, after entering x and
selfopening, can move x inside v and z.

• Now p must run in parallel to x to enter it. This is possible only if Q exhibits at
top level ambient x containing an in a action, i.e.

(2) Q→∗ x[in a.Q1

∣∣Q2]
∣∣Q3.

15

M. Coppo, M.Dezani-Ciancaglini

After p enters x and selfopen, x can exit a and enter v and z. Note that if a is
instead opened by Q by an open a action we can also have x and p running in
parallel, but in this case Q, which does not know p, has no possibility of putting
again p into an ambient named a to allow the out a action to be exercised.

• No other interaction between reductions in Q and reductions in S are possible.

By (2) and the previous points then we must have:

Q
∣∣S →∗ x[in a.Q1

∣∣Q2]
∣∣Q3

∣∣S →∗ z[P]
∣∣Q′

where Q1

∣∣Q2 →∗ P . By the subject expansion Lemma 4.4 and the generation
Lemma 4.2 we then have � Q1 : α1 and � Q2 : α2 where α1

∣∣α2 ≤ φ. This implies
� in a.Q1 : in a.α1 and, by in a.α1

∣∣α2 ≤ in a.(α1

∣∣α2) (axiom (.
∣∣

1)), we get
� in a.Q1

∣∣Q2 : in a.φ. ✷

As an immediate corollary we get then the following Lemma.

Lemma 5.16 Let P a process not containing occurrences of names belonging to
EN(T x,yφ). Then x[P]

∣∣T x,yφ ⇓ y implies � P : φ.

Using the soundness and completeness of � (Theorem 5.10) and Lemma 5.16
one can finally show that the given processes characterize typing.

Theorem 5.17 (Characterization) Let P a process not containing occurrences of
names belonging to EN(T x,yφ). Then T x,yφ

∣∣x[P] ⇓ y iff � P : φ.

Completeness now follows easily.

Theorem 5.18 (Completeness) If P � Q then P �F Q.

Proof. If P "�F Q then there is a type α such that � P : α and "� Q : α. Then
by Lemmas 3.3, 3.10, and rule (≤) there is a normal type φ such that � P : φ and
"� Q : φ. By Theorem 5.17 we get that T x,yφ

∣∣ x[P] ⇓ y and T x,yφ

∣∣ x[Q] "⇓ y. So we
conclude P "� Q. ✷

6 Final Remarks

We have defined a filter model F(T) for the Selfopening Ambient Calculus which
is fully abstract with respect to the notion of contextual equivalence defined in [15].
Being our language a proper extension of the standard Ambient Calculus we have
immediately that F(T) is also a model of the standard Ambient Calculus. This
model is adequate (P �F Q implies P � Q) but not fully abstract as the following
counterexample shows. Take

P1 = a[b[out c]]

P2 = a[b[open d]]
∣∣ d[in b.out c]

16

M. Coppo, M.Dezani-Ciancaglini

The process P1 and P2 are uncomparable in the model (they have different types)
but operationally, in the standard Ambient Calculus, we have P1 � P2. In fact both
exhibit the ambient a which contains only an ambient b. To show that P1 "� P2

we should find a context allowing to exercise the action out c in P1. But to obtain
this we need to enclose b in an ambient c and this is possible only if we eventually
open a. In this case, in a may perspective, we cannot avoid that d jumps into b and
is opened there, allowing P2 to show the same behavior as P1. Only using the so
action we are able to build a context that separates P1 and P2.

We are aware that so can cause undesired behaviours, but we are confident that
a suitable type discipline can avoid them. The design of such a discipline will be
subject of further investigations.

References

[1] S. Abramsky. Domain theory in logical form. Annals of Pure and Applied Logic,
51(1-2):1–77, 1991.

[2] S. Abramsky and C.-H. L. Ong. Full abstraction in the lazy lambda calculus.
Information and Computation, 105(2):159–267, 1993.

[3] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and
the completeness of type assignment. The Journal of Symbolic Logic, 48(4):931–940,
1983.

[4] G. Boudol. Lambda-calculi for (strict) parallel functions. Information and
Computation, 108(1):51–127, 1994.

[5] M. Bugliesi and G. Castagna. Secure safe ambients. In POPL’01, pages 222–235.
ACM Press, 2001.

[6] L. Cardelli, G. Ghelli, and A. D. Gordon. Mobility types for mobile ambients. In
ICALP’99, volume 1644 of LNCS, pages 230–239, Berlin, 1999. Springer-Verlag.

[7] L. Cardelli and A. D. Gordon. Mobile ambients. In FoSSaCS’98, volume 1378 of
LNCS, pages 140–155, Berlin, 1998. Springer-Verlag.

[8] L. Cardelli and A. D. Gordon. Types for mobile ambients. In POPL’99, pages 79–92,
New York, 1999. ACM Press.

[9] L. Cardelli and A. D. Gordon. Anytime, anywhere. modal logics for mobile ambients.
In POPL’00, pages 365–377. ACM Press, 2000.

[10] F. Damiani, M. Dezani-Ciancaglini, and P. Giannini. A filter model for mobile
processes. Mathematical Structures in Computer Science, 9(1):63–101, 1999.

[11] P. Degano, F. Levi, and C. Bodei. Safe ambients: Control flow analysis and security.
In ASIAN’00, volume 1961 of LNCS, pages 199–214, Berlin, 2000. Springer-Verlag.

[12] M. Dezani-Ciancaglini, U. de’Liguoro, and A. Piperno. Finite models for conjunctive-
disjunctive λ-calculi. Theoretical Computer Science, 170(1–2):83–128, 1996.

17

M. Coppo, M.Dezani-Ciancaglini

[13] M. Dezani-Ciancaglini, U. de’Liguoro, and A. Piperno. A filter model for concurrent
λ-calculus. SIAM Journal on Computing, 27(5):1376–1419, 1998.

[14] M. Dezani-Ciancaglini and I. Salvo. Security types for safe mobile ambients. In
ASIAN’00, volume 1961 of LNCS, pages 215–236, Berlin, 2000. Springer-Verlag.

[15] A. D. Gordon and L. Cardelli. Equational properties of mobile ambients. In
FoSSaCS’99, volume 1578 of LNCS, pages 212–226, Berlin, 1999. Springer-Verlag.

[16] R. R. Hansen, J. G. Jensen, F. Nielson, and H. R. Nielson. Abstract interpretation of
mobile ambients. In SAS’99, volume 1694 of LNCS, pages 134–148, Berlin, 1999.
Springer-Verlag.

[17] C. Hartonas and M. Hennessy. Full abstractness for a functional/concurrent language
with higher-order value-passing. Information and Computation, 145(1):64–106, 1998.

[18] M. Hennessy. A fully abstract denotational model for higher-order processes.
Information and Computation, 112(1):55–95, 1994.

[19] M. Hennessy. Higher-order process and their models. In ICALP’94, volume 820 of
LNCS, pages 286–303, Berlin, 1994. Springer-Verlag.

[20] C.-H. L. Ong. Non-determinism in a functional setting. In LICS’93, pages 275–286,
Montreal, Canada, 1993. IEEE Computer Society Press.

[21] D. S. Scott. Domains for denotational semantics. In ICALP’82, volume 140 of LNCS,
pages 577–613, Berlin, 1982. Springer-Verlag.

18

