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Abstract This paper investigates the unsteady boundary layer flow of a nanofluid over a heated

stretching sheet with thermal radiation. The transport model employed includes the effects of

Brownian motion and thermophoresis. The unsteadiness in the flow field is caused by the time-

dependence of the stretching velocity, free stream velocity and the surface temperature. The

unsteady boundary layer equations are transformed to a system of non-linear ordinary differential

equations and solved numerically using a shooting method together with Runge–Kutta–Fehlberg

scheme. The clear liquid results from this study are in agreement with the results reported in the

literature. It is found that the heat transfer rate at the surface increases in the presence of Brownian

motion but reverse effect occurs for thermophoresis.
ª 2014 Production and hosting by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University.
1. Introduction

Stagnation point flow of an incompressible viscous fluid

induced by a stretching sheet has important practical
applications in many industries, such as the aerodynamics
extrusion of plastic sheets, the cooling of metallic plate, contin-
uous stretching of plastic films and artificial fibers. Extensive

research on boundary layer flow over a stretching surface
has been under taken since pioneering work of Sakiadis [1]
because of its engineering applications. Crane [2] obtained a

closed form solution for a stretching sheet whose velocity is
proportional to the distance from the slit. Further, Weidman
and Magyari [3], Chen and Char [4], Dutta et al. [5] etc. have
studied various aspects of the problem of a stretching sheet in

its own plane and of the stagnation point flow toward a
stretching sheet. The studies mentioned above dealt with the
steady flows, but many problems of practical interest may be

unsteady. The unsteadiness is due to the change in the stretch-
ing velocity, free stream velocity or wall temperature etc. The
mechanical and thermal characteristics of such an unsteady

process were investigated both analytically and numerically
in the boundary layer approximation, assuming a linear
variation in the steady stretching velocity with the longitudinal
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Figure 1 Physical model and coordinate system.
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coordinate and an inverse linear law for its decrease with time
during the gradual switch-off process. Various aspects of the
unsteady stretching sheet problem have been investigated by

many authors (cf. [6–10]).
The effects of thermal radiation on the flow and heat trans-

fer have important applications in physics and engineering,

especially, in space technology and high temperature pro-
cesses. Thermal radiation effects may also play an important
role in controlling heat transfer in industry where the quality

of the final product depends on the heat controlling factors
to some extent. The effects of radiation on heat transfer prob-
lems have studied by Raptis [11], Makinde [12], Ibrahim et al.
[13], Hayat et al. [14], Pal [15], Shit and Haldar [16]. Recently,

Das [17] investigated the impact of thermal radiation on MHD
slip flow over a flat plate with variable fluid properties.

Considerable efforts have been directed toward the study of

the boundary layer flow and heat transfer over a stretching
sheet because of its numerous industrial applications such as
electronic, power, manufacturing, aerospace and transporta-

tion industries. Common heat transfer fluids such as water,
ethylene glycol, toluene and engine oil have limited heat
transfer capabilities due to their low heat transfer properties.

In contrast, metals have higher thermal conductivities than
these fluids. Therefore, it is desirable to combine the two sub-
stances to produce a heat transfer medium that behaves like a
fluid but has the higher heat transfer properties. The term

nanofluid refers to a liquid suspension containing tiny particles
having diameter less than 50 nm. Choi [18] experimentally ver-
ified that addition of small amount of nanoparticles apprecia-

bly enhances the effective thermal conductivity of the base
fluid. The common nanoparticles that have been used are alu-
minum, copper, iron and titanium or their oxides. Various

benefits of the application of nanofluids include the following:
improved heat transfer, heat transfer system size reduction,
micro-channel cooling and miniaturization of the system. A

comprehensive survey of convective transport in nanofluids
was made by Buongiorno [19] who considered seven slip mech-
anisms that can produce a relative velocity between nanoparti-
cles and the base fluid. Of all these mechanisms, only Brownian

diffusion and thermophoresis were found to be important. An
excellent assessment of nanofluid physics and developments
has been provided by Das et al. [20] and Eastman et al. [21].

The influences of nanoparticles on natural convection bound-
ary layer flow past a vertical plate by taking Brownian motion
and thermophoresis into account was investigated by

Kuznetsov and Nield [22]. Godson et al. [23] presented an
overview on experimental and theoretical studies on convective
heat transfer in nanofluids and their applications.

Akyildiz et al. [24] discussed nanoboundary layer fluid

flows over stretching surfaces. Chamkha et al. [25] investigated
the mixed convection flow of a nanofluid past a stretching sur-
face in the presence of Brownian motion and thermophoresis

effects. Das [26] studied Lie group analysis of stagnation-point
flow of a nanofluid. Nanofluid flow over a shrinking sheet in
the presence of surface slip was discussed by Das [27]. Recently

heat transfer analysis of nanofluid over an exponentially
stretching sheet was investigated by Nadeem et al. [28].

The objective of the present work was to study the effect of

thermal radiation on boundary layer flow of a nanofluid over a
heated stretching sheet with an unsteady free stream condition.
Numerical results are obtained using a shooting technique
together with Runge–Kutta–Fehlberg schemes. The paper is
organized as follows. Mathematical analysis regarding
problem formulation is presented in Section 2. Section 3 com-
prises the method of solution and code verification. Discussion

related to plots is presented in Section 4. Section 5 lists the
main observations.

2. Mathematical analysis

2.1. Governing equations

Considering the two-dimensional unsteady boundary layer
flow of a nanofluid over a heated stretching sheet with thermal

radiation, the coordinate system under consideration is such
that x measures the distance along the sheet and y measures
the distance normally into the fluid (Fig. 1). The flow is

assumed to be confined to y > 0. Two equal and opposite
forces are impulsively applied along the x-axis so that the sheet
is stretched keeping to fixed origin. Let us consider that for
time t< 0 the fluid and heat flows are steady. The unsteady

fluid and heat flows start at t = 0, the sheet being stretched
with the velocity Uw(x, t) along the x-axis. It is also assumed
that the ambient fluid is moved with a velocity Ue(x, t) in

the y-direction toward the stagnation point on the plate. The
temperature of the sheet Tw(x, t) and the value of nanoparticle
volume fraction Cw(x, t) at the surface vary both with the dis-

tance x along the sheet and time t and higher than the ambient
temperature T1 and concentration C1 respectively. In view of
thermal equilibrium, there is no slip between the base fluid and

suspended nanoparticles. Since the velocity of the nanofluid is
low (laminar flow), the viscous dissipative heat is assumed to
be negligible here.

Under the above assumptions, the basic unsteady conserva-

tion of mass, momentum, thermal energy equations of nano-
fluid and nanoparticle fraction in the presence of thermal
radiation past a stretching sheet can be expressed as follows

(see Refs. [6,8,26]):
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where u, v are the velocity components along the x and y direc-
tions respectively, qf is the density of the base fluid, lf is the

kinematic viscosity of the base fluid (water), a ¼ j
ðqcÞf

is the

thermal diffusivity of the base fluid, s ¼ ðqcÞsðqcÞf
is the ratio of

the nanoparticle heat capacity and the base fluid heat capacity,

(qc)f and (qc)s are the specific heat parameters of the base fluid
and nanoparticle, respectively, T is temperature of the fluid, C
is the nanoparticle volume fraction, T1 and C1 are the tem-
perature and the nanoparticle fraction of the fluid far from

the sheet, DB is the Brownian diffusion coefficient, DT is the
thermophoretic diffusion coefficients and qr is the radiative
heat flux in the y-direction.

Using the Rosseland approximation, the radiative heat flux
is given by (cf. Brewster [29])

qr ¼ �
4r�

3k�
@T4

@y
ð5Þ

where r* is the Stefan–Boltzmann constant and k* is the mean

absorption coefficient. Assuming that the differences in tem-
perature within the flow are such that T4 can be expressed as
a linear combination of the temperature, T4 may be expanded
in Taylor’s series about T1 and neglecting higher order terms,

one may get

T4 ¼ 4T3
1T� 3T4

1 ð6Þ

Thus
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Using Eq. (7), the energy Eq. (3) becomes
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2.2. Boundary conditions

The appropriate boundary conditions for the problem are as

follows:

u ¼ Uwðx; tÞ; v ¼ 0;T ¼ Twðx; tÞ;C ¼ Cwðx; tÞ at y ¼ 0

u! Ueðx; tÞ;T! T1;C! C1 as y!1

�
ð9Þ

Here the stretching velocity Uw(x, t) is of the form

Uw ¼
ax

1� kt
ð10Þ

where a (stretching rate) and k are positive constants having
dimension (time)�1 (with kt < 1; k � 0). It is noted that the
stretching rate a

1�kt increases with time since a > 0. The free

stream velocity is of the form

Ue ¼
bx

1� kt
ð11Þ

where b (>0) is the strength of the stagnation flow. The wall
temperature Tw(x, t) and the value of nanoparticle volume
fraction Cw(x, t) are given by
Twðx; tÞ ¼ T1 þ T0

ax2

2mf

� �
ð1� ktÞ�2 ð12Þ

Cwðx; tÞ ¼ C1 þ C0

ax2

2mf

� �
ð1� ktÞ�2 ð13Þ

where T1 and C1 are the free stream values of temperature
and nanoparticle volume fraction respectively and T0 and C0

are positive reference temperature and nanoparticle volume

fraction respectively such that 0 6 T0 6 Tw and 0 6 C0 6 Cw.
Note that the above expressions are valid for time t < k�1

and are chosen in order to devise a similarity transformation

which transform the governing partial differential equations
into a set of highly nonlinear ordinary differential equations.

2.3. Non-dimensionalization

The governing equations and boundary conditions are simpli-
fied by introducing the following dimensionless functions f, h
and u, and the similarity variable g:
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where the stream function w is defined in the usual way as
u ¼ @w

@y
and v ¼ � @w

@x
. Thus from Eq. (1), we have
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1� kt

� 	
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r
fðgÞ

�
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where primes denote differentiation with respect to g.
Now substituting Eq. (14) into Eqs. (2), (4), (8), the follow-

ing ordinary differential equations are obtained as follows:
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2
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LeNb
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The boundary conditions (9) take the form

f0ð0Þ ¼ 1; fð0Þ ¼ 0; hð0Þ ¼ 1;/ð0Þ ¼ 1;

f0ð1Þ ¼ b; hð1Þ ¼ 0;/ð1Þ ¼ 0

�
ð19Þ

where S ¼ k
a
is the unsteadiness parameter, b ¼ b

a
is the stretch-

ing parameter, Pr ¼ mf
a is the Prandtl number, Nr ¼ 16T3

1r�

3k�j is the

thermal radiation parameter, Nb ¼ sDBðCw�C1Þ
mf

is the Brownian

motion number, Nt ¼ sDTðTw�T1Þ
mfT1

is the thermophoresis number,

Le ¼ mf
DB

is the Lewis number.

2.4. Physical quantities of engineering interest

The quantities of physical interest in this problem are the skin
friction coefficient Cf, the local Nusselt number Nu and the
local Sherwood number Sh which are defined as follows:



Table 1 Comparison of the values of f00(0) for various values

of b.

b Mahapatra and Gupta [6] Ishak et al. [8] Present work

f’’(0)

0.1 �0.9694 �0.9694 �0.969328
0.2 �0.9181 �0.9181 �0.918098
0.5 �0.6673 �0.6673 �0.667301
2.0 2.0175 2.0175 2.017467

3.0 4.7293 4.7294 4.729406
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Substituting Eq. (14) into (20), (22), one may obtain

Cfr ¼ Re
1
2
xCf ¼ f00ð0Þ ð23Þ

Nur ¼ Re
1
2
xNu ¼ �ð1þNrÞh0ð0Þ ð24Þ

Shr ¼ Re
1
2
xSh ¼ �/0ð0Þ ð25Þ

where Cfr is the reduced skin friction coefficient, Nur is the
reduced Nusselt number and Shr is the reduced Sherwood
number and Rex ¼ Uwx

mf
is the local Reynolds number based

on the sheet velocity Uw.

2.5. Particular case

The present problem reduces to steady-state flow for S= 0. In
the absence of diffusion equation, Brownian motion,
thermophoresis and thermal radiation, Eqs. (16)–(18) and the

boundary conditions (19) reduce to Eqs. (6), (7) and the
boundary conditions (8) of Ishak et al. [8] by setting k = 0
of their paper. Thus, in the absence of buoyancy force and

stretching parameter (i.e., k = b = 0), the Eqs. (6), (7) and
the boundary conditions (8) of Ishak et al. [8] reduces to

f000 þ ff00 � f02 ¼ 0 ð26Þ

1

Pr
h00 þ fh0 � 2f0h ¼ 0 ð27Þ

and

f0ð0Þ ¼ 1; fð0Þ ¼ 0; hð0Þ ¼ 1;

f0ð1Þ ¼ 0; hð1Þ ¼ 0

�
ð28Þ

The closed-form solution of the above Eq. (26) subject to the
boundary conditions (28) is

fðgÞ ¼ 1� e�n ð29Þ

which is the Crane’s solution for a stretching sheet problem
(see Crane [2]). Again using Eq. (29), the solution of the Eq.

(27) subject to the boundary conditions (28) in terms of conflu-
ent hypergeometric functions is given by (Ishak et al. [8])

hðgÞ ¼MðPr� 2;Prþ 1;�Pre�nÞ
MðPr� 2;Prþ 1;�PrÞ ð30Þ

where M(a, b, z) denotes the confluent hypergeometric func-

tion as follows

Mða; b; zÞ ¼ 1þ
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where an ¼ aðaþ 1Þðaþ 2Þ . . . ðaþ n� 1Þ;
bn ¼ bðbþ 1Þðbþ 2Þ . . . ðbþ n� 1Þ:

Using Eqs. (29) and (30), the skin friction coefficient f00(0) and
local Nusselt �h

0
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3. Method of solution

The set of non-linear coupled differential Eqs. (16)–(18) with
appropriate boundary conditions given in Eq. (19) constitute
a two-point boundary value problem. The equations are highly

non-linear and so, cannot be solved analytically. Therefore,
these equations are solved numerically using the symbolic
computer algebra software Maple 17. This software uses a
Runge–Kutta–Fehlberg method as the default to solve the

boundary value problems numerically. The asymptotic bound-
ary conditions in (19) at g fi1 are replaced by those at
g = g1 as is usually the standard practice in the boundary

layer analysis. The inner iteration is counted until the nonlin-
ear solution converges with a convergence criterion of 10�6 in
all cases.

3.1. Testing of the code

To check the validity of the present code, the values of f00(0)

have been calculated for different values of stretching ratio
parameter b for the case of steady flow (i.e., for S= 0) of
Newtonian fluid (i.e., Nb = Nt = 0) and in the absence of
thermal radiation parameter (i.e., Nr = 0) in Table 1. From

table, it has been observed that the data produced by the
Maple code and those reported by Ishak et al. [8], Mahapatra
and Gupta [6] are in excellent agreement and, so this gives us

confidence to use the present code. The profiles of fluid velocity
versus boundary layer coordinate have been plotted in Fig. 2
for various values of b in the absence of mass transfer. It is

observed that the results agree very well with those of
Mahapatra and Gupta [6].

4. Results and discussion

In order to analyze the results, numerical computation has
been carried out (using the method described in the previous

section), for various values of the unsteadiness parameter S,
thermophoretic parameter Nt, Brownian motion parameter
Nb, and Lewis number Le. In the simulation the default values
of the parameters are considered as S= 0.4, Nb = 0.1,

Nt = 0.1, Pr = 0.71, Nr = 0.2 and b = 0.5 unless otherwise
specified.



Figure 2 Velocity profiles in the absence of mass transfer.
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4.1. Effect of thermal radiation parameter Nr

Fig. 3 illustrates the changes that are seen in temperature
profiles due to increase in the values of thermal radiation

parameter Nr for the case of steady flow (S= 0) and unsteady
flow (S= 0.4). It is observed that the fluid temperature
increases as Nr increases due to the fact that the conduction
effect of the nanofluid increases in the presence of thermal

radiation. Therefore higher values of radiation parameter
imply higher surface heat flux and so, increase the temperature
within the boundary layer region. It is also observed that

thermal boundary layer thickness increases with increasing
Figure 3 Temperature profiles for various values of Nr.
the values of Nr for both steady and unsteady cases. The
impact of thermal radiation parameter Nr on the nanoparticles
volume fraction profiles is presented in Fig. 4. It can easily be

seen from figure that the nanoparticle volume fraction
decreases near the boundary surface i.e. for g < 1.2 (not pre-
cisely determined) but effect is reverse for g > 1.2 (not pre-

cisely determined). From Table 2 one may see that Nr
enhances the rate of heat transfer whereas it reduces the rate
of mass transfer at the stretching surface. It should be noted

that the effect is prominent for unsteady flow than that of
steady flow.

4.2. Effect of Lewis number Le

Fig. 5 demonstrates the influence of Lewis number Le on tem-
perature distribution within the boundary layer in the presence
of thermal radiation, Brownian motion and thermophoresis. It

is observed from the figure that the temperature profiles as well
as the thickness of the thermal boundary layer increase with
increase in the values of Lewis number Le for both steady

and unsteady flows but effect is not significant. Fig. 6 exhibits
the nanoparticle volume fraction profiles for several values of
Lewis number Le for both steady and unsteady flows. It is seen

that the nanoparticle volume fraction decreases with the
increase in Le and this implies an accompanying reduction in
the thickness of the concentration boundary layer thickness.
Also the nanoparticle volume fraction profiles decrease asymp-

totically to zero at the edge of the boundary layer. It is evident
from Table 2 that the Nusselt number Nur increases on increas-
ing Le but the effect is reverse on the Sherwood number Shr.

4.3. Effect of Brownian motion parameter Nb

The variation in the dimensionless temperature with g is shown

in Fig. 7 for some values of Brownian motion parameter Nb
Figure 4 Nanoparticle concentration profiles for various values

of Nr.



Table 2 Effects of Le, Nr, Nb and Nt on Nur and Shr.

Le Nr Nb Nt Nur Shr

S = 0.0 S = 0. S = 0.0 S = 0.4

1 0.1 0.1 0.1 �0.42520681 �0.42008811 2.69127557 3.09206857

5 2.39823855 2.72467142 2.39487484 2.72467142

10 4.22940342 4.773802290 2.27100139 2.63888824

5 0.0 2.21498396 2.51677464 2.66697226 3.09287098

0.5 2.42081168 2.75830626 2.33210820 2.70652145

1.0 2.563140865 2.92250981 2.093332374 2.43363675

0.4 0.1 �0.42520681 �0.41911007 2.69127557 2.99634364

0.3 0.93222493 1.06572445 2.26135139 2.52948256

0.6 1.24904151 1.41250660 1.75382678 1.97846755

0.1 0.1 �0.42520681 �0.42008811 2.69127557 3.09206857

0.3 �3.29753099 �3.64608553 2.384952118 2.745157612

0.5 �5.35791536 �5.95222114 2.13476075 2.46200249

Figure 5 Temperature profiles for various values of Le.

Figure 6 Nanoparticle concentration profiles for various values

of Le.
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when S= 0, 0.4. The results in the figure show that the fluid
temperature is found to increase with the increase in Nb for

both S= 0 and S= 0.4. The physics behind this phenomenon
is that the increased Brownian motion increases the thickness
of thermal boundary layer, which ultimately enhances the

temperature. The nanoparticle volume fraction distribution is
presented in Fig. 8 for various values of Brownian motion
parameter Nb when S= 0.0 (for steady flow), 0.4 (for

unsteady flow). The curves show that the nanoparticle volume
fraction decreases with increasing Nb near the boundary layer
region for both steady and unsteady flows. From Table 2 one
can see that the effect of Nb is to increase the Nusselt number

at the surface of the plate whereas the effect is opposite on
Sherwood number.

4.4. Effect of thermophoretic parameter Nt

The effect of thermophoretic parameter Nt is same as for
Brownian motion parameter Nb as one can see from Fig. 9.
Thus fluid temperature increases on increasing Nb in the
boundary layer region and, as a consequence, thickness of

the thermal boundary layer increases. This enhancement is
due to the nanoparticle of high thermal conductivity being
driven away from the hot sheet to the quiescent nanofluid. It

is seen from Fig. 10 that the thermophoretic parameter Nt
produces an increase in the nanoparticle volume fraction for
both the steady and unsteady cases. It is interesting to note

from the figure that distinctive peaks in the profiles occur in
region adjacent to the wall for higher values of thermophoretic
parameter Nt. This means that the nanoparticle volume
fraction near the sheet is higher than the nanoparticle volume

fraction at the sheet and consequently, and nanoparticles are
expected to transfer to the sheet due to the thermophoretic
effect. The Nusselt number Nur and Sherwood number both

decrease on increasing thermophoretic parameter Nt as
presented in Table 2.



Figure 7 Temperature profiles for various values of Nb.

Figure 8 Nanoparticle concentration profiles for various values

of Nb.

Figure 9 Temperature profiles for various values of Nt.

Figure 10 Nanoparticle concentration profiles for various values

of Nt.
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4.5. Effect of unsteadiness parameter S

The effects of the unsteadiness parameter S on temperature
profiles are depicted in Fig. 11. It is observed from the figure
that as S increases the profiles of temperature decreases with
a marked decrease in boundary layer thickness. It is note

worthy that temperature profiles satisfy the far field boundary
conditions asymptotically, thus supporting the validity of the
numerical results obtained. Plots of the nanoparticle volume

fraction for different values of unsteadiness parameter S are
shown in Fig. 12. It is noticed from the figure that the
nanoparticle volume fraction decreases with increase in the
values of S near the boundary layer region in the presence of

thermal radiation and satisfies the far field boundary condi-
tions asymptotically. Thus, by escalating S, concentration
boundary layer thickness decreases. One may note that the

effect of S is more effective for regular fluid (water) than nano-
fluid. Table 3 shows that the rate of heat transfer and rate of
mass transfer both increase on increasing unsteadiness param-
eter S and the effect is prominent for nanofluid than that for

regular fluid.



Figure 11 Temperature profiles for various values of S.

Figure 12 Nanoparticle concentration profiles for various values

of S.

Table 3 Effects of S on Nur and Shr.

S Nur Shr

Nanofluid Regular fluid Nanofluid Regular fluid

0.0 1.41745114 �0.68394393 3.56339618 2.98709551

0.5 1.70671502 �0.72217879 4.19078831 3.52682788

1.0 1.95102529 �0.77786271 4.74129519 4.00066640
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5. Final remarks

In this work, the effect of thermal radiation on boundary layer
flow of a nanofluid over a heated stretching sheet with an

unsteady free stream condition is investigated numerically.
The governing equations are transformed into non-linear
ordinary differential equations using similarity transformations

and then solved numerically by employing a shooting technique
together with Runge–Kutta–Fehlberg schemes. A parametric
study is performed to explore the effects of various governing
parameters on heat and mass transfer characteristics.
Following conclusion can be drawn from the present

investigation:

� Increasing the Brownian motion parameter, Lewis number

and unsteadiness parameter lead to reduce the nanoparticle
volume fraction near the boundary layer region but the
effect is reverse for the thermophoretic parameter.

� The fluid temperature and the thermal boundary layer
thickness increase for increasing thermal radiation,
Brownian motion and thermophoresis whereas the effect
is opposite for unsteadiness parameter.

� It is seen that the reduced Nusselt number increases while
the reduced Sherwood number decreases as the Brownian
motion parameter, Lewis number and thermal radiation

parameter increase.
� A rise in the thermophoretic parameter reduces both the
rate of heat transfer and the rate of mass transfer at the

stretching surface.
� Moreover, it is observed that increase in the unsteadiness
parameter enhances the reduced Nusselt number whereas
the opposite trend is noticed in the case of the reduced

Sherwood number.
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