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Abstract

A simply connected topological space X has homotopy Lie algebra π∗(Ω X) ⊗ Q. Following Quillen, there is a connected
differential graded free Lie algebra (dgL) called a Lie model, which determines the rational homotopy type of X , and whose
homology is isomorphic to the homotopy Lie algebra. We show that such a Lie model can be replaced with one that has a special
property that we call being separated. The homology of a separated dgL has a particular form which lends itself to calculations.
c© 2007 Elsevier B.V. All rights reserved.

MSC: Primary: 55P62; secondary: 17B55

1. Introduction

All of our topological spaces are assumed to be simply connected, and have finite rational homology in each
dimension. For such a space X , there exists a differential graded Lie algebra (LV, d), where LV denotes the free
graded Lie algebra on the rational vector space V , called a Lie model, which determines the rational homotopy type
of X , and whose homology is isomorphic to π∗(Ω X) ⊗ Q, the (rational) homotopy Lie algebra of X . While this
description is pleasing in principle, it is less satisfying when explicit calculations are desired. Here, we want to put a
certain structure on a Lie model that will prove conducive to calculation.

Assume that our Lie algebras are finite in each dimension and concentrated in positive dimension. Our assumption
on our spaces implies that their Lie models satisfy this assumption. We are particularly interested in dgLs where V
can be bigraded as follows: V∗ = ⊕

N
i=1 Vi,∗, such that

dVi,∗ ⊂ L

(
i−1⊕
j=1

V j,∗

)
. (1.1)

We will call the first gradation degree and the second, usual gradation dimension.
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Our separated condition will say that the attaching map from degree i + 1 has no effect on the homology coming
from degree ≤ i − 1. We need to introduce some notation to make this precise.

Given a Lie algebra L = (LV, d) as above, let

L i = (LV≤i,∗, d). (1.2)

Let Z L i and BL i denote the cycles and boundaries in L i . There is an induced map

d̃i : Vi,∗
d
→ Z(L i−1) � H L i−1. (1.3)

The inclusion L i ↪→ L i+1 induces inclusions BL i ↪→ BL i+1 and Z L i ↪→ Z L i+1. Thus there is an induced map
H L i → H L i+1.

We introduce some notation for two Lie subalgebras of H L i to which we will often refer. Let H L−

i be the Lie
subalgebra of H L i given by im(H L i−1 → H L i ), and let H L+

i be the Lie ideal generated by im(d̃i+1 : Vi+1,∗ →

H L i ).

Definition 1.1. Let L be a dgL satisfying (1.1). Say that L is separated if for all i ,

H L+

i ∩ H L−

i = 0.

Let (LW, d) and (LW ′, d ′) be two dgLs satisfying (1.1). Say that (LW ′, d ′) is a bigraded extension of (LW, d) if
W ′

= W ⊕ W̄ as bigraded R-modules and d ′
|W = d .

Theorem 1.2. Let L be a dgL satisfying (1.1). Then L has a bigraded extension L ′ such that L ′ is separated and the
inclusion L ↪→ L ′ induces an isomorphism on homology.

Corollary 1.3. Let X be a simply connected space with finite rational homology in each dimension and finite
(rational) LS category. Then X has a separated Lie model.

Define

Li = (H L i−1 q LVi,∗, d̃i ), (1.4)

where L q L ′ denotes the free product of Lie algebras (i.e., their coproduct), d̃i |H L i−1 = 0 and d̃i |Vi,∗ is given in (1.3).

Theorem 1.4. Let L = (LV, d) be a separated dgL. Let

L̂ i = L((HLi )1,∗)/[d̃i+1Vi+1,∗].

Then H L ∼=
⊕

i L̂ i as Q-modules. In particular, if L is a Lie model for a space X, then its homotopy Lie algebra has
the form π∗(Ω X)⊗ Q ∼= ⊕i L̂ i as rational vector spaces.

To state a more precise version of this theorem, which elucidates some of the Lie algebra structure, we need to
define some more notation.

Given an increasing filtration · · · ⊂ Fi−1 M ⊂ Fi M ⊂ Fi+1 M ⊂ · · · of an R-module M , there is an associated
graded R-module gr(M) =

⊕
i gri M where gri M = Fi M/Fi−1 M . If M has the structure of an algebra or Lie

algebra, then there is an induced algebra or Lie algebra structure on gr(M). If M has a separate grading, then gr(M)
is bigraded. If M has a differential d and d Fi M ⊂ Fi−1 M then the filtration is called a differential filtration and there
is an induced filtration on H(M, d).

Recall the definition of L i and d̃i+1 from (1.2) and (1.3). There is an increasing differential filtration {Fk L i }

on L i = (L(V≤i ), d) ∼= (LV<i q LVi , d) given by F−1L i = 0, F0L i = LV<i , and for k ≥ 0,
Fk+1L i = Fk L i + [Fk L i , Vi ]. This induces a filtration on H L i and H L i/[d̃Vi+1], where we write L/[V ] to denote
the quotient of L by the Lie ideal generated by V ⊂ L . When we write gr(H L i ) and gr(H L i/[d̃Vi+1]) we will always
be using this filtration.

There is a short exact sequence 0 → I
i

→ L
p

→ A → 0 of Lie algebras that splits (that is, there is a Lie algebra
map j : A → L such that pj = idA) if and only if L is the semi-direct product of I and A, written L ∼= A o I . The
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semi-direct product is isomorphic as modules to A ⊕ I and the product of elements in A and I is given by the action
of A on I . We will show the following.

Theorem 1.5. Let L = (LV, d) be a free dgL over Q which is separated. Let L i , d̃i , Li , H L−

i and H L+

i be as in
(1.2)–(1.4) and just before Definition 1.1. Then for all i , there are Lie algebra isomorphisms

gr(H L i ) ∼= (HLi )0 o L((HLi )1), gr(H L−

i+1)
∼= H L−

i o L̂ i ,

(HLi )0
∼= H L i−1/[d̃i Vi ] = H L i−1/H L+

i−1
∼= H L−

i ,

where L̂ i = L((HLi )1)/[d̃i+1Vi+1] = L((HLi )1)/H L+

i , and H L−

i is a Lie subalgebra of H L. Furthermore, if we
can choose a preimage Wi ⊂ H L i of (HLi )1 such that LWi ⊂ H L i is a Lie ideal, then H L i ∼= H L−

i o LWi .

Let ∗ = X0 ⊂ X1 ⊂ · · · ⊂ Xn−1 ⊂ Xn = X be a spherical cone decomposition (see Section 2) corresponding
to a separated Lie model of X . In particular X = Xn−1 ∪ f (

∨
j Dn j +1) for some map f from a wedge of spheres.

The separated condition implies that f is free [3]. Let L X i denote the homotopy Lie algebra of X i . Let i denote the
inclusion Xn−1 ↪→ X . Then there is an induced map i# : L Xn−1 → L X . In general, this map is neither injective nor
surjective [8]. Let R(L X ) denote the radical of L X . That is, the sum of the solvable ideals of L X [5].

Corollary 1.6. Either,

(a) i# : L Xn−1 → L X is surjective,
(b) dim(HLn)1 = 1, or
(c) R(L X ) ⊂ im(i#) and L X contains a free Lie algebra on two generators.

Remark 1.7. (a) An equivalent condition to (a) is the condition that f is inert [8].
(b) The only example of (b) seems to be CPn (see Example 1.8).
(c) It is known that dim R(L X )even ≤ n [5]. The Avramov–Félix conjecture [2,6] states that either L X is finite

dimensional, or L X contains a free Lie algebra on two generators.

Proof. Applying Theorem 1.5, gr(L X ) ∼= im(i#)o L((HLn)1). The result follows. �

Example 1.8. We show how the well-known homotopy Lie algebras of CPn and CP∞ can be easily calculated using
separated Lie models.

CP∞ has the Lie model L = (L〈v1, v2, v3, . . .〉, d) where vk has dimension 2k − 1 and dvk =
1
2

∑
i+ j=k[vi , v j ].

The Lie subalgebra L i = (L〈v1, . . . , vn〉, d) is a Lie model for CPn . Then L1 = (L〈v1〉, 0) = L1 and
L2 = (L〈v1, v2〉, d) = L2 where dv2 =

1
2 [v1, v1]. We remark that for any dgL, L2 is always separated, since

H L−

1 = 0 and with respect to L2 (not L), H L+

2 = 0. Now (HL2)0,∗ = L〈v1〉/[v1, v1] ∼= L̂1 and (HL2)1,∗
∼= Q{u2}

where u2 = [v1, v2]. By Theorem 1.5, the Lie algebra structure of H L2 is determined by the action of (HL2)0
on L((HL2)1,∗) in HL2. Since d[v2, v2] = [v1, [v1, v2]] in L2, [v1, u2] = 0 in HL2. So as Lie algebras,
H L2 ∼= Lab〈v1, u2〉, where Lab denotes the free abelian Lie algebra.

Next we will show by induction that Ln is separated, as Lie algebras, H Ln ∼= Lab〈v1, un〉, where un has dimension
2n, and H L−

n = Lab〈v1〉. By definition Ln
∼= (Lab〈v1, un−1〉 q L〈vn〉, d̃n) where d̃nv1 = d̃nun−1 = 0 and

d̃nvn = un−1. So H L−

n−1 ∩ H L+

n−1 = Lab〈v1〉 ∩ L〈un−1〉 = 0. Since (HLn)0
∼= Lab〈v1〉, (HL)1 ∼= Q{[v1, vn]} and

[v1, [v1, vn]] = 0 by the Jacobi identity, the claim follows.
Finally, this implies that H L ∼= Lab〈v1〉.

Example 1.9. In the next example we show that the Lie model obtained from the minimal spherical cone
decomposition of a product of spheres is separated, and use this to calculate the homotopy Lie algebra for the wedges
of spheres of various “thickness”.

Let X =
∏r

i=1 Sni , where ni ≥ 2. Let N = dim X =
∑r

i=1 ni . Let Xk denote the subcomplex of X consisting of
those points in X such that at least r − k of the coordinates are the basepoint. In particular, X1 is the wedge, and Xr−1
is the fat wedge. Also, Xk+1 can be obtained from Xk by attaching a wedge of spheres. Then,

∗ = X0 ⊂ X1 ⊂ · · · ⊂ Xr = X (1.5)
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is a spherical cone decomposition for X . (It is minimal, since the cone length of X is bounded below by the rational
LS category of X , which is r .) In addition, Xk has a Lie model Lk =

(
L
〈
⊕

k
i=1 Vi

〉
, d
)
, where Vi = Q{αi, j } with

the αi, j in one-to-one correspondence with the i-fold products of the spheres Sn` and the dimension of αi, j , |αi, j |, is

one less than the dimension of the corresponding product, and dVi ⊂ L
〈
⊕

i−1
j=1 V j

〉
. Let L Xk denote the homotopy Lie

algebra of Xk . Then H Lk ∼= L Xk and HU Lk ∼= U H Lk ∼= U L Xk where U denotes the universal enveloping algebra
functor.

For a non-negatively graded Q-vector space M , let M(z) be the formal power series
∑

i≥0(dim Mi )zi . M(z) is
called the Hilbert series for M , and H∗(Ω X; Q)(z) = (U L X )(z) is called the Poincaré series for Ω X . Let M(z)−1

denote the power series 1
M(z) . Define Ai (z) by

r∏
i=1

(1 − zni −1x) =

r∑
i=0

Ai (z)x
i .

Let A(z) =
∏r

i=1(1 − zni −1) =
∑r

i=0 Ai (z), and finally define Bk(z) = (−z)k−1∑r
i=k+1 Ai (z).

Theorem 1.10. As Lie algebras, L X1
∼= L〈x1, . . . , xr 〉, where |xi | = ni − 1, L X ∼= ⊕

r
i=1 L〈xi 〉 and for r ≥ 3,

L Xr−1
∼= L X q L〈u〉 where |u| = N − 2. Furthermore, for k ≥ 2, U L Xk (z)

−1
= A(z)− Bk(z).

Proof. The first two Lie algebra isomorphisms in the statement of the theorem follow directly from the well-known
formulas for the homotopy Lie algebra of a wedge and a product.

The remainder of the statement of the theorem is obtained inductively. We assume that k ≥ 2. Notice that the
inclusion X1 ↪→ X induces a surjection L X1 � L X . So, L X ∼= H L−

2 ↪→ H L−

k . Assume that Lk is separated, which
is trivial for k = 2. Then using Theorem 1.5 one can show that in fact, H L−

k
∼= L X . Thus H L−

k ↪→ L X and hence
H L−

k ∩ H L+

k = 0. Therefore Lk+1 is separated. Thus, the minimal cone decomposition (1.5) yields a separated Lie
model for X .

For k ≥ 2, the Poincaré series for Ω Xk is obtained as follows. By Theorem 4.2 and [3, Lemma 3.8 and Theorem
3.5] we can apply Anick’s formula [1, Theorem 3.7],

(U L Xk )(z)
−1

= (U (HLk)0)(z)
−1

− [Vk+1(z)+ z[(U L Xk−1)(z)
−1

− (U (HLk)0)(z)
−1

]]

= A(z)+ (−z)k−1 Ak(z)− z[(U L Xk−1)(z)
−1

− A(z)],

where the second equality is by Theorem 1.5 and since (U L X )(z)−1
= A(z). By induction, this is equal to

A(z)− Bk(z).
The Lie algebra isomorphism for L Xr−1 follows since the cell attachment from Xr−2 to Xr−1 is semi-inert [3]. �

We remark that the fact that the top-cell attachment of X is inert [8] is witnessed by Lr = (L X q L〈u, v〉, d), where
d|L X = 0 and dv = u.

From Theorem 1.10 it is easy to check that a fat wedge of odd-dimensional spheres has the maximum possible gap
in the rational homotopy groups [7, Theorem 33.3] if and only if all the spheres have the same dimension.

Example 1.11. For the final example, we calculate the homotopy Lie algebra of a connected sum of products of
spheres. For example, a Lie group M is rationally equivalent to a product of odd spheres (and so L M is a free abelian
Lie algebra).

For s ≥ 2 and 1 ≤ i ≤ s, let Mi be simply connected, of dimension N and rationally equivalent to a product of at
least three spheres (e.g. SU (n), n ≥ 4). Let X = #s

i=1 Mi . Applying the previous example gives:

Theorem 1.12. As Lie algebras,

L X ∼=

s∐
i=1

L Mi q L〈u1, . . . us〉/(u1 + · · · + us),

where |ui | = N − 2.
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Proof. By the previous example Mi has a separated Lie model of the form (L(i) q L〈vi 〉, d) such that
Lri

= (L Mi , 0) q (L〈ui , vi 〉, d̃) with d̃vi = ui . Thus X has a separated Lie model (
∐s

i=1 L(i) q L〈v〉, d) and

Lr = (
∐s

i=1 L Mi , 0)q (L〈u1, . . . us, v〉, d̃v = u1 + · · · + us), where r = maxi ri . �

In particular, L X contains a free Lie algebra on 2s − 1 generators. So X satisfies the Avramov–Félix conjecture.
In the Appendix we state and prove a generalization of the Schreier property of free Lie algebras: that any Lie

subalgebra is also free, which may be of independent interest. This generalization is used in the proof of Theorem 1.5.

2. Background

In their landmark papers [12,14], Quillen and Sullivan construct algebraic models for rational homotopy theory.
Sullivan constructs a contravariant functor AP L which serves as a fundamental bridge between topology and algebra.
For a space X , AP L(X) is a commutative cochain algebra which has the property that H(AP L(X)) ∼= H∗(X; Q) as
algebras. Quillen gives a construction for a differential graded Lie algebra (dgL) (LV, d), where LV denotes the free
Lie algebra on a rational vector space V , one of whose properties is that H(LV, d) ∼= π∗(Ω X)⊗ Q. We will follow
convention and call this a free dgL even though it is almost always not a free object in the category of differential
graded Lie algebras. For an excellent reference on these models and their applications, the reader is referred to
[7, Parts II and IV].

A quasi-isomorphism is a morphism which induces an isomorphism in homology. A Lie model for a space X

is a differential graded Lie algebra (L , d) equipped with a quasi-isomorphism m : C∗(L , d)
'
→ AP L(X). Here,

C∗(L , d) = Hom(C∗(L , d),Q), is the contravariant functor induced by Quillen’s functor C∗. C∗(L , d) is called
the Cartan–Eilenberg–Chevalley construction on (L , d). Quillen’s free dgL above is a Lie model. Given a Lie

model (L , d) for a space X and a quasi-isomorphism (L , d)
'
→(L ′, d ′), their is an induced quasi-isomorphism

C∗(L ′, d ′)
'
→ C∗(L , d)

'
→ AP L(X). In particular, a quasi-isomorphic bigraded extension of a Lie model for X is

also a Lie model for X .
It is the Samelson product on π∗(Ω X), which corresponds the Whitehead product under the canonical isomorphism

π∗(Ω X) ∼= π∗+1(X), which gives it the structure of a graded Lie algebra, which we call the (rational) homotopy Lie
algebra.

A rational homotopy equivalence is a continuous map f : X → Y such that π∗( f ) ⊗ Q is an isomorphism.
Two spaces X and Y are said to have the same rational homotopy type, written X 'Q Y , if they are connected by
a sequence of rational homotopy equivalences (in either direction). The Lusternik–Schnirelmann (LS) category of a
space X , denoted cat(X), is the smallest integer n such that X is the union of n + 1 open subsets, each contractible
in X . The rational LS category of a space X , denoted catQ(X), is the smallest integer n such that there exists a space
Y with cat(Y ) = n and X 'Q Y . So catQ(X) ≤ cat(X). A space Xn is said to be a spherical n-cone if there exists a
sequence of spaces

∗ = X0 ⊂ X1 ⊂ · · · ⊂ Xn (2.1)

such that for k = 0 . . . n − 1, Xk+1 = Xk ∪ fk+1

(∨
j D

n j +1
j,k

)
, where Dn denotes the n-dimensional disk and

fk+1 :
∨

j S
n j
j,k → Xk is an attaching map. A space X is said to have rational cone length n, written clQ(X) = n, if n is

the smallest number such that X 'Q Xn for some spherical n-cone Xn . (This is equivalent to the more usual definition
of rational cone length, see [7, Proposition 28.3], for example.) It is a theorem of Cornea [4] that if catQ(X) = n then
clQ(X) = n or n + 1. A CW complex is said to have finite type if it has finitely many cells in each dimension.

A free dgL (LV, d) is said to have length N if we can decompose V∗ = ⊕
N
i=1 Vi,∗ such that dVi,∗ ⊂ L(⊕i−1

j=1 V j,∗),
where dV1,∗ = 0. Note that V is now bigraded, though (LV, d) is typically not a bigraded dgL. We will call the
first gradation degree and the second, usual gradation dimension. For any free dgL (LV, d) of length N there is
a spherical N -cone X such that (LV, d) is a Quillen model for X . We call (LV, d) the cellular Lie model of X .
Furthermore, any spherical N -cone has a cellular Lie model of length N . We outline the construction as follows. For
each n ≥ 1 let the (n + 1)-cells Dn+1

α of X correspond to a basis {vα} of Vn . Let Xn denote the n-skeleton of X . By
induction, (LV<n, d) is a cellular Lie model of Xn . The attaching maps fα : Sn

→ Xn are given by representatives of
[dvα] ∈ Hn−1(LV<n, d) ∼= πn−1(Ω Xn) ∼= πn(Xn).
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A dgL is said to be of finite type if it is finite in each dimension. It is said to be connected if it is concentrated in
strictly positive dimensions. Given two (Lie) algebras L and L ′, let L q L ′ denote their free product (i.e., coproduct).
We remark that LV q LV ′ ∼= L(V ⊕ V ′).

3. Replacing dgLs with separated dgLs

To prove Theorem 1.2, we will need the following lemmas. Let k be a field of characteristic 0.

Lemma 3.1. Let W be a free k-module and let α, β ∈ (LW, d) with dβ = α. Let W ′
= W ⊕ k{a, b} where |a| = |β|

and |b| = |β|+1. Define (LW ′, d ′) by letting d ′ be an extension of d determined by taking d ′a = α and d ′b = a −β.
Then the inclusion (LW, d) ↪→ (LW ′, d ′) is a quasi-isomorphism.

Proof. Consider the following commutative diagram.

(LW, d)
φ //

ψ

((PPPPPPPPPPPP (L(W ⊕ k{a, b}), d ′)

(L(W ⊕ k{â, b̂}), d̂)

θ

55jjjjjjjjjjjjjjj

where d̂b̂ = â, φ and ψ are injections and θ is defined on generators as follows: θ |W = idW , θ â = a −β, and θ b̂ = b.
It is easy to check that θ is a chain map and a dgL isomorphism. Furthermore,

(L(W ⊕ k{â, b̂}), d̂) ∼= (LW, d)q (L < â, b̂ >, d̂) ' (LW, d).

Thus ψ is a quasi-isomorphism. It follows that φ is one as well. �

Corollary 3.2. Let L = (LW, d) with {α j , β j } j∈J ⊂ LW where dα j = 0 and dβ j = α j . Taking W̄ = k{a j , b j } j∈J
with |a j | = |β j | and |b j | = |β j | + 1, let L ′

= L(W ⊕ W̄ , d ′) where d ′
|W = d, d ′a j = α j , and d ′b j = a j − β j . Then

L ′
' L.

Given an k-module M , let Z M , B M denote the k-submodules of cycles and boundaries.

Lemma 3.3. Let L = (LW, d) and let V = {v j } j∈J ⊂ H Ln with v j 6= 0. For each v j choose a representative cycle
v̂ j ∈ Z L. Let L ′

= (LW ′, d ′) where W ′
= W ⊕ k{a j , b j } j∈J , d ′

|W = d, da j = v̂ j and b j is in dimension n + 2.
Then H≤n L ′ ∼= H≤n L/V .

Proof. Since Z≤n L ′
= Z≤n L and B≤n L ′ ∼= B≤n L ⊕ k{da j } j∈J , H≤n L ′ ∼= H≤n L/V . �

Lemma 3.4. Given k-modules C ⊂ A ⊂ B and D ⊂ B, let p : B → B/C denote the quotient map. If D ∩ A ⊆ C
then pD ∩ p A = 0.

Proof. Let x ∈ pD ∩ p A. Then there are y ∈ D, and y′
∈ A such that py = py′

= x . Let z = y − y′. Since pz = 0,
z ∈ C ⊂ A. Thus y = y′

+ z ∈ A ∩ D ⊆ C . Therefore x = py = 0. �

The proof of Theorem 1.2 will rely on a two-step inductive procedure given in Proposition 3.8. To help with the
book-keeping, we introduce the following definitions. We will use the notation H L+

i and H L−

i defined just before
Definition 1.1.

Definition 3.5. Let (LW, d) be a dgL satisfying (1.1). Say that (LW, d) is k-separated if for all i < k, H L+

i ∩H L−

i =

0. Say (LW, d) is (k, n)-separated if it is k-separated and H<n L+

k ∩ H<n L−

k = 0.

Let δi, j = 1 if i = j and let it be 0 otherwise. Let s denote the suspension homomorphism. That is, (s M)k = Mk−1.

Lemma 3.6. Let L = (LW, d) be a dgL of length N that is (k, n)-separated. Let V be the component of H L+

k ∩ H L−

k
in dimension n.
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Then there exists a bigraded extension L̂ = (LŴ , d̂) ⊃ L of length N + δk+2,N+1 with Ŵi = Wi for i 6= k, k + 2,
Ŵk = Wk ⊕ W̄ , Ŵk+2 = Wk+2 ⊕ sW̄ , where W̄ is in dimension n + 1, such that L ′

' L. Furthermore
H≤n L̂k ∼= H≤n Lk/V , and

H≤n L̂+

k ∩ H≤n L̂−

k = 0. (3.1)

Proof. Let {α j } j∈J be a basis (as an k-module) for V . Since α j ∈ H L−

k , α j has a preimage α′

j ∈ H Lk−1. Let α′′

j be

a representative cycle in Lk−1 for α′

j . Since α j ∈ H L+

k , there is a β j ∈ Lk+1 such that dβ j = α′′

j . Let {a j , b j } j∈J be

pairs of elements of bidegree (k, n + 1) and (k + 2, n + 2) respectively. Define L̂ = (LŴ , d̂) ⊃ L by letting Ŵi = Wi
for i 6= k, k +2, Ŵk = Wk ⊕k{a j } and Ŵk+2 = Wk+2 ⊕k{b j }. Extend d to d̂ by letting da j = α′′

j and db j = a j −β j .

Note that L̂ has length N + δk+2,N+1. By Corollary 3.2, L̂ ' L .
By Lemma 3.3,

(H≤n L̂k) ∼= (H≤n Lk)/V . (3.2)

In other words, in dimensions ≤ n the map from H Lk to H L̂k is just the quotient by V . Thus, H≤n L̂+

k
∼= H≤n L+

k /V ,
and H≤n L̂−

k
∼= H≤n L−

k /V . Applying Lemma 3.4 to V ⊂ H≤n L−

k ⊂ H≤n Lk and H≤n L+

k ⊂ H≤n Lk , one gets that
H≤n L+

k /V ∩ H≤n L−

k /V = 0. �

Definition 3.7. Say that a bigraded k-module M is in the (k, n)-region if W∗,≤n = W≥k+3,∗ = Wk+1,n+1 =

Wk+2,n+1 = 0. Let L = (LW, d) be a free dgL. Say that L ′
= (LW ′, d ′) is a (k, n)-extension of L if W ′

= W ⊕ W̄
as bigraded modules, where W̄ is in the (k, n)-region, and d ′

|W = d.

Proposition 3.8. Let L = (LW, d) of length N that is (k, n)-separated. Let V be the component of H L+

k ∩ H L−

k in
dimension n.

(a) Then there is an (k, n)-extension of L, L ′
= (LW ′, d ′) of length N + δk+2,N+1 which is (k, n + 1)-separated,

such that L ′
' L. Furthermore H≤n L ′

k
∼= H≤n Lk/V .

(b) In addition there an (k, n)-extension of L, L ′′
= (LW ′′, d ′′) of length N + δk+2,N+1 which is (k + 1)-

separated, such that L ′′
' L. Furthermore H≤n L ′′

k
∼= H≤n Lk/V , and if H≤n L+

k+1 ∩ H≤n L−

k+1 = 0 then

H≤n L ′′+

k+1 ∩ H≤n L ′′−

k+1 = 0.

Remark 3.9. Recall that d(Wk+1) ⊂ L(W≤k) and that H L+

k is the ideal generated by the images of Wk+1 by the
induced map Wk+1 → H Lk . All of the elements in this ideal have preimages in L(W≤k). V consists of those
dimension n elements in this ideal which have preimages in lower filtration.

Proof. We prove the proposition by induction on k. The statement of the proposition is trivial if k = 0. We will
assume the statement of the proposition is true for k − 1.

Let L , V be as in the statement of the proposition. By Lemma 3.6, there exists L̂ = (LŴ , d̂) ⊃ L of length
N + δk+2,N+1 with Ŵi = Wi for i 6= k, k + 2, Ŵk = Wk ⊕ W̄ , Ŵk+2 = Wk+2 ⊕ sW̄ , where W̄ is in dimension n + 1,
such that L ′

' L . Furthermore H≤n L̂k ∼= H≤n Lk/V , and

H≤n L̂+

k ∩ H≤n L̂−

k = 0. (3.3)

Since L̂k−1 = Lk−1 and L is k-separated, L̂ is (at least) (k − 1)-separated. Also H L̂k−2 = H Lk−2 and
H L̂k−1 = H Lk−1.

Let L̂ = H L̂+

k−1 ∩ H L̂−

k−1. Since L is k-separated, this equals [d̂ W̄ ] ∩ H L−

k−1. Since W̄ is n-connected, L̂ is
(n − 1)-connected, but it is not necessarily n-connected. In the non-trivial case, there are elements of V which not
only have preimages in filtration k − 1 but also have preimages in filtration k − 2. Let V̂ = L̂n .

By induction there exists a (k − 1, n)-extension L ′
= (LV ′, d ′) ⊃ L̂ of length N + δk+2,N+1 that is k-separated

such that L ′
' L̂ , and since H≤n L̂+

k ∩ H≤n L̂−

k = 0, H≤n L ′+

k ∩ H≤n L ′−

k = 0. So L ′ is a (k, n)-extension of L such
that L ′

' L . Furthermore H≤n L ′

k+1
∼= H≤n L̂k+1/V̂ = H≤n Lk−1/V̂ . This proves part (a) of the statement.
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To prove part (b) of the statement we simply iterate part (a). By iterating (a) we get a sequence of dgLs

L = L(0) ⊂ L(1) ⊂ · · · ⊂ L(i) ⊂ L(i+1)
⊂ · · ·

where L(i) is (k, n + i)-separated, L(i+1) is a (k, n + i)-extension of L(i), and L(i+1)
' L(i). Furthermore,

H≤n L(i)k
∼= H≤n Lk/V , and if H≤n L+

k+1 ∩ H≤n L−

k+1 = 0 then H≤n L(i)
+

k+1 ∩ H≤n L(i)
−

k+1 = 0. Let L ′′
= ∪i L(i).

Then L ′′ is a (k + 1)-separated (k, n)-extension of L and L ′′
' L . Furthermore, H≤n L(i)k

∼= H≤n Lk/V , and if
H≤n L+

k+1 ∩ H≤n L−

k+1 = 0 then H≤n L ′′+

k+1 ∩ H≤n L ′′−

k+1 = 0. �

Proof of Theorem 1.2. Since any dgL is 1-separated, Theorem 1.2 follows by applying Proposition 3.8, N times. �

4. Properties of separated dgLs

In this section we will use Theorems 1.2 and A.1 to prove Theorem 1.5. We will defer to the Appendix the proof
of Theorem A.1, which is a generalization the well-known result that a Lie subalgebra of a free Lie algebra is also a
free Lie algebra. We will use (1.2)–(1.4), and the notation H L+

i and H L−

i defined just before Definition 1.1.

Definition 4.1. Let (LW, d) be a free dgL over a field. Say that (LW, d) is strongly free if for all i , H L+

i ⊂ L Mi is a
free Lie subalgebra.

Theorem 4.2. Let L be a free dgL over Q which is separated. Then L is strongly free and for all i , there are Lie
algebra isomorphisms

gr(H L i ) ∼= (HLi )0 o L((HLi )1), and (HLi )0
∼= H L i−1/[d̃Wi ] ∼= H L−

i .

We will prove Theorem 4.2 by induction. A main part of the induction will use the following theorem, which is a
special case of the main algebraic result from [3]. Note that U denotes the universal enveloping algebra functor.

Theorem 4.3 ([3, Theorem 3.12]). Over the field Q, let L ′
= (L q LV1, d), where d L ⊂ L, dV1 ⊂ L and

HU L ∼= U L0, such that there is an induced map d ′
: V1 → L0. Let L = (L0 q LV1, d ′). If [d ′V1] ⊂ L0 is a

free Lie algebra, then as algebras

gr(HU L ′) ∼= U HL, and HL ∼= (HL)0 o L(HL)1 and (HL)0 ∼= L0/[d
′V1]

as Lie algebras.

The associated graded structure on HU L ′ is that induced from the filtration on L ′ given by F−1L ′
= 0, F0L ′

= L
and Fi+1L ′

= Fi L ′
+ [V1, Fi L ′

].

Proof of Theorem 4.2. Let L = (LW, d) be a free dgL over Q which is separated. Recall that d̃i : Wi → H L i−1 and
Li = (H L i−1 q LWi , d̃i ).

Assume that L i is strongly free, gr(H L i ) ∼= (HLi )0 o L((HLi )1), and (HLi )0
∼= H L i−1/[d̃Wi ] ∼= H L−

i . This is
trivial for i ≤ 1.

Note that L i+1 = (L i q LWi+1, d). Both L i+1 and U L i+1 can be filtered by the ‘length in Wi+1’ filtration. That
is, let F−1(L i+1) = 0, F0L i+1 = L i , and for i ≥ 0, Fi+1(L i+1) = Fi (L i+1) + [Fi (L i+1),Wi+1]. This induces a
similar filtration on U L i+1.

By assumption, gr(H L i ) ∼= H L−

i oL((HLi )1). Since L i+1 is separated, H L+

i ∩H L−

i = 0. Thus by Theorem A.1,
H L+

i is a free Lie algebra. Hence L i+1 is strongly free.
Then by Theorem 4.3, as algebras

gr(HU L i+1) ∼= U
(
(HLi+1)0 o L((HLi+1)1)

)
, and (HLi+1)0

∼= H L i/[d̃i+1Wi+1].

It is a result of Quillen’s that HU L i+1 ∼= U H L i+1. Thus gr(HU L i+1) ∼= gr(U H L i+1) ∼= Ugr(H L i+1). So
Ugr(H L i+1) ∼= U

(
(HLi+1)0 o L((HLi+1)1)

)
.

For any Lie algebra L , U L has a canonical cocommutative Hopf algebra structure. Let P denote the primitive
functor. Over Q, the composition PU is the identity functor [11]. Therefore gr(H L i+1) ∼= (HLi+1)0 oL((HLi+1)1).

It follows that H L−

i+1
∼= (HLi+1)0. This finishes the inductive step. �
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We will now use Theorem 4.2 to prove Theorem 1.5.

Proof of Theorem 1.5. Let L = (LV, d) that is separated. Recall that L i = L(V≤i,∗), d̃ : Vi
d
→ Z L i−1 � H L i−1,

and Li = (H L i q LVi , d̃).
Let Ni = (HLi )1 and recall that H L i is filtered by the length in Vi filtration. By Theorem 4.2, (LV, d) is strongly

free and for all i , it satisfies gr(H L i ) ∼= H L−

i o LNi where H L−

i
∼= H L i−1/[d̃i Vi ].

Also by Theorem 4.2, H L−

i+1
∼= H L i/[d̃i+1Vi+1], which has a filtration induced by the filtration on H L i . Thus

we have the following short exact sequence of filtered, graded Lie algebras:

0 → [d̃i+1Vi+1] → H L i → H L−

i+1 → 0,

which induces a short exact sequence of bigraded Lie algebras:

0 → gr([d̃i+1Vi+1]) → gr(H L i ) → gr(H L−

i+1) → 0.

Recall that gr(H L i ) ∼= H L−

i o LNi .
Since (LV, d) is separated, [d̃i+1Vi+1] ∩ H L−

i = 0, and thus gr([d̃i+1Vi+1]) ⊂ LNi as Lie algebras. Since any
Lie subalgebra of a free Lie algebra is automatically free, gr([d̃i+1Vi+1]) ∼= LKi+1 for some Q-module Ki+1 ⊂ LNi .
Therefore gr(H L−

i+1)
∼= H L−

i o (LNi/LKi+1) as Lie algebras. Let L̂ i = LNi/LKi+1.
By Theorem 4.2 there is a split short exact sequence of Lie algebras

0 → L((HLi )1) → gr(H L i ) → H L−

i → 0.

Let Wi be a preimage of (HLi )1 in H L i . We have a short exact sequence of modules

0 → LWi → H L i → H L−

i → 0

but this is not necessarily a short exact sequence of Lie algebra since LWi may not be a Lie ideal. Equivalently,
the projection H L i → H L−

i may not be a Lie algebra morphism. However, if LWi is a Lie ideal in H L i then
H L i ∼= H L−

i o LWi . �
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Appendix. A generalized Schreier property

In this chapter we give a simple criterion which we prove guarantees that certain Lie subalgebras are free.
It is a well-known fact that any (graded) Lie subalgebra of a (graded) Lie algebra is a free Lie algebra [9,13,10]

This is often referred to as the Schreier property. In this chapter we generalize this result to the following.

Theorem A.1. Over a field F, let L be a finite-type graded Lie algebra with filtration {Fk L} such that
gr(L) ∼= L0 o LV1 as Lie algebras, where L0 = F0L and V1 = F1L/F0L. Let J ⊂ L be a Lie subalgebra
such that J ∩ F0L = 0. Then J is a free Lie algebra.

Before proving this theorem, we prove the following lemma.

Lemma A.2. Let J be a finite-type filtered Lie algebra such that gr(J ) is a free Lie algebra. Then J is a free Lie
algebra.

Proof. By assumption there is an F-module W̄ such that gr(J ) ∼= LW̄ .
Let {w̄i }i∈I ⊂ gr(J ) be an F-module basis for W̄ . Let mi = deg(w̄i ). That is, w̄i ∈ Fmi J/Fmi −1L . For each w̄i

choose a representative wi ∈ Fmi J . Let W = F{wi }i∈I ⊂ J .
Then there is a canonical map φ : LW → J . Grade LW by letting wi ∈ W be in degree mi . Then φ is a map of

filtered objects and there is an induced map θ : LW → gr(J ). However the composite map

LW
θ

→ gr(J )
∼=
→ LW̄
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is just the canonical isomorphism LW
∼=
→ LW̄ . So θ is an isomorphism. Therefore φ is an isomorphism and J is a free

Lie algebra. �

Proof of Theorem A.1. The filtration on L filters J by letting

Fk J = J ∩ Fk L .

From this definition it follows that the inclusion J ↪→ L induces an inclusion gr(J ) ↪→ gr(L). So
gr(J ) ↪→ gr(L) ∼= L0 o LV1. Since J ∩ F0L = 0 it follows that (grJ )0 = 0 and gr(J ) ↪→ (grJ )≥1 ∼= LV1.
By the Schreier property gr(J ) is a free Lie algebra. Thus by Lemma A.2, J is a free Lie algebra. �

The following corollary is a special case of this theorem.

Corollary A.3. Over a field F, if J ⊂ L0 o L(L1) is a Lie subalgebra such that J ∩ L0 = 0 then J is a free Lie
algebra.

Note that since J is not necessarily homogeneous with respect to degree J ∩ L0 = 0 does not imply that J ⊂ LL1.
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