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INTRODUCTION

This paper presents a convolution theory for the test function space S
of smooth functions and the space 8* of generalized functions as introduced
by De Bruijn (the terminology and notation is the one used in [B], where
these spaces are defined). The space S can be regarded as an example
of a test function space of the type studied in [GS], Ch. IV (actually,
our space S can be identified with the space S} of [GS], Ch. IV, § 2.3).
Since the spaces S and S* are adapted to the needs of Fourier analysis
(cf. [B], section 8 and 9, and [GS], Ch. IV, § 6), it was to be expected that
it is possible to develop a satisfactory convolution theory for these spaces;
it seems however that no such theory has been published thus far.

Let us summarize the contents of this paper. Section 1 gives the main
definitions and theorems about the spaces S and 8*, and some results
about continuous linear transformations in these spaces are mentioned.
This section is mainly included here for ease of reference.

Section 2 serves as a preparation. The convolution operators introduced
here involve smooth functions only, and they are defined as follows. If
g €8, then the convolution operator Ty of § is defined by

M (@hH@= ] e-tibi (@)

* Supported by the Netherlands Organization for the Advancement of Pure Research
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for f € 8. Instead of the integral at the right hand side in (1) we can also
write (Tf, g-), where T is the shift operator over distance z, and g- is
the smooth function with values g_(t)=g(—t) for ¢t ed.

In section 8 we generalize the notion of convolution operator. The g
in (1) is replaced by a generalized function: if G € §*, then the convolution
operator T'¢ of 8 is defined by

(2) (Tef)(@)=(Tsf, G-) (x€q)

for f € 8. Here G- bears a similar relation to G' as g- does to g in the previous
paragraph. Special attention is paid to the case that T'¢ maps § into 8,
and the class of all G € 8* with this property is called the convolution
class €. For G € € we prove that T¢ has an adjoint, and that T'¢ can be
extended in a natural way to a continuous linear operator of S*. We
also discuss some alternative descriptions of the class €.

Section 4 presents a link between convolution theory and Fourier
analysis. This involves what we call multiplication operators of S and S*.
If g € §, then the multiplication operator M, of § is defined by M,f=g-f
for f e S, where the dot denotes pointwise multiplication; this multipli-
cation operator can be extended in a natural way to a continuous linear
operator of 8*. We obtain a useful characterization of the class € in
terms of the Fourier transforms of its elements. Furthermore the con-
volution theorem is generalized in section 4, and a version of Titchmarsh’s
theorem is proved. Finally we mention some results about the solutions
F e 8* of equations of type T¢F =0, where G is a fixed element of %.

Section 5 contains some additional material. There we prove that the
class of generalized functions of the form M G with ge 8, Ge 8* is a
proper subset of €. We make some remarks about convergence in €, and
finally we pay some attention to convolution theory for the spaces of
smooth and generalized functions of several variables.

NOTATION

We use Church’s lambda caleulus notation, but instead of his 4 we have
the symbol Y, as suggested by Freudenthal: If § is a set, then putting
Yzes in front of an expression (usually containing x) means to indicate
the function with domain § and with the function values given by the
expression. For example, if g € 8 then Ty = YresTyf. In case it is clear from
the context which set § is meant, we write Y, instead of Yies.

1. THE SPACES S AND S*

1.1. We give a survey of the fundamental notions and theorems of
De Bruijn’s theory of generalized functions (as far as relevant for this
paper). Also, the main theorems of [J], appendix 1 about continuous
linear operators of § and S* are given. More details can be found in [B]
and [J].
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The class 8 (of smooth functions) is the set of all analytic functions f
of one complex variable that satisfy inequalities

1) < M exp (—nA(Re £)2 +nB(Im £)2) (t Q)

where M >0, A>0, B>0 depend on f. In S we take the usual inner
product, denoted by (,). Cf. [B], 2.1.

1.2. We consider a semigroup (Na)s>o of linear operators of S (the
smoothing operators); they satisfy Nayp=NalNg («>0, f>>0). These oper-
ators are integral operators (integration over R); the kernels K, (x>0)
are given by

-7
sinh «

K,(z, t) =(sinh «)! exp < (=2 +t2) cosh & — 2zt)) (zeq, teQ).

Cf. [B], section 4, 5 and 6. The operators N, (x>0) can be defined on

the larger space S+ consisting of all mappings f: B —( such that
Yier/(t) exp (—net2) € L1(R) for every &> 0.

We have N,fe 8 for fe S+, «a>0 (compare [B], section 20, where an

equivalent definition of S+ is used). Note that Z5(R) C S+.

1.3. We summarize some properties of N, (x>0).
(1) (Naf, g)=(f, Nag) for a>0, fe8, ge S (cf. [B], 6.5).
(ii) If fe 8, a>0, then there is at most one ge 8 with f=N.g. Also,
if f €8, then there exists an >0, ge § with f=N,g. And if fe S,
and the numbers M >0, 4>0, B>0 are such that

1) < M exp (—nA(Re t)2+aB(Im ¢)2) (teq),

then we can find an >0, M'>0, A'>0, B'>0, only depending on
A and B, such that the inequalities

lg@)| < MM’ exp (—mA’'(Re t)2+aB'(Im t)2) (teq)
hold for the unique g € S with f=2Nag (cf. [B], 10.1).

1.4. We list some other linear operators of § (cf. [B], section 8 and 11).
(i) The Fourier transform & and its inverse F*:

Fi=Yuc | =00, FHH=Yuc(Fi)(-2) (FS.

(ii) The shift operators T (@ €() and Ry (beQ):
T¢f= Y:lcf(z"'a)’ Rb.fz Y:!C e—m‘f(z) (f € S)
(iii) The operators P and @:

Pi=Yuuck &), Qf=Yieceiz) (fe8).

2m
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1.5. A generalized function F is a mapping « € (0, o) — Fs € 8 such
that NoFg=Fayp (x>0,8>0). We also write F(x) or N.F' instead of F,.

It follows from 1.3(ii) that F =0 in case Fo=0 for some «>0 (F € §*).

If F e8*, ge S, then the inner product (F,g) is defined as follows:
write g=Nxh with some x>0, h e § (cf. 1.3(ii)), and put (F, g):=(Fa, )
(this number depends only on F and g; cf. [B], section 17 and 18). We
have (N.F, g)=(F, Nog) for >0, F e 8*, ge8.

We further define (g, F'):=(F,g) for F € 8*, ge 8.

1.6. We give some examples of generalized functions.
(i) If f € 8+, then the embedding of f (notation: emb (f)) is defined by
emb (f):= Yaso Naf.
Cf. [B], section 20. We have for feS8t,ge8

(emb (f,0)= §_ gL,

It may be proved that f=0 (a.e.) if and only if emb (f)=0.
(ii) For b e, the “delta function at b’ is defined by
86:=Yaso YiecKal(t, b).
Now (g, 85)=g(b) for g€ 8 (cf. [B], 17.3 and 27.18).

1.7. We next define convergence in S. Let (fu),n be 2 sequence in S,
and let fcS. We write f, 5 0 if there are positive numbers 4 and B
such that f,(t) exp (w4(Re t)2—xB(Im t)2) - 0 uniformly in te(; we
write fn £ f if fa—f 5 0. Similarly we define f® 5 0 (x| 0) and f@ X f
(x ) 0) if f@ e 8 (x>0), feS. Cf. [B], section 23.

1.8. The following theorem on S-convergence is useful.

THEOREM. Let (f),¢x be a sequence in S. The three following state-
ments are equivalent.

(i) fn 3 0.

(ii) There exist x>0 and g, €S (n €M) such that fn=Nagn, gun 3 0.
(iii) There exists an M >0, 4>0, B>0 such that

Ifat)| <M exp (—nA(Re t)2+aB(Im t)2) (¢ eq),

and f, - 0 pointwise.

PROOF. Equivalence of (i) and (ii) follows from [B], 23.1, and equi-
valence of (i) and (iii) follows from [J], appendix 2, theorem 1. O

1.9. We proceed by defining convergence in 8*. Let (Fau),n be a
sequence in §*, and let F € 8*. We write F”‘E.: 0 if N.F, 5 0 for every
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«>0; we write F,, 8 Fif F.—F5o0. Similarly we define F¥ 550 B0
and FO S F (8] 0) if F® e8* (8>0), FeS*

[B], 24.2 states: a sequence (Fp), ¢y in 8* is §*-convergent if and only
if limg o0 (Fn, g) exists for every g € S.

It is not hard to prove from 1.8 that (Fa, fa) = (F,f) if Fa’ls S F, fn 5 f,
where (Fa)nen 18 & sequence in S* and (fn),en 18 @ sequence in S.

1.10. We are going to study continuous linear transformations of §
and S*.

DEFINITION. A linear functional L of 8 is called continuous if Lf, — 0
for every sequence (fa)nen in S with f, 5 0. A linear operator T' of § is
called continuous if Tf, 5 0 for every sequence (fn)nen in S with fs 5 0.
The definitions of continuous linear functionals and operators of S§* are
similar. (We use the word continuous instead of quasi-bounded, cf. [B],
22.2, and [J], appendix 1, 2.2.)

1.11. DEFINITION. A linear operator T of § is said to have an adjoini
if for every g € S there is a g* € 8 such that (Tf, g)=(f, g*) for every fe S.
Such a g* is unique, and ¢g* depends linearly on g € 8. If we define T*g:=g*
for g € S, then T'* is a linear operator of S, called the adjoint of T.

Note that if 7 has an adjoint, then so has T*, and (T*)*=T

1.12. ExaMPLE. We introduce some notation. If g € §, then we define

g';:Yuci(_z'_) g-= ucg(_z) '_;: ucg(_z)'

Note that §e 8, g-€8, §-€8, and that (§)-=(g9-)=g-. If F € S*, then
we define F:=YaroFs, F-:="Yaso(Fa)-, F-:=VYaso(F,)-. Note that (by
symmetry of the K.'s; of. 1.2) FeS* F_eS8* F_c8* and that
(F)“:(F‘):F—' We have (F’ g)=(F, g-): (F*: g)‘:(F’ g—)! (F-» g)=(F» g-—)
for Fe8* ge8.

If T is a continuous linear operator of 8, then we define

szSTg, T-:=Yyes(Tg-)-, T-:= YytS(_T——g-—)—-

T:=
No T T and T- are continuous linear operators of § with (T').=
T_, and if T has an adjoint, then so have 7, T- and T-:

(T)*=( %), (T-)*=(T%)-, (T-)*=(T%)-.
If T is a continuous linear operator of 8*, then we define

T:= Yres TF, T-:= YF:S‘(TF—)—’ T-:= YF(S*(_TTK)—-

Now T, T_ and T- are continuous linear operators of S8* and (T)-=
=(T0)=T-.

1.13. THEOREM. L is a continuous linear functional of S if and only
if there exists an F € 8* such that Lf=(f, F) (f € 8). Such an F is unique.
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PROOF. Follows easily from [B], 22.2. O

1.14. TEEOREM. Let T be a linear operator of S. The four following
statements are equivalent.
(i) T is continuous.
(i) Yres(TH)(x) is a continuous linear functional of S for every zeQ.
(iii) T'N. has an adjoint for every «>0.
(iv) For every «>0 there is a >0 and a bounded linear operator T
of 8 (bounded with respect to inner product norm) such that TN,=
=NgT.

PrOOF. This is proved in [J], appendix 1, 2.2 through 2.10. O

REMARK. A useful alternative formulation of (iv) is: for every M >0,
A>0, B>0 there exists My>0, 49>0, Bo>0 such that

[(Tf)(t)| < Mo exp (—ndo(Re t)2+xBo(Im £)2) (¢ Q)
whenever fe S and
()| <M exp (~mA(Re t)2+xB(Im t)2) (t Q).

Equivalence of both conditions easily follows from the equivalence of (i)
and (iv), and from [B], 6.3.
The linear operators of 1.4 are continuous.

1.15. TtHEOREM. If T is a linear operator of S with an adjoint, then
it is possible to extend 7' to a continuous linear operator 7' of S* such
that T'(emb (f)) =emb (Tf)(f € 8), (T'F,f)=(F, T*f)(F € 8*, feS). Here
emb (f) for f € § is to be read as emb (fo), where fo is the restriction of f
to B (cf. 1.2).

PrROOF. This is [J], appendix 1, theorem 3.2. O
We denote the extended operator again by 7'. For examples, see 1.4.

1.16. We finally devote some attention to (generalized) functions of
several variables. The previous definitions and theorems can be given
and proved (with the proper modifications) without any restriction for
the more dimensional case. For instance, the class S8# (where » 1)) is
defined as the set of all complex-valued functions f of » complex variables
that are analytic in all variables, for which there exist positive numbers
M, A and B such that

[f(t1, - tn)] <M exp (n T (—A(Re t)2+ B(Im t)2))

k=1

for (4, ..., ta) €Qn.
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As an example of a smooth function of n variables we have
h® .. ® fai=Yey, ... twec™ filtr) ... - fultn),

where 1€ S, ..., fn€S.

The classes 87+ and S»* (of embeddable and generalized functions
respectively) are introduced in a similar way (the smoothing operators
Na n are defined as the n-fold tensor products of N. (x>0)). Cf. [B],
section 7 and 21.

As an example of a generalized function of n variables we have

F1® ...®Fn:=Ya>0NaF1® ---®NaFm

where Fy € S%, ..., F, € 8*.
The notions of convergence and continuity are adapted correspondingly,
and theorems 1.13, 1.14, 1.15 hold for the present case.

1.17. The following theorem is important (we state it only for the
case n=2).

THEOREM. If Ty (i=1, 2) are continuous linear operators of S, then
the mapping T ® T, defined by

(T1 ® To)f: =Yy, 2T1( Yoy (T Yeof (b1, t2))(22)))(21)

for f € 82, is a continuous linear operator of 82. If T'; (¢ =1, 2) have adjoints,
then so has 71 ® T2 (with respect to the inner product in 82), and
(Th @ Ta)*=T1 @ T¢. If furthermore T, T2 and 71 ® T are extended
to linear operators of §*, §* and §2* (according to 1.15), then we have
(T1® Tz)(F]_@ Fo)=T1F1 Q@ ToFy for F;e8*, FyeS*.

PrROOF. This follows from [J], appendix 1, 2.13 and 3.12. O

1.18. An example of an operator of 82 (not of the type discussed in
1.17) that can be extended to a continuous linear operator of S2* is the
following one. Define

Zyf:= Y(tr‘z)‘cz / (t'l_’;:?"tg ’ tll/;;z) (f € 8).

It is not hard to see that Zy is a continuous linear operator of 82 that
satisfies Zg=2Zyp.

2. PREPARATION

2.1. We introduce in this section convolution operators defined on S
in which only smooth functions appear. Some simple results are derived.
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2.2. pEFINITION. For g € § the convolution operator T is defined by

o0

Tof: = Yaec J fz—tigtt (f € 8).

Note that 7',f is the ordinary convolution of f and Y.g(f) (it will have
some notational convenience in the subsequent sections to take Yeg(f)
instead of ¢).

To avoid confusion with the translation operators T'; (a €Q) of 1.4(ii),
we shall always denote convolution operators by

Ty, Ty, Ty, ..., Te, Te, Tn, ...,
where
fe8, ge8, rel, ..., FeS* GeS* HeS* ...,

whereas translation operators are denoted by T, T, T, ..., Tz, Ty, T3, ...
with ae(, beq, ce(, ..., ze(, ye(Q, ze(,....

2.8. THEOREM. If g€ 8, then we have

(i) Ty maps S linearly and continuously into S.

(ii) 75 has an adjoint, viz. Ty =T;_, and Ty=T5, (Ty)-=T,_ (cf. 1.12).
(iii) If e 8, then T Th=T2T, and T;h=Ts.
(iv) If ke 8, then F(T;h)=Fg-Fh (pointwise multiplication).

PROOF. If f € 8, then it is easily seen that T'yf is an analytic function,
and we therefore concentrate on the estimation. Let M;, 4,1, By, M3, A2, By
be positive numbers such that

[f(x+iy)| <M exp (—amd 122 +=B1y?) (xe€R, yeR),
|g(x+1y)| < Mz exp (—ndax2 + nBoy?) (x€R, y€R).

Using the optimal shift technique as displayed in the proof of [B], theorem
8.1, we obtain

. M\ M, A142 B, B,
T _ 2 2
(Tef)+ig)l < VA + A2 oxp ( S P P +nB1 Iy )
(xEB) yen)‘

This proves smoothness of 7'f, and it also shows continuity of 7. It is
trivial that T is linear.

Assertions (ii) and (iii) follow from elementary calculations which we
shall omit, and (iv) is the well known convolution theorem for S. []

3. CONVOLUTION OPERATORS AND GENERALIZED FUNCTIONS

3.1. In this section we define convolution operators 7'y with F € S*.
We pay special attention to operators Ty that map S into 8, and it shall
be proved that such operators have an adjoint (so that we can extend
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them to linear operators of §* according to 1.15). Furthermore we shall
derive a number of useful properties of these convolution operators.

3.2. DEFINITION. We define for F € 8* the mapping T'r (cf. 1.4 and
1.12) by

Trf:=VYsec (Tzf, F-) (f€8).

We shall write 7'y instead of Temn() in case f e S+ (cf. 1.2). Note that
in case f € § definition 2.2 and the present one yield the same operator 7.

3.3. THEOREM. If F e 8* and fe 8, then Tpf is an analytic function.

PROOF. It issufficient to prove analyticity of the function Yzec(T'2f, F-)
in a point xo €(. It is easy to prove (by using Cauchy’s theorem and a
continuous version of 1.8) that

Y“Cf(xo+z+h}:—f(xo+z) _B’Yucf’(xo-l-x) (h—>0)

Hence, by 1.9,

lim (T—%‘”—’,,‘-E'a-’ F) = (Yeecf'(@o+2), F-),

h—0

and this shows analyticity of Ysec(T:f, F-) in xo. O

REMARK. We shall prove in 5.4 that Yiecexp (—ne2?)(T#f)(2z) € 8 for
every ¢>0, FeS8* fe8.

3.4. DEFINITION. The class € is defined as the set of all generalized
functions F for which Tp(S)C 8.

REMARK. This definition is somewhat uneasy to handle, but we shall
give alternative descriptions of the class € later on.

3.5. EXAMPLES.
(i) If fe 8, then emb (f) e €.
(ii) If a €Q, F=4,, then Tp=T_3 (cf. 1.4(ii)), so ds € F.
(iii) If F =Py, then Tp=P, so P ¥ (cf. 1.4(iii)).
(iv) If f is an integrable function defined on R with a compact support,
then emb (f) e €.
(v) If P is a measure on B, and if there is an ¢>0 such that

§ dP@t)=0 (exp (—mex?)) (x>0),

>
then F, defined by

®.fri= § TOPO (fe8)
(cf. 1.13), belongs to €.
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3.6. The following lemma turns out to be very useful in this section.
LEMMA. If Fe¥, fe S, then Trwf S Trf (x| 0).

PROOF. We first note that T'» is a continuous linear operator: if 2 e,
then Yres(T#f)(z) is a continuous linear functional of § (cf. 1.10 and 1.14).

For a>0, a €Q we have (Trwf)(a)=(NTof, F-) and using the formula
N.T,= exp (—na? cosh «-sinh «)T'y cosh «Ria stnh oV (that easily follows
from [B], (11.11)), we obtain

(Tr@wf)a)= exp (—ma? cosh &-sinh &«)(Ta cosh «Fia sinh «Vaf, F-)
= exp (—na? cosh «-sinh «)(T'r(Riqg stnn «Vaf)) (@ cosh «).

We are going to estimate Ryg sinn olVof for @ €, a>0. It is not hard to
prove from smoothness of f that there is an M >0, 4>0, B> 0 such that

(N <M exp (—nA(Re t)2+nB(Im t)2) (ted, «>0).

(This may be proved by using the optimal shift technique of the proof
of [B], 8.1.) Hence, using the inequality

2at|<|al?+(Ret)2+(Imt)2 (aeq, teq),

l(Rta sinh aNaf)(t)l = [exp (27“” sinh “)(Naf)(t)l <
<M exp (—n{4 —sinh x)}(Re )2+ x(B +sinh o)(Im ¢)2) exp (7|a|? sinh «)

for every a €(, te(, «>0. This shows that for sufficiently small « >0
|(Rig sinn « Nof)(2)| <M exp (— gA(Re t)2+ 2nB(Im t)2) exp (x|a|? sinh «)

for every ae(, te(.
Now we use continuity of T'». It follows from 1.14, remark that there
are numbers My>0, Ay>0, By>0 such that

(T F(Riq sinn «Nof ))(@ cosh &)| <
< Mg exp (—nAo(Re a)? cosh? o+ nBo(Im a)? cosh? x) exp (x]|a|? sinh «)

for sufficiently small x>0 and all @ €. Hence

I(TrewiNa)l<
<My exp (—ndo(Re a)? cosh? & + nBo(Im a)2 cosh? «) X
X exp (2n|a|? cosh « sinh «)

for sufficiently small x>0 and all a (.
It is easy to see now that there exists a3 >0, M1>0, 4,>0, B;>0
such that

O<a<or = |(Trwf)(a)| < M1 exp (—ndi(Re a2+ xBi(Im a)?) (a Q).

Since T r@f — T'rf pointwise we easily conclude from a continuous version
of 1.8 that Trpwf S Trf. O
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3.7. A lot of properties of the T'r’s with F € € easily follow now.

THEOREM. Let Fe%. Then Fe %, F. €% and F_€ € (cf. 1.12), and
furthermore Tr and TF_ are adjoint operators.

PROOF. We shall only prove that F_ € € (the other cases can be treated
similarly). Let g€ 8. Using the relation T5_g—=(Thj-)- that holds by
2.3(ii) for h € 8, we obtain by 3.6

Tz 9= T red-)-> (Trj)-

if « | 0. Furthermore T'o@;_g — TF_g pointwise. So T7_g=(Trj-)-€ 8,
and hence F_c%.
We further have for fe S, ge 8 by 2.3(ii) and 3.6

(TFfs g)= llf:)l (TF(a)f’ g)= iigjl (f’ Tm:g)= (f; T?-g),
so Tr and TF_ are adjoint operators. O

REMARK 1. According to 1.15 we can extend T'r to a linear operator
of 8* in case F' € €. We denote this extended operator again by Tr. The
following properties are satisfied

(i) Tr(emb(f))=emb(Trf) (f€8),
(ii) GneS* meM), G5 0= TrG,5% 0,
(iii) (TrQ, g)=(G, TF_g) (GeS* gehl).

REMARK 2. For F €% the following relations hold:
Tr=T3, (Tr)-=Tr-, (Tr)-=Ts-.
3.8. THEOREM. Let Fe¥, Ge¥. We have TeTa=T¢eTr.
PROOF. First assume that F € ¥, G e emb (8), and let f € 8. We have

TFTG f = ll:Iol TF(a) TG f = 11:% TGTF(G) f = TGTFf

(the limits are in S-sense by 3.6). The general case is reduced to the above
one by noting that

TrTef= LI?; TrTgwf= {‘1{% PeTrf=TcTrf
(the limits are again in S-sense). O0
3.9. Another theorem of the above type is the following one.
THEOREM. Let F €%, Ge¥. We have T5G=T5F, Trze=TrT6.

PROOF. Let us first note that T'#G and TGF are well defined by 3.7,
remark 1.
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To show TG =TsF first assume that F € €, G € emb (8). Then
T7G = lim T30 = li:.'!ol Ta(emb (F(x)))=T&F
x40 [

(the limits are in S*-sense). Here we used 2.3(iii) and the fact that

emb (F(x)) & F(a } 0). The general case can be reduced to this one by
noting that

TG = lim Tr(omb (@())) = lim Tz F = T5F
x40 3

(the limits are again in S*-sense), where the latter equality follows from
(TexnF, )= F, Ten_f) > (F, Te_f)=(TaF, [) («]0)

holding for fe S (cf. 1.9).
Now we show T'ry¢=TrT¢, and we use therefore the relation

TaTK—: TKTa (a Eq, K € %),

that follows at once from the definition of T'x. We easily see from 3.7,
remark 2 that (7'#¥3@)-=T7%_G-, so

(Trscf)(x) = (Tof, (T3G)-)=(Tof, T3_G-)=
=(TrTsf, G-)=(T2Trf, G-)=(Te(TFf))(z)

for fe 8, xeQ. Hence Trse¢=T6Ts. O

REMARK 1. The preceding theorem states (among other things) that
Tr maps € into € in case F €€. For if G € ¥ then T'r,e=T5T¢, and
T#T¢ maps S into S, hence TrG e €.

REMARK 2. Let F e 8* We mention the possibility to extend the
linear mapping Tr (which maps S into the class of all entire functions)
to a linear mapping of the space ¥ into S*. This is done by putting
Trf:=TiF for f e €. In case F € € this definition coincides with the one
given in 3.7, remark 1.

REMARK 3. In 3.7, remark 1 we have extended the operator T» to a
linear operator of 8* (in case F € %). If F € § however, there is a more
direct way to define this operator on S*, namely by putting TrG=TgF
for G € S* (this TzF has been defined in 3.2, and is an entire function).
It is not obvious yet that this alternative definition yields the same
operator, i.e. that emb (T'gF) equals TrG (as it is defined in 3.7, remark 1)
for G € 8*. The proof is pretty hard, and will be postponed until 5.5.

REMARK 4. Let Fe ¥, GeS*. We can define the convolution F « G
of F and @ by putting F + G=TrG. If we restrict ourselves to F €€,
G € €, then this convolution product has the usual properties. We mention
commutativity (follows from the preceding theorem), and associativity:
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if He 8*, then F x (@ x H)=(F x Q) « H, for

Fx(GxH)=TFG*xH)=T#TzH=
=TrGH=Ts5H=(F Q) x H.

We mention furthermore Titchmarsh’s theorem for €: if Fe¥, Ge %,
then F x G=0 = F=0V G=0. This will be proved in the next section.

3.10. We consider an alternative description of the class ¥ which is
related to Weyl correspondence (cf. [B], 26). If F € §*, then we can define
for every g€ S the continuous linear functional (cf. 1.10 and 1.18)

Yres(f ® §, Zu(E ® F))

of 8 (E is the function emb (Y;1)). For every g € § we can find (by 1.13)
exactly one Krg € 8* such that

(f® 3. Zu(E® F))=(f, Krg) (feS).

This Kr is a linear mapping of 8 into S*.

If Fe¥, ge &8, then we can prove that Kpgecemb (8). It suffices
therefore to show that Kpg=emb (T¢g), where G is the element of S*
that satisfies (@, f)=(F, Y//2f(z)/2)) for fe S (cf. 1.13; note that G € ¥%).
This equation holds in case F €emb (S), and the gencral case can be
handled by using T'¢wg 5 Teg, Krwg % Krg if | 0. The converse of
the above statement is also true, ie. if Kzg € emb (S) for every g€ 8,
then F € €. We shall prove this in 5.6.

3.11. One of the main features of the convolution operators is the
fact that they commute with the time shifts 7’3 (@ €Q). That this fact
actually characterizes the convolution operators is expressed in the
following theorem.

THEOREM. Let T be a continuous linear operator of S that satisfies
TT.=TsT for every a € R. Then there is a G € € such that T'=Tg.

PROOF. We note that Yyes(7'f)(0) is a continuous linear functional of S.
This means that there exists an H € 8* such that
(THOY=(f, H) (fe8).
Now we have for every fe 8, xeQ
(TH()=(T=TH)0) =(TT=f)(0)= (T4f, H).
This proves the theorem with G'=H-_. O

COROLLARY. Let T be a continuous linear operator of § that commutes
with all time shifts 75 (@ € R) and all frequency shifts B, (b €(). Then
there is a ¢ €Q such that T =cI. This is proved as follows. We infer from
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3.11 that there is an H € € such that (Tf)(z)=(T.f, H) (fe 8, x €Q); we
have H =T*g,. Since 7', and hence T* commutes with all frequency shifts
we have RpT'*8o=T*Rydo=T*5 (beR). So, by a theorem that will be
proved in 4.11, remark, T*d is a multiple of dp. Hence T is a multiple
of I.

REMARK. Let 7 be a continuous linear operator of § satisfying 7P = PT
(cf. 1.4(iii)). It may be proved from 3.11 that there is a G € € with T'="T¢.

4. FOURIER TRANSFORM AND GENERALIZED CONVOLUTION OPERATORS

4.1. This section is devoted to the Fourier transform in its relation
to convolution theory. We shall generalize the convolution theorem, and
we shall give a characterization of the class € in terms of Fourier trans-
forms. Some remarks are made on the equation 74F =0 with f € €, F € S*,

4.2. DEFINITION. Let %2 be a mapping of ( into . We define the
multiplication operator M, by
Mrf:=Yeech(2)f(z) (f€8).
We also write h-f instead of M,f.

4.3. vEMMA. If h:Q—>Q satisfies VesolYeech(z) exp (—ne2?) € 8],
then M} is a continuous linear operator of S with an adjoint, viz. Mj.

PROOF. Almost trivial. 0

REMARK. The M, of the above lemma can be extended in the familiar
way to a continuous linear operator of 8*, which is again denoted by M.
We shall also write k- F instead of MyF if F e S*.

4.4. DEFINITION. Let . # be the class of all generalized functions F for
which there exists an analytic g satisfying Vesol Ysecg(z) exp (—me22) € 8]
such that F=emb (g) (cf. 1.6(i)). On # we define the mapping emb-1
by putting emb-1(F)=g if }' € .#, F =emb (g), where ¢ satisfies the above
description (note that such a g is unique, hence the mapping emb-! is
well defined on .#).

4.5. The following characterization of € is very useful.
THEOREM. Fe® « FFec k.

PROOF. Let Fe%. We have for every fe 8
(FF)(2)- Fi=(FF()- Fi=F Traf) 5 F(T5)
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if « | 0 by [B], Theorem 9.1, 2.3(iv) and lemma 3.6. It easily follows that
g:= Yeec lima 4o ((FF)(x))(2) is an analytic function that satisfies

Y.ecg(2) exp (—mez2) € § for £>0.
Furthermore F#F =emb (g9) since we have for every ke 8
(FF, )= lim (FF)), )=
%30

- lim 31 (FRNOTU= ] )i
Hence FF e #.

Now assume that #F e .#. It suffices to show that for every fe& S the
function Yiec(T'sf, F-) € 8. Note therefore that for every z eQ

ii?g (Tof, F_(x))=(T.f, F-),

and that the proof will be complete if we can show that this limit is
achieved in S-sense.
We have by 2.3(iv) for every «>0
F(Trwf)=(FF)(x) FF.
Now let M >0, 4>0, B>0 be such that
(FN@+iy)| <M exp (—nAdz?+nBy?)

for every z € R, y € R. Since FF c.#, we infer the existence of a g that
satisfies Pe>o[ Yeecg(2) xp (—ne2?) € S] such that F =emb (g). This means
that there exists an M;>0, B;>0 such that

l9(z +1y)| < My exp (3nda? +nB1y?)
for every 2R, y € R. It is not hard to show that there are numbers
M2>0, By>0, >0 such that

O<a<ag = |(Nag)(z+ iy)| < Mz exp (dnAx? + wByy?)

for every z € R, y € B. Since Nug=(FF)(x) for every x>0, we see that
(FF))f 5 g-f if «| 0 (here we have used a continuous version of 1.8),
so F(Traf) S g- Ff, and hence Twmf S F*(g-Ff) if & 0 (cf. 1.4()).
This shows that T7f=%*(g-Zf), and hence that Trfe S. O

coroLLARY. If Fe¥, fe8, then F(TFf)=emb{(FF)-Ff. This
follows easily from the second part of the proof of the above theorem.

4.6. EXAMPLES
(i) Let F:= Yiece™®. It is not hard to check that #F is the embedding
of Yiec(—1) Y e~m# (principal root), and it follows that F e %.
(ii) Let k. be the function defined by h.:=1/27 y(.+). Its Fourier trans-
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form is given by

v sin 2nit
A " omir

hence emb () e ¥.

(iii) Let (dn)nez be a complex sequence that satisfies |d,|=0(e—?%) (n €Z)
for some £>0, and let F:=33. o dudy (cf. [B], 27.24.2(ii)). Then
FF is the embedding of the analytic function Y; Ya _co dn g2,
and it is not hard to show that F e ¥.

4.7. THEOREM. If Fe¥, G e S8*, then F(T#G)=emb-{(FF) - FQ.

PROOF. The case with G € emb (S) follows from 4.5, corollary, and the
general case is deduced from this one by noting that

F(TrG)= lim F(TFCQ(x))=
x40
= lim emb}(F F).-emb((F @) (x)) =emb-{(F F)- F4,
xy0
where the limit is achieved in S*-sense. O

4.8. THEOREM. If FeS8* FFecemb(S8+), @e¥, and if T3F =0, then
F=0 or G=0.

PROOF. By 4.7 we have emb-1(#Q)-FF=0. Write g=emb}(FG),
and let f € 8+ be such that emb (f)=%F. Then g-FF =emb (g-f), for we
have for he S

(9-FF, b)=(FF, §-h)=(emb (f), §-h) =

= § fOgr®)dt= [ g(t)f()h(t)dt=(emb (g-f), h).

—-CO —~ 00

It follows from 1.6(i) that g-f=0 (a.e.). We conclude by analyticity of g
that g=0 or that f=0 (a.e.), and so @=0 or F=0. O

4.9. We enter somewhat further into questions of the type: if f € €,
F e 8* and T¢F =0, then what can we tell about F. As we see from 4.7
such questions can be translated into (9=%f, G=%F): if gec .4, G € 8*,
and if emb-1(g)- G =0, then what can we tell about @. In [S] these problems
have been solved for the space K’ (dual space of K), but we cannot use
the techniques employed there, since we have (by lack of non-trivial
elements of § of compact support) not the occasion to consider the
elements of S* locally, as it is done in [S] for the elements of K’ (cf. [S)],
Ch. V, § 4).

We shall prove here some simple results in this direction, and we shall
mention some further theorems without proof.
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4.10. THEOREM. Let g€ .#, and assume that emb-1(g) has no zeros.
If G e8* and emb-1(g)-G=0, then G=0.
PROOF. Put h:=emb-1(g). We infer from the fact that
Y:h(z) exp (—mez?) € 8

for every £>0, and the fact that & has no zeros, that there are complex
numbers a9, a1 and az with Re (a2) <0 such that

h(z)= exp (@ +a1z+ag?) (zeQ).
If x>0 is such that coth o> |as|, and if we denote for ¢t €(Q

kz: = Yaec (sinh o)t exp (Si;h”a

((z2 +t2)cosh x — 2zt)> h1(z),

then we have k;e 8, h-ke=08.(t) (cf. 1.6(ii)). Hence for ¢ eQ
0=(k-@Q, k) =(Q, k- ks) = (G, 8a(t)) =G(f)
(cf. [B], 27.18), so Q.=0, and therefore G=0 by 1.5. |
4.11. THEOREM. If G €8* QG=0 (cf. 1.4(iii)), then there is a c €Q
such that G@=cdy. This ¢ is uniquely determined by G.
PROOF. Let >0 be fixed. We infer from [B], (11.9) and (11.11) that
N.Q=cosh x QNx+14 sinh & PN,
so we find
cosh x QG+ ¢ sinh x PG5=0.
The solution of this differential equation is given by
Ga= Y:ecGa(0) exp (—m22 coth &)= Gx(0)(sinh a)t(do)a.

Hence, with ¢:=G.(0)(sinh a)t, (G —cdp)a=Ga—c(do)==0. It follows from
1.5 that G'=cd.
Uniqueness of ¢ is trivial. M

REMARK. It follows easily from the above theorem that an F e S*
that satisfies T,F =F (a € R) is the embedding of a constant function.
For we have PF =limpo 1/2nih (ThF —F)=0 (the limit is in S*-sense),
hence QF F =% PF =0. This means that #F=c8, with some ¢ €(, and
hence F=emb (Yiecc). Also, if F € 8*, RyF =F (b eR), then F=cdp for
some ¢ €.

4.12. Theorem 4.11 can be generalized as follows. Let

nem, a1 €(q,...,aned, r1eM), ...,vac1),
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and let h:=Yec TT;., (z—ax)*. If G € 8* satisfies h-G'=0, then there

are complex numbers di; (=0, ...,v—1; k=1, ..., n) such that
n %1

(%) F=3% > di Plia,
k=1 I=0

The numbers dz; are uniquely determined by F.

We still can go further. Assume that & € emb~1(#), and let % have its
zeros in ay, as, ... with multiplicities »1, vs, ... . Let V, be the set of all
elements F e 8* of the form (x), and let V be the union of all V,’s. We
assume that Di-i a0 ¥i/|ax|2<oo. Then every F e S8* that satisfies
h-F=0 is S*-limit of a sequence in ¥V, and every F € 8* that is §*-limit
of elements of V satisfies h-F=0.

We note that every element b of emb1(.#) has order <2, and this
means that the limit exponent of » does not exceed 2 (cf. [Bi], Ch. VI, § 4):
if a1, @z, ... and vy, vy, ... are as in the above, then Di=1, 0 vi/|az|2t < oo
for every ¢>0. In case that the order of % is less than 2, we have
Sk=1.1a+0 vi[lax|2<oo, so the above theorem applies to . We do not
know how to handle the general case in which functions % like Yec(exp
(miz?) — 1) oceur (here Yi-1.ii+o ¥k/|0k|2=00).

5. SOME FURTHER REMARKS ON CONVOLUTION THEORY

5.1. In this section we give some further theorems and definitions
about the class €. We shall also pay attention to convergence in %, and
to convolution operators in 8% (n €1)).

5.2. We are going to show that g-G e ¥ if g € §, G € 8*. This means
that TiF e 4 if fe 8, F € 8* (of. 4.5 and 4.7), and it will turn out that
T;F =emb (TFf) (in particular T7f € 8t). The following lemma is useful
in the proofs of the above statements.

LEMMA. Let f€ 8, g € emb-1(#), and let M1>0, A;>0, B1>0, M2>0,
A2>0, Ba>0 be such that

|f(z)| < M1 exp (—rA1(Re 2)2+ 2B (Im 2)2),
lg(z)| < M2 exp (—mAa(Re 2)2+aBy(Im 2z)2)

for every ze(. To every ¢ with 0<es<A4;+ A, there exists a (>0 and
a >0 (only depending on B;, B; and &) such that for every F € §*, y eQ
(| || denotes inner product norm in 8)

0+ Tof, P3| < I MAOYF B 5 ~nd 222 (Re g2+ 2nBy(Im ).

PROOF. We have for every y e(, ze(

|9()(T'f)(2)| < M1 M2 exp (nP(2, ),
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where P is defined by

P(z, y)= — (A1 + 43)(Re 2)2+ (B1+ Bs)(Im 2)2+ 24,|Re z Re y|
+2B;|Im z Im y| — A1(Re y)2+ Bi(Im y)* (2 €(, y €Q).

Let & satisfy 0<e<4;+.4s. Applying the inequality 2|ab|<ypa?+ y-1b2

(valid for a€B, beRB, y>0) to 2|RezRey| and 2[ImzImy| with
y=1+(4s—¢)A7! and y=1 respectively, we obtain

P(z, y) < —e(Re z)2+ (2B1 + Bs)(Im 2)2 — (Re ¥)2+2B;(Im y)?

A2 — &
Al A]_ +A2—-8
for y €(, ze(. Now put for every y e(
Az~
hy:=Yeecg(2)(Tyf)(2) exp (m4: m— (Re y)2— 2rBy(Im y)?)

Then we have hy € 8, and
[hy(2)] < M1 M3 exp (—ne(Re 2)2+7(2B81 + Bz)(Im 2)2) (2 €Q).

It follows from 1.3(ii) that we can find a C>0 and a >0 (only de-
pending on & and 2B + B;) such that for every y €( there exists an I, € §
with hy=Ngly, |l,]|<M1M3C. So we have for every y eQ

0 Tof, B < MM OF ()] exp (—mds 227" — (Ro y)2-+ 2nBy(Tm )

if ¥ e8* (here we apply
{(hy, F) = |(Nely, F)|=|(ly, F(B)| < M1 MC|[F(B)]}). a

53. ToHEOREM. If g8, GeS*, then g-Ge%.

PROOF. Let fe 8. Then Ty.qf = Yyvec(d Tyf, G-). Analyticity of Ty.cf
follows from theorem 3.3, and it follows easily from lemma 5.2 that
Ty. Gf es. D

54. TaEOREM. If fe 8, Fc8* then emb (T7)ec 4.

PrOOP. Take g=Y:ecl and F_ (instead of F) in 5.2 to conclude that
T7#f e S+. It further follows from lemma 5.2 and theorem 3.3 that
Y:ec exp (—nez?)(T5f)(z) € 8 for every ¢>0. Hence emb (T5f)e A. [

5.5. We can prove now the statement in 3.9, remark 3.

THEOREM. If F € §*, fe 8 then TiF =emb (TFf).

PROOF. We first prove the formula with F € €. We have in that case
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by theorem 3.9, theorem 3.7 and 3.7, remark 1 for every ge S

(T3F, g)=(TF(emb (f)), g) = (emb (f), Tr_g)=
=(f, Tr_g)=(T#f, g)=(emb (T5), g),

hence TjF =emb (TFf) by the uniqueness part of theorem 1.13.

The general case is reduced to the above one as follows. Denote
hs: = Y.ec exp (—nd22), and define Fs:=hs- F for 6> 0. Now Fs € € by 5.3,
and we have TjFs=emb (T'7,f) for 6>0. The proof will be complete if
we can show that T5Fs % T;F, emb (T5,f) 8] emb (T'#f) if 6 | 0. We note
therefore that Fs 5» F if } 0, 80, by 3.7 remark 1, we have TiF, 53 T:F
if 8 | 0. Furthermore we have (T'7,f)(y) - (T'#f)(y) if 8 | 0 for every y €(,
and it is eagily proved now with the aid of lemma 5.2 and 1.9 that

emb (T5,f)5 emb (T#f) if 6 0. 0

REMARK. Note that not every element of € can be obtained as the
product of a g € § and a G € §* (cf. theorem 5.3), and 8o not every element
of .# can be obtained as T;F with some fe S, F € §*.

EXAMPLE. k:=—emb (Ysece™?) € € cannot be of the form g-G with
some g € S, G € §*. For if so0, then we consider the sequence (fa)sen defined
by fa:=Yiec emP-atm? (n €1)). Now we have fn-§5 0, but (fs-g, @)=
=(fn, 9-G)=(fn, k)=1 (n€M).

5.6. We are going to prove the statement at the end of 3.10. With
the notation used there we have to show that ¥ € € in case Kpg € emb (S)
for every geS. Let fe8, geS. We have (Krg, )=(EQ F, Zv(f @ §))
by definition and 1.18, and it is not hard to see from [B], (21.4) that
(B® F, Zy(f® §))=(@, Ty_f), where @ is the generalized function that
satisfies (G, h)=(F, Yz/2h(z)2)) for k € 8 (cf. 1.13). Hence, by 3.7, remark 1
and 5.5,

(Erg, /) =(@, Ty_f)=(T3G, f) = (emb (Teg), ).

This means that Krg=emb (T¢g), and by analyticity of T'¢g we conclude
that T¢geS. Hence Ge ¥, and so Fc¥.

5.7. We make some remarks on convergence of convolution operators.

DEFINITION. Let fo€¥ (neM), fe €. We write fn 3.0 if Ty g5 0
for every g€ S; we write fo S fif fa—f S 0.
If fo €€ (neM), then the following statements are equivalent.
(i) 1n 30,
(i) fa $ 0,
(iii) (fa)-3 0,
(iv) Vress[T7F 5% 0],
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(V) Viyeslemb2(Ffa)-g 5 0],
(vi) ¥ res+[emb-L(Ffn)-F 5 0].
The proofs are almost trivial.

5.8. THEOREM. Let fne% (ne1). We have

Areclfn S 1+ Viesl(Tr,9)nen is S-convergent].

PROOF. If fe @ issuch that f, S f, then we have Ty g—Trg="Ty,—19 5 0
for every ge §.

Now assume that (77,9)sen is S-convergent for every g € 8. Denote
Tg9=limgseo Ty,g for g € 8. It follows from [J], appendix 1, 2.12 that T
is a continuous linear operator of S, and T74=7T,T for every a € R. So
by 3.11, there is an f € € such that 7=7,. It follows at once that f» S f.

O

59. THEOREM. Let fe¥, fre® (neM), ge¥, gne¥ (neM), and
assume that f» S f, gn S g. Then fr x g S f % g (cf. 3.9, remark 4).

PROOF. Let u e S, and denote
ha:=emb {Ff) (n €M), kn:=emb-YFF,) (neM),
h:=emb1(Ff), k:=emb-Y{(F]), v:=Fu.

By 5.7(v) it suffices to show that ks -kn-v 5 h-k.v. Therefore we note
that hy-kn-v 5 h-k-v pointwise, and that there isan M >0, 4>0, B>0
such that

|ha(2)kn(z)v(z)) < M exp (—md4(Re z)2+nB(Im 2)2) (2eQ, neM)

as one easily sees from the fact that kn-v 3 k-0, hn-w 3 h-w (we S).
So, by 1.8, bho-kn-v3 h-k-v. |

REMARK. The above theorem is a special case of the following one. If
(Ta)nen, (Un)nen are sequences of continuous linear operators of S for
which (Twg)nen, (Usg)nen are S-convergent for every g €8, then

T:=VYeeslim Tng, U:="Yseslim Uag
A—+00 >0

are continuous linear operators of §, and we have T,Ung 5 TUg for
every g€ 8.

5.10. EXAMPLES
(i) If (fa)new is an S-convergent sequence in S, then (emb (fn))nen is an
%-convergent sequence in €. If (gn)sen i8 8 %-convergent sequence
in €, then (ga)ren is an S*-convergent sequence in S*.
(ii) If €%, then emb (Naf) S f if x| O (we have of course a similar
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definition of €-convergence for this case as in 5.7). This is lemma 3.6.

(iii) If (dn)nez is & complex sequence satisfying dn=0(e-**) (neZ) for
some ¢>0, then X,. . dn0n i8 a €-convergent series in the sense
that

Yeec S _ 4 Ang(n+) 5 Yaec Dne _ oo dng(n+2)

(N — o0, M — oo} for every g€ S.

(iv) If gy:=VYeec y! exp (—7p22) (y>0), then emb (g,) S & (y - o0). If
br:=1/27 y(=z.x) (z>0), then emb (k) S 8y (r | 0). More generally:
if h € €, and (emb-1(Fh))(0)=1, then Vikh 5 &y (A — oo0), where Vih
is the generalized function that satisfies

(Vah, )= (b, Yeecf(@/2)) (f€8) for >0

(cf. 1.13). This may be proved by using F Va=41V,1.F (A>0), the
equivalence of 5.7(i) and 5.7(v), and 1.8.

(v) Let g€ 8, gae 8 (neM)), Ge8* Q,e8* (neM), and assume that
gn3 g, G 8} @. Then gn-Gn S g-Q. For it easily follows from 1.9
that gn-Gn 5> g-G. So if fe 8, then we have Ty,.¢,f > Ty.¢f point-
wise, and it may be proved from lemma 5.2 that Ty, .¢.f3 TYy.qf.

We also have: if ge 8, G € 8%, then g-G(x) 3 g-@ (x|} 0).

5.11. We finally make some remarks about convolution theory for
(generalized) functions of several variables. It is possible to develop the
theory as it is presented here almost entirely for the more dimensional
case (an exception should be made for the results of 4.12). We shall
restrict ourselves here to the case of functions of two variables.

The definition of Tx with K € 8§2* becomes

Tkf= Y(:l:,y)cc2 (T, ® Tyf, K-) (fe8),

where K_ is the generalized function YesoY(zwiec? (Vu2K) (—2, —w)
(cf. 1.16). In order to prove the two-dimensional version of theorem 3.3,
we can use a theorem of Hartogs ([BT], Ch. III, § 4, Satz 15) about the
analyticity of functions of several variables.

We introduce the set €2 as the class of all generalized functions K for
which T'x maps 82 into itself. The crucial lemma 3.6 still holds for the
present case, and its proof differs only from that of lemma 3.6 in notational
respect. This enables us to prove the two-dimensional versions of the
theorems of section 3 and 4. We mention in particular theorems 3.5 and
3.7 (the definition of the class .2 is obvious).

An important example of an element of %2 is the tensor product of
two elements of €. Let g1 €€, gz € €. We claim that ¢; ® gz € €2, and
that Ty, @ g,=T4, ® Ty ,(cf. 1.17). To prove this note that

(FRF)Nn® g2)=F @ Fg2€ M2,
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hence, by the two-dimensional version of theorem 3.5, g, ® ¢ € %2
Furthermore we have

Tﬂl ® g2(h1 (039 hz) =Tglh]_ ® nghz for b1 e8, hze s,
and the proof can be completed in the style of [J], appendix 1, 2.13.
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