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We revisit here a recent work on regular rotating black holes. We introduce a new mass function
generalizing the commonly used Bardeen and Hayward mass functions and extend the recently proposed
solutions in order to accommodate a cosmological constant Λ. We discuss some aspects of the causal
structure (horizons) and the ergospheres of the new proposed solutions. We also show that, in contrast
with the spherically symmetrical case, the black hole rotation will unavoidably lead to the violation of
the weak energy condition for any physically reasonable choice of the mass function, reinforcing the idea
that the description of the interior region of a Kerr black hole is much more challenging than in the
Schwarzschild case.
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1. Introduction

The problem of spacetime singularities is an open issue in
Physics (see, for instance, [1] for a general discussion and [2] for
some cosmological implications). The general and commonly ac-
cepted belief is that only a not yet available quantum theory of
gravity would be capable of solving them properly. In recent years,
without a fully developed and reliable candidate for a quantum
theory of gravity, many phenomenological models have been pro-
posed for which the central singularity of a black hole is avoided
(see, for a review and motivations, [3]). These non-singular so-
lutions of General Relativity are the so-called regular black holes
(BH) and, since there are strict uniqueness theorems for BH solu-
tions of vacuum Einstein–Maxwell equations [4], they will neces-
sarily require some kind of exotic matter/field or internal structure
in order to exist. The typical stationary spherically symmetrical
regular BH has line element

ds2 = − f (r)dt2 + dr2

f (r)
+ r2dΩ2, (1)

where dΩ2 = dθ2 +sin2 θdφ2 and f (r) = 1−2m(r)/r. A mass func-
tion of the type

m(r) = M0

(1 + (
r0
r )q)

p
q

(2)
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will guarantee an asymptotic flat spacetime for positive p and q.
M0 and r0 are, respectively, a mass and a length parameters. The
well known Bardeen [3] and Hayward [5] BH correspond, respec-
tively, to the choices p = 3, q = 2 and p = q = 3 in the mass
function expression (2). The limits of small and large r of (2) are,
respectively,

m(r) ≈ M0

(
r

r0

)p

(3)

and

m(r) ≈ M0

(
1 − p

q

(
r0

r

)q)
. (4)

Both Bardeen and Hayward BH are realizations of a quite old idea,
introduced by Sakharov and co-workers in the sixties [6] and later
improved [7], that spacetime in the highly dense central region of
a BH would be de Sitter-like

Gμν = −λgμν, (5)

with λ > 0, which requires

f (r) = 1 −
(

r

�

)2

(6)

for r ≈ 0. Comparing with (3), we see that (6) demands p = 3. The
only typical requirement on q is to get from (4) an asymptotically
Schwarzschild solution, what requires only q > 0. We will consider
here the general mass function with p = 3 and q > 0. Fig. 1 de-
picts some typical cases. Notice that for the mass function (2) with
p = 3 one has
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Fig. 1. Mass function (2) with p = 3 and q > 0. The parameter r0 is typically as-
sumed to be microscopic (r0 � M0) and, hence, the exterior region of the BH can
be very close to the Schwarzschild spacetime. The q → ∞ case corresponds to the
usual matching between de Sitter and Schwarzchild solutions in the interior re-
gion of the BH. The dashed line indicates r = r0. In this graphic we have used
r0/M0 = 10−1.

λ = 6M0

r3
0

. (7)

Since r0 is typically assumed to be microscopic (r0 � M0), the core
density described by the central de Sitter solution (5) may be ef-
fectively very high, possibly in the regime where quantum gravity
effects should come out. For the spherically symmetrical case (no
rotation), several mass functions interpolating between the de Sit-
ter core (r ≈ 0) and the asymptotically flat infinity (r → ∞) lead
to physically reasonable regular black holes since, despite of vio-
lating the strong energy condition as required by the singularities
theorem [1], they do obey the weak energy condition and, hence,
might be in principle formed from a physically reasonable matter
content.

In the recent work [8], Bambi and Modesto explore the
Newman–Janis algorithm [9] in order to construct rotating regu-
lar BH with Bardeen and Hayward mass functions. One of their
conclusions is that for these two commonly used mass functions,
the weak energy condition (WEC) is violated due to the rotation
of the black hole. Despite of being physically problematic due to
the violations of WEC and, hence, to the presence of negative en-
ergy density content somewhere, such solutions as those ones
introduced by Bambi and Modesto are certainly interesting from
a phenomenological point of view, since astrophysical bodies, the
main data sources for exploring BH physics, typically have non-
vanishing angular momentum. In the present paper, we extend
the Bambi and Modesto solutions for the case where a cosmo-
logical constant Λ is present, a situation which could be useful,
for instance, to the studies involving rotating black holes and
the AdS/CFT conjecture [10]. We consider mass functions of the
type (2) with p = 3 and q > 0, but some of our conclusions are
valid for any physically reasonable functions, i.e., functions com-
patible with the behavior (5)–(6) near the origin. We discuss some
aspects of the causal structure (event, cosmological, and Cauchy
horizons) and the ergospheres of the new proposed solutions. We
show also that the violation of WEC is indeed generic and unavoid-
able for rotating BH, irrespective of the used mass terms, with the
only requirement that they behave as m(r) ∝ r3 for r → 0, which
is necessary to have a behavior similar to (5) and hence to have
an extremely dense central region, but free of singularities. Our
result is another indication that the description of the interior re-
gion of the Kerr BH is a much more challenging problem than in
the Schwarzschild case.
2. The regular Kerr black hole with cosmological constant

We will not follow here the same approach (the Newman–Janis
algorithm [9]) used by Bambi and Modesto in [8], but rather we
will employ the so-called Synge g-method: assume gμν , calculate
and interpret Tμν . For an early application of Synge g-method to
the problem of the interior of the Kerr black hole, see [11]. Our
main goal is to extend Bambi and Modesto solutions for the case
where a cosmological constant Λ is present, and for other mass
functions as well. We envisage two possible coordinate systems
to explore here. The first one is related the so-called Kerr–Schild
ansatz with cosmological constant (see, for instance, [12])

ds2 = ds2
Λ + H

(
lμdyμ

)2
, (8)

where ds2
Λ is a pure anti-de Sitter (AdS, Λ < 0) or de Sitter (dS,

Λ > 0) metric, H is a smooth function, and lμ stands for a null vec-
tor. By introducing the (τ , r, x = cos θ,ϕ) spheroidal coordinates,
Eq. (8) can be decomposed as

ds2
Λ = − (1 − Λ

3 r2)Δx

Ξ
dτ 2 + Σ

(1 − Λ
3 r2)(r2 + a2)

dr2

+ Σ

(1 − x2)Δx
dx2 + (r2 + a2)(1 − x2)

Ξ
dϕ2 (9)

and

lμdyμ = Δx

Ξ
dτ + Σ

(1 − Λ
3 r2)(r2 + a2)

dr − a(1 − x2)

Ξ
dφ, (10)

where

Δx = 1 + Λ

3
a2x2, Σ = r2 + a2x2, Ξ = 1 + Λ

3
a2. (11)

The constant a will be later interpreted as the rotation parameter,
but notice that it is present already in the pure AdS or dS met-
ric (9) due to the use of spheroidal coordinates. Notice that our
construction requires Ξ > 0, leading to the restriction

Λ > − 3

a2
, (12)

and we will adopt this hypothesis hereafter. We will return to
this point in the causal structure analysis in the next section. We
assume also rotational symmetry, and hence H = H(r, x). A partic-
ularly convenient choice is

H(r, x) = 2m(r)r

Σ
. (13)

For this case, with a r-dependent mass functions m(r), one can in-
troduce the usual Boyer–Lindquist coordinates (t, r, x, φ) by means
of the following coordinates transformation

dτ = dt + Σ H

(1 − Λ
3 r2)Δr

dr, (14)

dϕ = dφ − Λ

3
adt + aΣ H

(r2 + a2)Δr
dr, (15)

where

Δr = (
r2 + a2)(1 − Λ

3
r2

)
− 2rm(r). (16)

The metric (8) will then take the Boyer–Lindquist form
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ds2 = − 1

Σ

(
Δr − Δxa2(1 − x2))dt2

− 2a

ΞΣ

[(
r2 + a2)Δx − Δr

](
1 − x2)dtdφ

+ Σ

Δr
dr2 + Σ

(1 − x2)Δx
dx2 + 1

Ξ2Σ

[(
r2 + a2)2

Δx

− Δra2(1 − x2)](1 − x2)dφ2, (17)

which is much more convenient for the analysis of the causal
structure of the spacetime, and we will adopt it hereafter. We will
come back in the last section to the case of possible mass functions
of the type m = m(r, x), for which the above coordinate transfor-
mations are not defined.

For r-dependent mass functions m(r), the curvature scalar for
the metric (8) or (17) reads simply

R = 2
rm′′(r) + 2m′(r)

r2 + a2x2
+ 4Λ, (18)

and, in spite of its simplicity, this expression retracts rather well
the behavior of the singularities of the spacetime. For generic m(r),
we have a singularity at x = 0 (equatorial plane) for r → 0. The
situation is equivalent to the divergence of the Kretschmann scalar
on a “ring” for the usual Kerr spacetime (constant m, Λ = 0). In or-
der to avoid such singularities for non-constant m, the numerator
of (18) must vanish as rα for small r, with α ≥ 2, which is satis-
fied for any mass function behaving as m(r) ≈ M0(

r
r0

)3 for r → 0.
Moreover, for mass functions of this type, we have an “effective”
de Sitter core (5) on the equatorial plane (x = 0) and the corre-
sponding Kretschmann scalar will read

K = 96

(
M0

r3
0

)2 r4(r8 + 4a2x2r6 + 11a4x4r4 − 2a6x6r2 + 6a8x8)

(r2 + a2x2)6

+ 32
M0

r3
0

Λr2

r2 + a2x2
+ 8

3
Λ2, (19)

from where one can deduce straightly all the cases considered by
Bambi and Modesto in [8] for Λ = 0. The inclusion of the cos-
mological constant Λ does not alter their conclusions about the
avoidance of the central singularity.

In order to analyze the matter content associated with (17), we
introduce the usual orthonormal tetrads [13]

e(a)
μ =

⎛
⎜⎜⎝

√∓(gtt − Ω gtφ) 0 0 0
0

√±grr 0 0
0 0

√
gxx 0

gtφ/
√

gφφ 0 0
√

gφφ

⎞
⎟⎟⎠ , (20)

which corresponds to the standard locally non-rotating frame, with
Ω = gtφ

gφφ
being interpreted as the angular velocity of the BH. Notice

that (12) suffices to assure gxx > 0 and, since

gφφ = (r2 + a2)(r2 + a2x2)(1 + Λ
3 a2) + 2a2rm(r)(1 − x2)

(1 + Λ
3 a2)2(r2 + a2x2)

, (21)

it also assures a regular and positive gφφ . Moreover, from

gtt − Ω gtφ

= −1

3

(r2 + a2x2)(1 + Λ
3 a2)[(r2 + a2)(1 − Λ

3 r2) − 2rm(r)]
(r2 + a2)(r2 + a2x2)(1 + Λ

3 a2) + 2a2rm(r)(1 − x2)

(22)

we see that the condition (12) also assures that gtt − Ω gtφ does
not diverge and has a opposite sign of
grr = r2 + a2x2

(r2 + a2)(1 − Λ
3 r2) − 2rm(r)

. (23)

Finally, the signs in (20) must be selected in accordance with the
considered region. The spacetime (17) has generically two or three
horizons (see next section) located at the zeros of grr = g−1

rr . The
innermost corresponds to a Cauchy horizon, and since we are con-
sidering BH solutions, a event horizon will be necessarily present.
The region outside the event horizon and the region inside the
Cauchy horizon correspond to the choice (−,+), respectively, in
the components e(0)

0 and e(1)
1 . In this case, e(0)

μ is timelike. On
the other hand, the choice (+,−) corresponds to the regions con-
tained between the Cauchy and the event horizons, where e(1)

μ will
be timelike. Our main argument here is based on the behavior
of the energy–momentum tensor near the origin and, hence, in-
side the Cauchy horizon. The expressions for the components of
the energy–momentum tensor in the orthonormal tetrads frame
T (a)(b) = 1

8π e(a)
μ e(b)

ν Gμν are rather cumbersome, but they simplify
considerably for x = ±1 (the “poles” along the rotation axis). In
particular, for x = ±1, T (a)(b) is diagonal. One can check that T (0)(3)

does vanish for x = ±1 by a direct calculation, but this result could
also be advanced from the fact that smooth “tangential” flows as
the ones corresponding to T (0)(3) must vanish along the symmetry
axis. The non-vanishing T (a)(b) components for x = ±1 in the re-
gion outside the event horizon or inside the Cauchy horizon read
simply

T (0)(0) = 2r2m′(r)
8π(r2 + a2)2

+ Λ

8π
= −T (1)(1), (24)

T (2)(2) = −2a2m′(r) + r(r2 + a2)m′′(r)
8π(r2 + a2)2

− Λ

8π
= T (3)(3). (25)

For the region inside the Cauchy horizon, e(0)
μ is timelike and

the WEC on the “poles” reads T (0)(0) ≥ 0 and T (0)(0) + T (i)(i) ≥ 0,
i = 1, . . . ,3. In the present case, the condition for i = 2 or 3 re-
quires m′(r) ≤ 0 near the origin for a 
= 0, a rather unnatural re-
quirement for any mass function in this context. In fact, for our
paradigmatic case m(r) ∝ r3 one has

T (0)(0) + T (2)(2) = T (0)(0) + T (3)(3) ∝ − 12r2a2

(r2 + a2)2
(26)

for r ≈ 0 and x = ±1, from where one can see that the violation of
WEC cannot be prevented if a 
= 0, irrespective of the value of Λ

and the details of m(r) far from the origin.
Notice that for r � r0, one has

R ≈ 4Λ + 6M0

r3
0

1 − q

1 + a2x2

r2

(
r0

r

)q+3

(27)

for mass functions of the type (2) with q > 0. We see from Eq. (27)
that the larger the value of q, the faster the solution converges to
the vacuum solution for large r, as one would indeed expect. The
q = 1 case corresponds to a Reissner–Nordstrom-like solution for
which the energy–momentum tensor is traceless and, hence, only
the cosmological constant counts for the Ricci scalar R . From (27),
one can estimate, for instance, the deviations from the usual Kerr
solution. For a BH with r0 = εM0, ε < 1, the curvature deviations
in the external region (r > M0) have an upper bound given by
εq+1/M2

0. The exterior regions of a regular rotating and a Kerr BH
can be almost indistinguishable for high values of q.

3. Spacetime causal structure of the regular solutions

From the metric in the Boyer–Lindquist coordinates (17), we
can find out the roots of grr , which will provide the radii of the
horizons. The pertinent equation is Δr = 0, which leads to
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Fig. 2. The horizons corresponding to the zeros of Δr . Left: AdS case (Λ < 0), right: dS case (Λ > 0). The dashed line indicates r = r0. In these graphics we have used p = 3,
r0/M0 = a/M0 = ±ΛM2

0 = 10−1.
F (r) ≡ r2 + a2

2r

(
1 − Λ

3
r2

)
= m(r). (28)

For a 
= 0, the left-handed side of (28) behaves as a2/r for r ≈ 0. On
the other hand, for Λ 
= 0, it goes as −Λr4/3 for large r. Since the
metric in the Boyer–Lindquist coordinates (17) is independent of t
and φ, we have two explicit Killing vectors ξt = ∂

∂t and ξφ = ∂
∂φ

.
Since gφφ > 0 by hypothesis due to the condition (12), ξφ is space-
like everywhere. For ξt , we have

|ξt |2 = gtt = − (r2 + a2x2)(1 − Λ
3 (r2 + a2(1 − x2))) − 2rm(r)

r2 + a2x2
.

(29)

A Killing horizon corresponds to a surface with a null type tangent
Killing vector. Thus, one can locate Killing horizons by setting (29)
to zero, and the pertinent equation is similar to (28), namely

Fx(r) ≡ r2 + a2x2

2r

(
1 − Λ

3

(
r2 + a2(1 − x2))) = m(r). (30)

Notice that

F (r) − Fx(r) = a2(1 − x2)

2r

(
1 + Λ

3
a2x2

)
, (31)

and from (12), we have F (r) ≥ Fx(r). The cases of AdS and dS are
qualitatively different and we will treat them separately. Notice,
however, that for x = ±1, the Killing and event horizons coincide
(F (r) = Fx(r)). The situation is identical to the Kerr solution. On
the other hand, outside the symmetry axis, the Killing and ordi-
nary horizons do not coincide, giving origin to the ergoregions as
in the usual Kerr solution.

3.1. Asymptotically AdS case

For the AdS case (Λ < 0), F (r) has a global minimum located
at

r2
min = 1

6Λ

(
3 − a2Λ −

√(
3 − a2Λ

)2 − 36a2Λ
)
. (32)

The existence of a black hole here requires two zeros for (28),
the inner (Cauchy, r = r−) and the outer (event, r = r+) hori-
zons. A sufficient condition for this is F (rmin) < m(rmin). It is not
a surprise that certain combinations of parameters do not corre-
spond effectively to black holes, a similar behavior is observed
already for the simplest cases with a = Λ = 0 [5]. The algebraic
expressions for the roots are quite involved and we will omitted
them. Fig. 2 depicts some typical cases for the Cauchy and event
horizons. Since F (r) ≥ Fx(r), the condition F (rmin) < m(rmin) also
assures two roots for (29), which will correspond to the Killing
horizons r = S− and r = S+ . For x2 
= 1, we can divide the space-
time structure in five regions

0 < S− < r− < r+ < S+ < ∞. (33)

This situation is depicted in Fig. 3. The region between r+ and
S+ is the ergosphere, with the same properties of the usual ergo-
sphere in the Kerr solution. In the present case, however, we also
have an interior ergosphere, which corresponds to the region lim-
ited by S− and r− .

3.2. Asymptotically dS case

The dS case (Λ > 0) is more involved. The function F (r) can
have up to two critical points. Besides rmin given by (32), we have
also

r2
max = 1

6Λ

(
3 − a2Λ +

√(
3 − a2Λ

)2 − 36a2Λ
)
. (34)

In order to have rmin and rmax properly defined, one needs Λ <

3(7−4
√

3)/a2. This condition, in addition to F (rmin) < m(rmin) and
F (rmax) > m(rmax), is sufficient to guarantee three zeros for (28),
which corresponds to the inner (r = r−), event (r = r+), and cos-
mological (r = rc) horizon. The situation where the cosmological
and event horizon coincide corresponds to a rotating Nariai solu-
tion, see [14]. We will focus here only the situations containing
black holes and, hence, we assume that all the necessary condi-
tions are met.

For Λ > 0 we can have also up to three Killing horizons, namely
S− , Si , and S+ . The spacetime can be divided into six regions for
x2 
= 1

0 < S− < r− < r+ < Si < S+ < rc. (35)

The internal ergosphere is limited by S− and r− , as in the AdS
case. The external ergosphere consist effectively in two regions,
namely those ones limited by r+ and Si , and by S+ and rc . These
regions are disjointed for x2 
= 1.

4. Final remarks

We have here extended the recent work of Bambi and Modesto
[8] where regular rotating BHs were introduced. Our solutions ac-
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Fig. 3. The Killing horizons corresponding to the zeros of (29), on the equatorial plane (x = 0). Left: AdS case (Λ < 0), right: dS case (Λ > 0). The dashed line indicates r = r0.
In these graphics we have used p = 3, r0/M0 = a/M0 = ±ΛM2

0 = 10−1.
commodate a cosmological constant Λ and we have also intro-
duced a more general mass function. We have shown that the
black hole rotation will unavoidably lead to the violation of the
weak energy condition (WEC) for any physically reasonable mass
function. Despite of the violations of WEC, solutions as those ones
introduced by Bambi and Modesto and extended here are impor-
tant not only from a phenomenological point of view, but it could
also contribute to the study of possible violations of the cosmic
censorship conjecture in quasi-extremal black holes [15]. These
points are now under investigation.

We finish by noticing that the case of a r-dependent rotation
parameter a in the Boyer–Lindquist metric (17), as discussed in [8],
will give origin to nonvanishing shear components (namely T rx) in
the energy–momentum tensor, challenging the physical interpreta-
tion of the matter content of such solutions, as advanced early in
the work [16]. The same occurs if one allows a mass function of
the type m(r, x). In this case, moreover, one cannot obtain a Boyer–
Lindquist metric from the Kerr–Schild ansatz since the coordinate
transformations (14)–(15) are not properly defined, leading to an
extra ambiguity: the solutions with m(r, x) of the form (8) and
(17) are inequivalent, and both correspond to energy–momentum
tensors with nonvanishing shear components. It is not clear how
to interpret physically BH solutions with r-dependent rotation pa-
rameter a and/or with mass functions of the type m(r, x).
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