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We consider free multiple stochastic measures in the combinatorial framework of
the lattice of all diagonals of an n-dimensional space. In this free case, one can
restrict the analysis to only the noncrossing diagonals. We give definitions of what
free multiple stochastic measures are, and calculate them for the free Poisson and
free compound Poisson processes. We also derive general combinatorial Itô-type
relationships between free stochastic measures of different orders. These allow us to
calculate, for example, free Poisson�Charlier polynomials, which are the orthogonal
polynomials with respect to the free Poisson measure. � 2000 Academic Press

1. INTRODUCTION

The motivation for this paper is twofold. On the one hand, in [RW97]
Rota and Wallstrom show that much of the classical theory of multiple
stochastic integrals can be done combinatorially, using the properties of the
lattice of all partitions of a set, especially the Mo� bius inversion formula. As
one consequence they get a number of combinatorial formulas describing
the properties of orthogonal polynomials. On the other hand, recently
Biane and Speicher in [BS98] made major advances in the study of the
free Brownian motion, started earlier in [Bia97a, KS92, Spe91, Fag91].

We continue the study of more general free stochastic processes, concen-
trating especially on the free Poisson process. The starting point of the
[RW97] paper is the observation (which has been made before) that the
first difficulty in dealing with stochastic measures, as compared with scalar
measures, is that multiple stochastic measures should not be taken as simply
product measures of one-dimensional ones. Indeed, various diagonals in
the n-dimensional space, which have Lebesgue measure 0, have nonzero
product stochastic measure. Rota and Wallstrom point out, however, that
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removal of these diagonals from the space, which is how one usually
defines multiple stochastic measures, corresponds precisely to the Mo� bius
inversion on the lattice of all partitions of a set, which is the same as the
lattice of all diagonals (see Section 2.2). We apply this idea to the study of
stochastic measures in free probability. Inspired by [RW97], we define
n-dimensional free stochastic measures and, more generally, free stochastic
measures depending on a partition ? in Section 2.3. Interestingly, in the free
case the diagonals corresponding to crossing partitions all have weight 0 to
begin with. This is in accordance with the general approach of Speicher
that combinatorially, the transition from the classical to the free prob-
ability corresponds to the transition from the lattice of all to the lattice of
noncrossing partitions.

After the free Brownian motion, the most important process with free
increments is the free Poisson process. Using the combinatorial machinery,
we can calculate explicitly the multiple stochastic measures for the free
Poisson process, and more generally for the free compound Poisson processes.
These in turn give us recurrence relations for the orthogonal polynomials
with respect to the corresponding (scalar) measures. In particular we
calculate the free Poisson�Charlier polynomials. Finally, in the language of
the lattice of noncrossing partitions one can easily express the Itô product
formula for general free stochastic measures.

The paper is organized as follows. In Section 2 we collect various com-
binatorial preliminaries, and the main definitions. In Section 3, we look at
some general properties of free stochastic measures, and calculate the
distributions for their main diagonal measures. These diagonal measures
are calculated explicitly for the free Poisson process in Section 4.2 and for
the free compound Poisson processes in Section 4.3. Section 5 is devoted to
the consideration of product measures, especially in the free Brownian
motion and free Poisson cases, and combinatorial formulas that have
implications for families of orthogonal polynomials. It also contains the
combinatorial Itô product formula. In Section 6.2 we show that at least for
a particular scheme, the stochastic measures are always well-defined. Section
7 is devoted to various recursion relations between stochastic measures,
and the relation to orthogonal polynomials. Finally, in Section 8 we list a
few preliminary facts about the result of integration with respect to free
stochastic processes.

2. NOTATION AND DEFINITIONS

2.1. Partitions. We will consider the following three lattices of partitions.
By P(n) we will denote the lattice of all partitions of the set [1, 2, ..., n].
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By NC(n) we will denote the lattice of noncrossing partitions [Kre72].
These are the partitions with the property that

i< j<k, i t
? k, j t

? l, i t3
?

j O i<l<k.

Finally, the third lattice, used mostly for notational convenience, is the
lattice Int(n) of interval partitions [vW73]. These are the partitions whose
classes are intervals, and Int(n) is isomorphic as a lattice to the lattice of
subsets of a set of (n&1) elements.

There is a partial order � on P(n) which restricts to the other two
lattices. We denote the smallest element in P(n) by 0� =[(1), (2), ..., (n)],
and the largest one by 1� =[(1, 2, ..., n)]. We denote the meet and the join
in the lattices by 7 and 6, respectively.

We need the following operations on partitions. For ? # P(n), we define
?op # P(n) to be ? taken in the opposite order, i.e.

i t
?op

j � (n&i+1) t
?

(n& j+1).

We define ?k # P(nk), the k-thickening of ?, by

i t
? k

j � [(i&1)�k]+1 t
?

[( j&1)�k]+1,

where [ } ] denotes the integer part of a real number. In words, we expand
each point of the set [1, 2, ..., n] into k points, and require that those
points lie consecutively and in the same class of ?k. For ? # P(n), _ # P(k),
we define ?+_ # P(n+k) by

i t
?+_ j � ((i, j�n, i t

? j) or (i, j>n, (i&n) t
_

( j&n))).

We will denote m? :=?+?+ } } } +? m times.
Following [BLS96], we divide the blocks of a noncrossing partition ?

into inner and outer: a block B # ? is called inner if there exist (i t
? j,

i, j � B) such that i<k< j for some, hence all, k # B. A block that is not
inner is called outer.

Finally, for ? # P(n), we define the number of crossings of ?, c(?), to be

c(?)=min(|_|&|?| : _ # NC(n), _�?).

In words, this is the minimal number of ``cuts'' in the classes of ? required
to make it noncrossing. Notice that this number is different from the
reduced number of crossings of [Nic95], the number of the restricted
crossings of [Bia97b], and m(?) of [Mar98].
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2.2. Diagonals. Fix n, let ? be a set partition of n, with |?|=k classes
B1 , B2 , ..., Bk . For a set S=[1, 2, ..., N], denote by S n

? the ?-diagonal
of Sn, that is the set of n-tuples (i1 , i2 , ..., in) # S n such that

k t
? l (i.e. k and l lie in the same class of ?) � ik=il .

For example, to the partition [(1, 5, 8), (2, 7), (3), (4, 6)] of the set of eight
elements there corresponds the set [(i1 , i2 , i3 , i4 , i1 , i4 , i2 , i1): i1 {i2 {
i3 {i4]. Note that S n

? {< only if N�|?|; more generally, |[1, 2, ..., N]k
? |

=(N) |?| , where (N)m=N(N&1) } } } (N&m+1). Similarly, denote by S n
�?

the set of n-tuples (i1 , i2 , ..., in) # Sn such that

k t
? l O ik=i l .

Note that

S n
�?= .

_�?

S n
_ . (1)

2.3. Processes with free increments. Let (A, .) be a tracial W*-non-
commutative probability space. That is, A is a finite von Neumann
algebra, and . is a faithful normal trace state on it. We will call the
elements of A noncommutative random variables, or random variables for
short.

For definitions of free probabilistic notions that are not given here we
refer the reader, for example, to the monograph [VDN92]. Let + be a
freely infinitely divisible distribution with compact support; normalize it so
that Var(+)=1. Let [+t]t # [0, �) be the corresponding additive free con-
volution semigroup. Note that in the free case, as opposed to the classical
case, both the free normal distribution (the semicircular distribution) and
the free Poisson distribution have compact support, so the condition is not
as restrictive as it might appear. We will return to the matter of extending
the contents of this paper to general freely infinitely divisible distributions
elsewhere.

Definition 1. A stationary stochastic process with freely independent
increments is a map from the set of finite half-open intervals I=[a, b)/R
to the self-adjoint part of (A, .) (which can be extended to the map on all
Borel subsets) I [ XI with the following three properties:

1. I1 , I2 , ..., In disjoint O[XI1
, XI2

, ..., XIn
] are freely independent

(free increments),

2. I1 & I2=<, I1 _ I2=J O XI1
+XI2

=XJ (additivity),

3. The distribution of XI is + |I | (stationarity).
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Substantial study of processes with free increments was started in
[GSS92] and [Bia98]. In particular, it was shown in [GSS92] that for
any + as above, there is a realization of such a process. Note that throughout
the paper the terms ``free stochastic process'' and ``free stochastic measure''
will be used interchangeably.

We now define the product measures Pr?(A) and the stochastic measures
St?(A), depending on the partition ? of k. These will again be additive
processes on the real line with free identically distributed increments. Note
that this is in contrast with [RW97], where the corresponding objects are
processes on a k-dimensional space.

Definition 2. Let A be a union of half-open intervals in R. Denote
X=XA , and for an arbitrary N let X (N)

1 , X (N)
2 , ..., X (N)

N be freely inde-
pendent, identically distributed, and add up to X. Note that henceforth we
will usually omit the explicit dependence on N, to simplify notation. Then

St?(A)= lim
N � �

:

# [1, 2, ..., N] k
?

(i1 , i2 , ..., ik )

X (N)
i1

X (N)
i2

} } } X (N)
ik

,

Pr?(A)= lim
N � �

:

# [1, 2, ..., N] k
�?

(i1 , i2 , ..., ik)

X (N)
i1

X (N)
i2

} } } X (N)
ik

,

where the limit here and, unless noted otherwise, elsewhere are taken in the
operator norm. For the discussion of the existence of the limits, see Sections
3 and 6.2.

We call �k :=St0� the stochastic measure of degree k. We also define the
k-th diagonal measure of the process by

2k(A)=St1� =Pr1� = lim
N � �

:
N

i=1

X k
i .

Note that the second diagonal measure of the process 22(A) is frequently
called the quadratic variation of the process and denoted by (X, X).

Throughout most of the paper we will fix the set A and write X :=XA ,
St? :=St?(A), etc.

2.4. Multidimensional R-transform and noncrossing cumulants. This
section could have been taken directly from, say, [NS96] and is included
for completeness.

Given a family x1 , x2 , ..., xk in a noncommutative probability space
(A, .), their joint distribution is the collection of their joint moments

M(xi1
, xi2

, ..., xin
)=.(xi1

xi2
} } } xin

)

158 MICHAEL ANSHELEVICH



for 1�ij�k, 1� j�n. For a partition ? # NC(n), we define

M?(xi1
, x i2

, ..., xin
)

= `
B # ?

M(x i( j1) , xi( j2 ) , ..., xi( j|B| )
: j1< j2< } } } < j |B| , [ j1 , j2 , ..., j |B|]=B).

We define the joint free cumulants of (x1 , x2 , ..., xk), which together
comprise the multidimensional R-transform, recursively by

M?(xi1
, xi2

, ..., xin
)= :

_�?
_ # NC(n)

R_(xi1
, xi2

, ..., xin
),

where again

R_(xi1
, xi2

, ..., x in
)

= `
B # _

R(x i( j1) , x i( j2) , ..., xi( j|B| )
: j1< j2< } } } < j |B| , [ j1 , j2 , ..., j |B|]=B).

The main property of the R-transform is that

(ij t
? il , xij

and xil
freely independent) O R?(xi1

, xi2
, ..., x in

)=0.

Denote by K the Kreweras complement map on NC(n) [Kre72, NS96].
This is a certain bijection on the lattice NC(n) and it follows from the main
property of the R-transform that for [x1 , x2 , ..., xn] freely independent
from [ y1 , y2 , ..., yn],

.(x1 y1 x2 y2 } } } xn yn)= :
? # NC(n)

RK(?)(x1 , x2 , ..., xn) M?( y1 , y2 , ..., yn).

If xi1
=xi2

= } } } =xin
=x, we write R?(x, x, ..., x) :=R?(x). We denote

the individual moments and free cumulants by mn(x)=M1� n
(x), rn(x)=

R1� n
(x). Note that r1(x)=m1(x)=.(x).

If x has distribution + which is freely infinitely divisible, and y has
distribution +t , then rn( y)=trn(x). Therefore R?( y)=t |?| R?(x).

Finally, for an algebra element Z, we denote by Z% the centered version
of Z, Z%=Z&.(Z). Note that r1(Z%)=0, rn(Z%)=rn(Z) for n>1.

3. PRELIMINARIES

As defined, the product and stochastic measures depend on the particular
triangular array [X (N)

i ]N
i=1 , N # N. We will show that the limits exist for a
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particular choice of this array in Section 6.2. For now, we make a number
of observations which are consequences of the free independence of the
increments of the process, and which will hold for any such array.

Lemma 1.

lim
N � �

. \ :

# [1, 2, ..., N] k
?

(i1 , i2 , ..., ik )

Xi1
X i2

} } } Xik+={R?(X)
0

if ? is noncrossing
if ? is crossing.

Proof.

. \ :

# [1, 2, ..., N] k
?

(i1 , i2 , ..., ik )

Xi1
Xi2

} } } Xik+= :

_�?
_ # NC(k)

:

# [1, 2, ..., N]k
?

(i1 , i2 , ..., ik )

R_(Xi1
, Xi2

, ..., Xik
)

=(N) |?| :

_�?
_ # NC(k)

N &|_|R_(X, X, ..., X ) (2)

since rj (Xi)= 1
N rj (X ). If ? is noncrossing, then the limit, as N � �, of the

expression (2) is R?(X ). On the other hand, assume that ? is crossing. As
in [Bia98], the number of elements of NC(k), which is a Catalan number,
is less than 4k and for each _, |R_(X )|�4k &X&k. Thus the absolute value
of the expression (2) is less than 42k &X&k N &c(?). In particular, it converges
to 0 as N � �. K

Theorem 1.

St?= lim
N � �

:

# [1, 2, ..., N] k
?

(i1 , i2 , ..., ik )

Xi1
Xi2

} } } Xik
=0

unless ? is noncrossing.

Proof. More generally,

. \\\ :

# [1, 2, ..., N] k
?

(i1 , i2 , ..., ik )

Xi1
Xi2

} } } Xik+\ :

# [1, 2, ..., N] k
?

(i1 , i2 , ..., ik )

X i1
Xi2

} } } Xik +*+
n

+
=. \ :

_7 2n1� k=n(?+?op )

_ # P(2nk)
_�n(?+?op)

:

# [1, 2, ..., N] _
2kn

(i1 , i2 , ..., i2kn )

Xi1
X i2

} } } Xi2kn+ . (3)

For _ as in equation (3), c(_)�2nc(?). Applying Lemma 1 and using the
estimate in the proof of that Lemma, we see that the above expression (3)
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is less than 44nk &X&2nk N&2nc(?) d |?|
n , where d m

n =|[_ # P(2nm) : _ 7 2n1� m=
2n1� m]|. It was shown in Theorem 5.3.4 of [BS98] that limn � �(d m

n )1�2n=
(m+1) (note that our use of m and n is the opposite of theirs). Therefore

" :

# [1, 2, ..., N] k
?

(i1 , i2 , ..., ik )

Xi1
Xi2

} } } Xik"

= lim
n � � _. \\\ :

# [1, 2, ..., N] k
?

(i1 , i2 , ..., ik )

Xi1
Xi2

} } } Xik+

_\ :

# [1, 2, ..., N] k
?

(i1 , i2 , ..., ik)

Xi1
Xi2

} } } Xik+*+
n

+&
1�2n

�42k &X&k ( |?|+1) N&c(?).

In particular,

lim
N � � " :

# [1, 2, ..., N] k
?

(i1 , i2 , ..., ik)

Xi1
Xi2

} } } X ik"=0,

unless ? is noncrossing. K

The following is the analog of Proposition 1 from [RW97] for the lattice
of noncrossing partitions. Note that that Proposition for the lattice of all
partitions follows directly from Definition 2 and so remains true as well.

Corollary 1. The measures Pr? and St? are related as follows: for
? # NC(k)

Pr?= :

_�?
_ # NC(k)

St_ ,

St?= :

_�?
_ # NC(k)

+(?, _) Pr_ ,

where +(?, _) is the Mo� bius function on the lattice of noncrossing partitions
[Kre72].

Proof. By Definition 2 and Eq. (1), Pr?=�_ # P(k), _�? St_ . By the
Theorem, for _ � NC(k), St_=0. The second equality follows from the first
one by the use of Mo� bius inversion on the lattice of noncrossing partitions.

K

161FREE STOCHASTIC MEASURES



Hereafter, it is reasonable to consider only product and stochastic
measures corresponding to noncrossing partitions, for the following reason.
Following [RW97], we call a measure multiplicative if for any partition ?
(of the type to be determined below)

.(St?)= `
B # ?

.(2 |B|). (4)

It is easy to see that if the process is not commutative, the measures are not
in general multiplicative with respect to the lattice of all partitions. For
example, let ?=[(1, 3), (2, 4)]. The partition is crossing, so for the free
Brownian motion the left-hand-side of Eq. (4) is 0, while the right-hand-
side is .(22(A))2=|A|2{0.

Corollary 2. Stochastic processes with freely independent increments
are multiplicative with respect to the lattice of noncrossing partitions. That is,
for ? # NC(k), .(St?)=>B # ? .(2 |B|).

Proof. By Lemma 1,

.(St?)=R?(X )= `
B # ?

r |B|(X )= `
B # ?

.(2 |B|).

Here the last equality follows from applying the first equality to ?=1� . K

An immediate consequence of Corollary 1 is the analog of Theorem 1
from [RW97], which expresses the stochastic measure of degree k as a
linear combination of various product measures. In fact more is true, as in
this particular case not even all noncrossing partitions contribute to the
sum. Call a singleton a class of a partition consisting of one element.

Proposition 1. For a noncrossing partition ? that contains an inner
singleton, St?=0 if the process is centered, that is, .(X )=0.

Proof. If ? contains a singleton, and the process is centered, then

. \ :

# [1, 2, ..., N] k
?

(i1 , i2 , ..., ik )

Xi1
Xi2

} } } Xik+=0.

In fact each term is 0, for any N. On the other hand, if ? contains an inner
singleton, so does any partition _�n(?+?op), _ 7 (2n1� k)=n(?+?op) with
at most (n&1) crossings, for any n. Thus in the sum in the equation (3),
only the partitions _ with c(_)�n enter, and so by the argument following
that equation we see that the limit defining St? is 0. K
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The following statement fits well with the original definition of free
independence of Voiculescu [Voi85, VDN92].

Corollary 3. If the process is centered,

�k=St0� = lim
N � �

:
N

i1{i2{ } } } {ik
all distinct

Xi1
Xi2

} } } Xik

= lim
N � �

:
N

i1{i2{ } } } {ik
neighbors distinct

Xi1
Xi2

} } } Xik
.

Proof. The only noncrossing partition with no inner singletons for
which no consecutive elements lie in the same class is 0� . K

Finally, note that for any triangular array as above, we always have
convergence in distribution for the diagonal measures (and hence for the
stochastic measures by the results in Section 7):

Theorem 2. The free cumulants of the k th diagonal measure of the
process are given by

rn(2k)= lim
N � �

rn \ :
N

i=1

X k
i +=rnk(X ).

Proof. For +(?) :=+(?, 1� ) the Mo� bius function on the lattice of non-
crossing partitions,

rn \ :
N

i=1

X k
i += :

N

i=1

:
? # NC(n)

+(?) M?(X k
i )

= :
N

i=1

:
? # NC(n)

+(?) `
Bj # ?

m |Bj |(X k
i )

= :
N

i=1

:
? # NC(n)

+(?) `
Bj # ?

mk |Bj |(X i )

= :
N

i=1

:
? # NC(n)

+(?) `
Bj # ?

:
_j # NC(k |Bj | )

`
A # _j

r |A|(Xi )

= :
? # NC(n)

+(?) `
Bj # ?

:
_j # NC(k |Bj | )

N1&� |?|
j=1 |_j | `

A # _j

r |A|(X)

=+(1� ) rnk(X )+O(1�N)

=rnk(X)+O(1�N). K
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4. DIAGONAL MEASURES: EXAMPLES

4.1. Free Brownian motion. It follows from the results of [BS98] that
for the free Brownian motion the quadratic variation is the scalar process
I [ |I |, and the higher diagonal measures are 0.

4.2. Free Poisson process. The free Poisson distribution is a distribution
obtained by the Poisson-type limit process for freely independent variables
[VDN92]. It is characterized by the property that all its free cumulants are
equal to 1. For the free Poisson process, a remarkable representation was
given in [NS96] (see also the Appendix to that paper). Let I [ pI be a
projection-valued process [0, 1] � A. That is, (I & J=< O pI = pJ ),
(I1 & I2=<, I1 _ I2=J O pI1

+ pI2
= pJ ), .( pI )=|I |. Let s # A be an

element with a standard semicircular distribution, freely independent from
the family [ pI]. Then I [ [spI s] is a free Poisson process for I/[0, 1].
To get the full process, pick a countable collection of such families of
projections, p (n)

I , I/[0, 1], n # Z, which are freely independent from each
other. Then [t1 , t2) [ s( p ([t1 ])

[t1&[t1 ], 1)
+�[t2]&1

i=[t1]+1
p (i)

[0, 1)+ p ([t2])
[0, t2&[t2 ])

) s is a
free Poisson process. Here [ } ] again denotes the integer part of a real
number.

By Theorem 2 we know the distributions of its diagonal measures. In fact
in this case we can prove convergence in norm to a specific limit. First we
have a technical theorem.

Theorem 3. Let Z1 , Z2 , ..., Zk be centered, and fix e, a self-adjoint
element freely independent from the family [Zi]. For N # N, let the family
e(N)

1 , e(N)
2 , ..., e (N)

N (where henceforth we will again omit the dependence on N )
be self-adjoint, freely independent from the family [Zi] and be an orthogonal
family, that is, ei ej=0 for i{ j. In addition, let the ei 's be identically
distributed and �N

i=1 ei=e. Then for arbitrary indices m1 , m2 , ..., mk+1 # N

lim
N � �

:
N

i=1

em1
i Z1 em2

i Z2 } } } emk
i Zk emk+1

i =0.

Proof. First note that since the ei 's are orthogonal and identically
distributed,

.(en)=. \\ :
N

i=1

ei+
n

+=. \ :
N

i=1

en
i +=N.(en

1).

. \\ :
N

i=1

em1
i Z1em2

i Z2 } } } emk
i Zk emk+1

i +
n

+
=. \ :

N

i=1

(em1
i Z1em2

i Z2 } } } emk
i Zkemk+1

i +
n

+
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=. \ :
N

i=1

(em1+mk+1
i Z1em2

i Z2 } } } emk
i Zk+

n

+
= :

N

i=1

:
? # NC(nk)

RK(?)(Z1 , Z2 , ..., Zk , Z1 , ..., Zk)

_M?(em1+mk+1
i , em2

i , ..., emk
i , em1+mk+1

i , ..., emk
i ). (5)

Zi 's are centered, so r1(Zi)=0. Thus only those partitions ? contribute to
the sum (5) for which K(?) has no single-element classes. In particular
|K(?)|�(nk)�2 and so |?|�(nk)�2 (since |K(?)|+|?|=nk+1). Then the
sum (5) is

:
N

i=1

:

|?|�(nk)�2
? # NC(nk)

RK(?)(Z1 , Z2 , ..., Zk , Z1 , ..., Zk) N&|?|

_M(m1+mk+1, m2 , ..., mk , m1+mk+1, ..., mk ) ?(e, e, ..., e),

where (u1 , u2 , ..., unk)? # NC(�nk
i=1 ui ) is the partition obtained by expand-

ing the i th point of the set on which ? operates into ui points. That is,

(i1 t
(u1 , u2 , ..., unk) ? i2)

� \ :
s1

j=1

uj+1�i1� :
s1+1

j=1

u j , :
s2

j=1

u j+1�i2� :
s2+1

j=1

uj , and s1 t
? s2+ .

(Note that (m, m, ..., m) ?=?m.) Therefore the sum (5) is less in absolute
value than

42nk(max &Zi&)nk &e&n � i=1
k+1 mi N 1&nk�2.

We can always choose Zi 's to be self-adjoint, while the ei 's are so by
assumption. Hence

" :
N

i=1

em1
i Z1em2

i Z2 } } } emk
i Zkemk+1

i "�42k(max &Zi &)k &e&� i=1
k+1 mi N&k�2

and so converges to 0 as N � �. K

Corollary 4. For the free Poisson process, the k th diagonal measure is
equal to the process itself.

Proof. First consider the process on the interval [0, 1]. In the notation
from the beginning of the section, X=sps and Xi=sp is.
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:
N

i=1

( pi s2pi )
k= :

N

i=1

p is2pis2 } } } pis2pi

= :
N

i=1

:
? # Int(k+1)

.(s2)k&|?|+1 p i ((s2)o pi )
|?|&1

= :
N

i=1

:
k

j=0
\k

j + p i ((s2)o pi)
j

since .(s2)=1. In the limit N � �, by the Theorem the only term that
survives is the one for j=0 (i.e. ?=1� , |1� |=1), and that term is
�N

i=1 p i= p.
Therefore

lim
N � �

:
N

i=1

(sp is)k=s lim
N � �

:
N

i=1

( pi s2pi )
k&1 s=sps.

For the full Poisson process, the result follows from the free independence
of the increments corresponding to disjoint intervals. K

In fact we can calculate explicitly some product measures for the free
Poisson process; see Section 5.

4.3. Free compound Poisson processes. Let eI be a process with identi-
cally distributed orthogonal increments on [0, 1]. It is a map from all finite
half-open intervals I/[0, 1] to the self-adjoint part of (A, .) such that
(I & J=< O eIeJ=0), (I1 & I2=<, I1 _ I2=J O eI1

+eI2
=eJ), and the

distribution of XI depends only on |I |. Note that this implies that if + is the
distribution of e[0, 1) then the distribution of eI is ((1&|I | ) $0+|I | +). Let
s be a random variable with the standard semicircle distribution, freely
independent from this process. Then by [NS96] the process seIs is a
process with free increments. Its distribution is

rn(s2e)= :
? # NC(n)

R?(e) RK(?)(s2)= :
? # NC(n)

R?(e)=mn(e).

That is, the process seIs is a free compound Poisson process (these have
been considered previously in [GSS92] and [Spe98]). In fact, that will be
true even if the process does not have moments that are finite. Indeed, for
general distributions we can use the ``free Fourier transform'', which has
appeared for example in [NS97]. Namely, there is a relationship between
Voiculescu's R- and S-transforms: denoting :(z)=zR(z), one has S(w)=
w&1:&1(w).
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Lemma 2. Let x be a random variable, and s a standard semicircular
random variable freely independent from x. Let y=sxs. Then Sy(w)=

1
w+1 Sx(w). Therefore Ry(w)=w&1�x(w). Consequently the distribution of y
is a free compound Poisson distribution with the Levy measure equal to the
distribution of x.

Proof. For a free Poisson element s2, R(z)= 1
1&z , so S(w)= 1

1+w . There-
fore Sy(w)= 1

1+w Sx(w) and so :y(w)= w
1+w Sx(w)=/x(w), which implies

Ry(z)=z&1�x(z). K

For a free compound Poisson process given in the standard form seIs,
we will call the process with orthogonal increments eI the generator of the
process (cf. [GSS92]).

To extend the process from [0, 1] to the whole real line we can, once
again, take a countable family of processes e (n)

I with orthogonal increments
on [0, 1] which are freely independent from each other and, thinking of
e(n)

I as acting on [n, n+1], take their sum.
Again we know the distributions of the diagonal measures from Theorem 2,

but can in fact find them explicitly:

Corollary 5. The diagonal measures of a free compound Poisson process
with generator e are free compound Poisson processes with generators ek.

Proof.

:
N

i=1

(sei s)k=s :
N

i=1

e is2eis2 } } } eis

=s :
N

i=1

:
? # Int(k)

.(s2)k&|?| e |B1 |
i (s2)o e |B2 |

i (s2)o } } } (s2)o e |B|?| |
i s,

where B1 , B2 , ..., B |?| are the blocks of ?. By Theorem 3, once again the
only term that survives in the limit N � � is the one for ?=1� , |1� |=1, and
that term is s �N

i=1 ek
i s=s(�N

i=1 ei)
k s=seks. K

5. PRODUCT MEASURES

The key point of the paper [RW97] is that the stochastic measures St?

can be expressed combinatorially through the product measures Pr_ , and
the latter are indeed product vector measures. In the free case the situation
is more complicated.

For a noncrossing partition ?, let i(?) and o(?) be, respectively, the
numbers of the inner and outer classes of ?; in particular, i(?)+o(?)=|?|.
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Here's another description of i(?) and o(?). There is a partial order on the
classes of the partition ?, by the height, i.e. for two classes B{C of ?,
B>C � _i, j # B, k # C : i<k< j. Then i(?) is the number of edges in the
incidence graph of this partial order, and o(?) is the number of maximal
elements under this order.

Proposition 2. For X the free Brownian motion, for a partition ? with
no inner singletons

Pr?(A)=X |[B # ? : |B| =1]| |A| |[B # ? : |B|=2] | 0 |[B # ? : |B|>2] |= `
B # ?

2 |B|(A).

That is, Pr? are indeed product measures.

Proof. The proof will be by induction on the level in the above partial
order on the classes of the partition ?. For the product measure Pr?=
limN � � �(i1 , i2 , ..., ik ) # [1, 2, ..., N] k

�?
X i1

Xi2
} } } X ik

one can sum over the indices
corresponding to the minimal classes, which are precisely the classes that
are intervals, without disturbing the rest of the partition. If any of these
classes contains at least 3 elements, the result is 0, while each two-element
class gives |A|, which is a scalar and can be factored out. In the partition
resulting from factoring out the minimal two-element classes, all the classes
which were at the distance of 1 from the minimum now become minimal.

K

For a partition ? with an inner singleton, Pr?(A)=�_�? St_(A). Each of
such _'s will either contain an inner singleton, or a class of at least 3
elements. In either case St_=0. Thus in this case Pr?=0, and so need not
in general be a product measure.

Proposition 3. Let X be the free Poisson process. Suppose ? is a parti-
tion with the following property: if U, V are inner classes of ? covered by a
class W and such that \u # U, v # V : u<v, then there exists w # W such that
\u # U, v # V : u<w<v. Then

Pr?(A)=Xo(?)(1+|A| ) i(?).

In particular, Pr? in this case are not product measures. Note, however, that
if ? is an interval partition, then i(?)=0 and o(?)=|?|, and so one does
again get a product measure decomposition.
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Proof. Once again, the proof is by induction on the level of the class of
? in the partial order. Since the diagonal measures of the free Poisson
process are equal to the process itself, each minimal (interval) class can be
shrunk to a one-element class. Again, consider a class which used to be at
a distance of 1 from the minimum, and after the above shrinking, covers
only a number of singletons:

:
N

i, j1 , j2 , ..., jk , ...=1

} } } XiXj1
XiXj2

Xi } } } X jk
Xi } } }

= :

_=(B1 , B2 , ..., B|_| )
_ # Int(k+1)

:
N

i, j1 , ..., j|_|&1 , ...=1
i{ j1 , ..., i{ j|_|&1

} } } X |B1 |
i Xj1

X |B2 |
i } } } Xj|_|&1

X |B |_ | |
i } } } .

Even though the free Poisson process is not centered, it is easy to see that
each inner singleton contributes a factor of .(X)=|A|. Thus all the singletons
covered by the i class contribute �_ # Int(k+1) |A| |_| &1=(|A|+1)k. Note
that k is precisely the number of classes covered by the i class, i.e. the
number of edges emanating down from it in the partial order incidence
graph. The result easily follows by induction. K

Now we consider products of free stochastic measures.

Definition 3. For ? # P(k), define

`
�

B # ?

� |B|= lim
N � �

: Xi1
Xi2

} } } Xik
,

where the sum is taken over all collections of indices in [1, 2, ..., N]k such
that

m t
? l O im {i l . (6)

That is, on each of the classes of ? we consider the measure St0� . In
particular, if ? is an interval partition, then the result is the ordered
product of measures corresponding to all the classes.

The following is the analog of Theorem 4 of [RW97]. This is a com-
binatorial form of the general Itô product formula.

Proposition 4. Let ? # P(k) Then

`
�

B # ?
� |B|= :

_ 7 ?=0�
_ # P(k)

St_= :

_ 7 ?=0�
_ # NC(k)

St_ . (7)
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Proof. Any k-tuple of indices determines a partition _ # P(k) by
(m t

_ l ) � (im=i l). Condition (6) restricts _ precisely to those for which
_7 ?=0� , and the union of all collections of indices corresponding to such
_'s is precisely the set given by condition (6). This decomposition of the set
of indices gives the representation (7).

The second equality follows from Theorem 1. K

Corollary 6. For ? # P(k),

`
�

B # ?

� |B|= :
0� �_�?

+P(0� , _) Pr_= :

0� �_�?
_ # NC(k)

+NC(0� , _) Pr_ ,

where +P and +NC are the Mo� bius functions on the lattices of all and of
noncrossing partitions, respectively.

Proof. The proof of Theorem 4 in [RW97] shows that

:
0� �_�?

+(0� , _) Pr_= :

_ 7 ?=0�
_ # P(k)

St_ .

That proof is purely combinatorial, and works for noncommutative
stochastic measures as well as for the commutative ones. Therefore the first
equality follows from Proposition 4 above. Moreover, the proof also works
for the lattice of noncrossing partitions, provided we use the appropriate
Mo� bius function. Therefore the second equality holds as well. K

6. ORTHOGONALITY RELATIONS AND THE EXISTENCE OF
THE LIMITS

6.1. Orthogonality relations. The following Proposition is the analog of
Proposition 9, Theorem 9, and Proposition 10 of [RW97].

Proposition 5. 1. Let ? # NC(n). Then

. \ `
�

B # ?

� |B| += :

_ 7 ?=0�
_ # NC(n)

`
B # _

.(2 |B|).

2. Assume that the process is centered. Then

.(�n�m)={.(22)n=r2(X )n=|A|n,
0,

if m=n
if m{n.
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Proof. The first part is obtained by taking expectations of both sides in
Proposition 4 and applying the multiplicativity property of Corollary 2.
The second part follows from the first part. K

6.2. The existence of the limits. By the results in the previous subsec-
tion, standard Itô isometry arguments show that the limit defining �n exists
in L2. But in fact, we want to show that the limits exist, in norm, for all
stochastic measures.

Without loss of generality, let A=[0, 1). Choose two different partitions
of the interval A: Xi=X[i&1�N, i�N ) , i=1, 2, ..., N, Yj=X[ j&1�M, j�M) , j=1,
2, ..., M. Let Zm=X[m&1�MN, m�MN) , m=1, 2, ..., MN be their common
refinement. Fix a partition ?.

_. \\ :

# [1, 2, ..., N] k
?

(i1 , i2 , ..., ik )

Xi1
Xi2

} } } Xik
& :

# [1, 2, ..., M] k
?

( j1 , j2 , ..., jk)

Yj1
Yj2

} } } Yjk+
n

+&
1�n

=_. \\ :

# [1, 2, ..., N] k
?

(i1 , i2 , ..., ik )
\ :

i1M

s1=(i1&1) M+1

Zs1+

_\ :
i2 M

s2=(i2&1) M+1

Zs2+ } } } \ :
ikM

sk=(ik&1) M+1

Zsk+

& :

# [1, 2, ..., M] k
?

( j1 , j2 , ..., jk )
\ :

j1 N

t1=( j1&1) N+1

Zt1+ } } } \ :
jkN

tk=( jk&1) N+1

Ztk++
n

+&
1�n

.

(8)

This expression can be written as a sum over partitions _ # P(nk) of free
cumulants of X=XA with weights depending on N, M, ?, _, raised to the
1�n th power. While I have not been able to estimate it directly, a trick
similar to the one in Theorem 5.3.4 of [BS98] is applicable. Namely, from
Proposition 3 and Corollary 1 we know that the expressions defining
various stochastic measures do converge to a limit for the free Poisson
process. For that process the expression (8) is the sum with all the free
cumulants equal to 1. Since, as before, in general the cumulants grow no
faster than an exponential, we have a uniform estimate on the expression
(8) for N, M>N0 for a fixed N0 . Therefore the sequence of approximations
to the stochastic measure is a Cauchy sequence, and so converges to a
limit.
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7. THE FREE KAILATH�SEGALL FORMULA

The purpose of this section is to investigate the issues surrounding the
free Kailath�Segall formula, the analog of Theorem 2 of [RW97].

The free Poisson distribution for the value of the parameter t :=.(XA)
=|A|=1 is the image of the standard semicircle measure under the squar-
ing map. Therefore if Tn are the orthogonal polynomials with respect to the
semicircle measure, namely the Chebyshev polynomials of the second kind,
then the orthogonal polynomials with respect to free Poisson (1) measure
are Pn(x)=T2n(- x). In particular from the usual Chebyshev recursion
xTn(x)=Tn+1(x)+Tn&1(x) we get the recursion relations

xPn(x)=Pn+1(x)+2Pn(x)+Pn&1(x).

The orthogonal polynomials for the compensated (i.e. centered) Poisson
(1) measure satisfy the same relations. We will see a generalization of these
relations in Corollary 10.

Denote :n, m=2n�m and ;n, m=St1� n+0� m
. Let t :=.(X ) be the expecta-

tion of the process.

Lemma 3. We have the following recursion relation,

:(n, m)=;(n, m)+ :
m&1

l=0

tm&1&l;(n+1, l ),

for n, m�1, with boundary conditions :(0, n) = ;(0, n) = ;(1, n&1),
:(n, 0)=;(n, 0).

Proof. The boundary conditions follow directly from the definitions.

2n�m= lim
N � �

:
N

j=1

X n
j :

# [1, 2, ..., N]0� m

(i1 , i2 , ..., im)

Xi1
Xi2

} } } Xim

=St1� n+0� m
+ lim

N � �
:
m

j=1

:

# [1, 2, ..., N] m
0� m

(i1 , i2 , ..., im)

X n
ij
Xi1

Xi2
} } } Xim

=St1� n+0� m
+ :

m

j=1

St?j
,

where ?j=[(1, 2, ..., n, n+ j), (n+1), ..., (n+ j&1), (n+ j+1), ..., (n+m)].
By an argument similar to the one in the proof of Proposition 3, each inner
singleton contributes a factor of t, and so St?j

=t j&1 St1� n+1+0� m&j
. K
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Theorem 4 (free Kailath�Segall formula). We have the following
expression for the nth stochastic measure:

�n=X�n&1+ :
n

j=2

(&1) j&1 :
n& j

q=0
\n&q&2

j&2 + tn& j&q2j �q

=X�n&1+ :
n

j=2

(&1) j&1 :
n& j

m=0
\m+ j&2

j&2 + tm2j�n& j&m .

In particular, �n is a polynomial in the diagonal measures 21 , 22 , ..., 2n and t.

Proof. By a repeated use of the Lemma,

;(0, n)=;(1, n&1)=:(1, n&1)& :
n&2

l1=0

tn&2&l1 ;(2, l1)

=:(1, n&1)& :
n&2

l1=0

tn&2&l1 _:(2, l1)& :
l1&1

l2=0

tl1&1&l2;(3, l2)&
=:(1, n&1)& :

n&2

l1=0

tn&2&l1:(2, l1)+ :
n&2

l1=0

:
l1&1

l2=0

tn&3&l2 ;(3, l2)= } } }

=:(1, n&1)+ :
k

j=2

(&1) j&1 :
n&2

l1=0

:
l1&1

l2=0

} } } :
lj&2&1

lj&1=0

tn& j&lj&1 :( j, lj&1)

+(&1)k :
n&2

l1=0

} } } :
lk&1&1

lk=0

tn&k&1&lk ;(k+1, lk). (9)

For k=n&1, using the boundary conditions, the last term in (9) is

(&1)k :
n&2

l1=0

} } } :
lk&1&1

lk=0

tn&(k+1)&lk :(k+1, lk).

Thus, continuing the expression (9),

=:(1, n&1)+ :
n

j=2

(&1) j&1 :
n&2

l1=0

:
l1&1

l2=0

} } } :
lj&2&1

lj&1=0

tn& j&lj&1 :( j, lj&1)

=:(1, n&1)+ :
n

j=1

(&1) j&1

_:
q

|[l1 , ..., l j&1 : q=lj&1< } } } <l1<n&1]| tn& j&q:( j, p)

=:(1, n&1)+ :
n

j=1

(&1) j&1 :
n& j

q=0
\n&q&2

j&2 + tn& j&q:( j, p).

The result follows from the definitions of : and ;. K
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Corollary 7. If the process is centered, i.e. t=0, then

�n= :
n

j=1

(&1) j&1 2 j�n& j

= :
n

k=1

(&1)n&k :

j1+j2+ } } } +jk=n
j1 , j2 , ..., jk�1

2j1
2j2

} } } 2jk
.

Corollary 8. For the free Brownian motion X, for n�2

�n=X�n&1&|A| �n&2

= :
[n�2]

j=0

(&1) j \n& j
j + |A| j Xn&2 j.

These are the Chebyshev polynomials of the second kind.

Corollary 9 (Recursion relation for the free Poisson process). For the
free Poisson process X, for n�2,

X�n=�n+1+(1&t) �n+tX�n&1 .

Proof.

�n=X�n&1+ :
n

j=2

(&1) j&1 :
n& j

q=0
\n&q&2

j&2 + tn& j&qX�q

=X�n&1+ :
n&2

q=0

:
n&q

j=2

(&1) ( j&2)+1 \n&q&2
j&2 + t(n&q&2)&( j&2)X�q

=X�n&1& :
n&2

q=0

(t&1)n&q&2 X�q .

Therefore

(t&1) �n&1=(t&1) X�n&2& :
n&3

q=0

(t&1)n&q&2 X�q

and so

�n=(t&1) �n&1&X�n&2&(t&1) X�n&2+X�n&1

=(X+t&1) �n&1&tX�n&2 . K
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Now we consider the compensated Poisson process. From Corollary 4 it
follows that the diagonal measures of this process are linear functions in X.
Therefore by Corollary 7, the stochastic measures �n are nth degree polyno-
mials in X. By Proposition 5, they are precisely the polynomials orthogonal
with respect to the compensated free Poisson measure. It is natural to call
them free Poisson�Charlier polynomials. Note that these polynomials have
appeared in [HT98].

Corollary 10 (Recursion relation for the free Poisson�Charlier polyno-
mials). Let X be the free Poisson process, and � i be the stochastic measures
for the free compensated Poisson process X&t. Then

X�n=�n+1+(1+t) �n+t�n&1 .

Proof. Since the diagonal measures for the free compensated Poisson
process are 21=X&t, 2 i=X, i�2, by Corollary 7

�n=&t�n&1+ :
n&1

j=0

(&1)n& j&1 X�j .

Therefore

�n+�n&1=&t�n&1&t�n&2+X�n&1 . K

Corollary 11. The free Poisson�Charlier polynomials are

�n=(X&t)n+ :
n&2

i=0

(X&t) i :
[n&i�2]

k=1
\n&i&k&1

k&1 + (&1)n&k&i X k.

Proof. By Corollary 7,

�n= :
n

k=1

(&1)n&k :

j1+j2+ } } } +jk=n
j1 , j2 , ..., jk�1

2j1
2j2

} } } 2jk

= :
n

i=0

(X&t) i :
k

(&1)n&k&i Xk :

j1+j2+ } } } +jk=n&i
j1 , j2 , ..., jk�2

1

=(X&t)n+ :
n&2

i=0

(X&t) i :
[n&i�2]

k=1
\n&i&k&1

k&1 + (&1)n&k&i Xk. K
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Corollary 12. For a free compound Poisson process X with generator
e, X=ses,

�n=X�n&1& :
n&2

q=0

s(t&e)n&q&2 e2s�q .

Proof. By Corollary 5, the diagonal measures of X are 2i=se is.
Therefore by the Theorem

�n=X�n&1+ :
n

j=2

:
n& j

q=0

(&1) j&1 \n&q&2
j&2 + t(n& j&q)se js�q

=X�n&1+ :
n&2

q=0

:
n&q

j=2

(&1) j&1 \n&q&2
j&2 + t (n&q&2)&( j&2)se j&2e2s�q

=X�n&1& :
n&2

q=0

s(t&e)n&q&2 e2s�q . K

8. INTEGRATION OF FUNCTIONS

One of the important points in the proof of the free Itô formula of
[BS98] is the observation that (in the language of this paper) for X the
free Brownian motion, for Z centered limN � � �N

i=1 Xi ZXi=0. In fact this
is true more generally.

Theorem 5. Let Z be centered and freely independent from the process
[XI]. Then

lim
N � �

:
N

i=1

X iZXi=0.

Proof. First, let X be a free Poisson process, X=sps. Then Xi ZXi=
s( pi (sZs) pi) s). The joint distribution of Z and sps is determined by the
condition that Z is freely independent from sps. Thus we may assume that
in fact Z is freely independent from p. In that case sZs is freely independent
from pi , and .(sZs)=.(s2) .(Z)=0. Then the result follows from
Theorem 3.
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In general,

. \\ :
N

i=1

XiZX i+
n

+
= :

N

i1 , i2 , ..., in=1

.(Xi1
ZX i1

Xi2
ZX i2

} } } Xin
ZXin

)

= :
? # P(n)

:

# [1, 2, ..., N] n
?

(i1 , i2 , ..., in )

.(X i1
ZXi1

Xi2
ZXi2

} } } Xin
ZXin

)

= :
? # P(n)

:

# [1, 2, ..., N] n
?

(i1 , i2 , ..., in )

:
_ # NC(n)

:

{�? 2

{ # NC(2n)
_ _ { # NC(3n)

R_(Z, Z, ...Z)

_R{(Xi1
, Xi1

, Xi2
, X i2

, ..., Xin
, Xin

)

= :
? # P(n)

:

# [1, 2, ..., N] n
?

(i1 , i2 , ..., in )

:
_ # NC(n)

:

{�? 2

{ # NC(2n)
_ _ { # NC(3n)

R_(Z) N&|{| R{(X)

= :
? # P(n)

(N) |?| :
_ # NC(n)

:

{�? 2

{ # NC(2n)
_ _ { # NC(3n)

R_(Z, ..., Z) N &|{| R{(X, X, ..., X ).

(10)

Here in the above equation (10), for partitions _ # NC(n), { # NC(2n), in
the partition _ _ { we let _ act on [2, 5, ..., 3n&1] while { acts on [1, 3,
4, 5, ..., 3n&2, 3n].

This sum can probably be estimated directly using the properties of
Stirling numbers, but instead we will use the method of Section 6.2: the
result follows from the fact that the cumulants grow no faster than an
exponential, and the fact that the limit exists for the free Poisson process.

K

Corollary 13. In general, for Z freely independent from the process
[XI]

lim
N � �

:
N

i=1

X iZXi=.(Z)(X, X) ,

where (X, X)=22 is the quadratic variation of the process.
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Proposition 6. For Z1 , Z2 , ..., Zk centered and freely independent from
the process [XI],

lim
N � �

:
N

i=1

X m1
i Z1X m2

i Z2 } } } X mk
i Zk X mk+1

i =0.

Proof. As in Theorem 5,

. \\ :
N

i=1

X m1
i Z1X m2

i } } } X mk
i ZkX mk+1

i +
n

+
= :

N

i1 , i2 , ..., in=1

.(X m1
ii

Z1X m2
i1

} } } X mk
i1

Zk X mk+1
i1

} } } X mk
in

ZkX mk+1
in

)

= :
? # P(n)

(N) |?| :
_ # NC(nk)

:

{�? � m i

{ # NC (n �i=1
k+1 mi )

_ _ { # NC(n(k+� i=1
k+1 mi ))

R_(Z1 , ..., Zk , Z1 , ..., Zk)

_N&|{| R{(X ).

Here in _ _ {, _ acts on the subset [m1+1, m1+m2+2, ..., �k
i=1 mi+k,

�k+1
i=1 mi+k+m1+1, ..., (n&1) �k+1

i=1 +(n&1) k+�k
i=1 m i+k] while {

acts on its complement.
The rest of the proof proceeds as in Theorem 5. K

Corollary 14. In general, for Z1 , Z2 , ..., Zk freely independent from
the process [XI]

lim
N � �

:
N

i=1

X m1
i Z1 X m2

i Z2 } } } X mk
i Zk X mk+1

i

=.(Z1) .(Z2) } } } .(Zk) lim
N � �

:
N

i=1

X m1+m2+ } } } +mk+1
i

=.(Z1) .(Z2) } } } .(Zk) 2� j=1
k+1 mj

.

These properties should allow us to consider integration with respect to
free stochastic processes. We will return to this subject elsewhere.
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