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Abstract 

To improve the thermal efficiency of fossil running power plants increasing the live steam temperature is essential. In power 
plant construction, 9-12% chromium martensitic steels are widely used but if steam temperatures rise above 625°C there is no 
way around nickel base alloys. 

The scope of this study was to ascertain the weldability of cast nickel base alloy 625 with cast martensitic 9% chromium steel 
COST CB2, using electron beam welding (EBW). Similar (A625/A625) and dissimilar joint welding experiments on 50mm thick 
plates were executed. Microstructure of welded joints was investigated and mechanical-technological tests were carried out. 
Results show that work pieces were completely welded and the microstructure of the seam shows no problems except some -
ferrite grains near the fusion line on the CB2 side. The joints exhibit good mechanical properties in spite of the presence of a thin 
layer with very high hardness in the heat affected zone (HAZ) on the CB2 steel side. [1]. 
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1.  Introduction 

The annually growing worldwide energy demand in combination with the prognosticated usage of fossil 
energy resources will lead to a global increasing of greenhouse gas emission. Improving the thermal efficiency of 
fossil running power plants is a necessary step to counteract this issue. 
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Figure 1: Annual global primary energy demand without CO2 restriction [2] 

To achieve this, an increase of the live steam temperature is needed which is a huge challenge for the used 
materials. Martensitic 9-12% chromium steels are currently the most important materials used in steam and gas 
turbine technology. They offer an excellent combination of hardness and toughness. Furthermore a high thermal 
conductivity and a small thermal expansion is present [3]. However, if steam temperatures rise above 625°C there is 
no way around nickel based alloys. Nickel based super alloys offer superior corrosion behavior and outstanding 
creep resistance but due to their high price, a well-considered use is indispensable [4], [5], [6]. Engineers, now have 
to face the problems of combining this material with the 9-12% chromium martensitic steels to apply the best 
solution at a proper cost level.  
 

This study is a continuation of the diploma thesis written by B. Berger [7], where joining between these 
two materials by manual arc welding with rod electrodes (MMAW) and gas metal arc welding (GMAW) was 
investigated. Compared to this process, EBW offer several advantages: single layer (see Figure 2) weld, no filler 
material, smaller fusion zone, less machining time for joint preparation, less welding time and a fully automated 
process. 

 

Figure 2: Comparison EBW & MMAW 

Electron beam welding is a high quality fusion welding process with a very high energy density (up to 
109W/cm² [8]). The heating source in EBW is the kinetic energy of electrons. When the electrons hit the surface, 
they are decelerated in the lattice and transfer their energy to the work piece. At a beam power density above 105 
W/cm² the deep welding effect occurs. The material evaporates instantly while a steam capillary (keyhole) is 
created, enabling thick section welding in a single layer.  
 

A very unique characteristic of electron beam welding is its possibility to weld thick walled parts with a 
single layer. With modern equipment welds up to 200mm in steel are possible [9], [10]. By reason of this special 
characteristic a very low heat quantity is brought into the work piece [11]. Figure 3 show the temperature measured 
by two thermocouples (TC) located next to a 50mm thick weld. The temperature 15mm away from the seam centre 
did not exceed 250°C and also the temperature measured closer to the fusion centre (TC 1) dropped under this 
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temperature about 60 seconds after the heat source passed this location. This circumstances offers especially in 
dissimilar welding great advantages [12], [13], [14]. 

 

Figure 3: Temperature measurement during EBW Figure 4: TC Experimental setup 

The joining of dissimilar metals is far more complex than producing a similar joint. The difficulties when 
joining dissimilar materials include the problems when joining each base metal individually, and the problems that 
occur with their compositions. EBW offers strategies to reduce or overcome these problems to a certain extent [12], 
[13], [14]: 

• The high-energy density can solve the problem of the large difference in melting temperature; 
• The thermal conductivity problem can be overcome by directing the beam correctly to the required 

location; 
• The small weld bead size of EB welds minimizes the mixing of dissimilar metals; that limits the brittle 

zones arising from the chemical mismatch; 
• Due to the very small time slot of diffusion permitting temperatures, the intermetallic phase can be kept 

very small; 
• Because of the high temperature gradients and associated rapid solidification of the materials, the solubility 

limit of elements is shifted to higher concentrations. 
  

2. Experimental Procedure 
 

2.1 Materials 
 

COST CB2: Steels based on 9 - 12% chromium are transformation hardened steels, which are tempered for 
service. A high density of dislocation and internal interfaces results from the martensitic transformation during 
cooling after the normalising treatment. After casting, the material was austenitised and tempered at 760°C. Figure 5 
shows the tempered martensitic structure of the CB2. The prior austenite grain boundaries are still visible and some 
precipitates (M23C6 and MX) are identified, which are main contributors to the creep strength [3]. The major 
alloying elements are listed in Table 1 [15]. Martensitic chromium steels are difficult to weld. The high carbon 
content requires a complicated temperature control including pre heating, defined interpass temperature, cooling and 
a post weld heat treatment. 

A625: The material number of the alloy 625 is 2.4856. The microstructure of the alloy is cubic face-centred 
and there are no phase transitions in the solid state. A625 is strengthened mainly by carbon, chromium, molybdenum 
and niobium. The high strength is achieved by solid solution hardening (Mo, Nb) and by precipitation hardening 
which is mainly derived from the metastable ‘‘ phase [Ni3(Nb,Al,Ti)]. The huge grain size is conducive to creep 
resistance. The high amount of pores is typical for cast material (see Figure 6). [5], [6]. The material was delivered 
in solution annealed condition. The major alloying elements are listed in Table 2 [16]. This nickel based alloy has a 
good weldability but as all nickel alloys it is extreme prone to hot cracking in presence of sulphur (low melting Ni-
Ni3-S2 eutectic) [17].  

TC 2

TC 1
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Figure 5: COST CB2 microstructure Figure 6: A625 microstructure 

 

 C Si Mn Co Cr Mo V Ni 

Min. 0.12 0.20 0.80 0.90 9.00 1.40 0.18 0.10 

Max. 0.14 0.30 1.0 1.10 10.0 1.60 0.22 0.20 

Table 1: Major alloying elements COST CB2 steel 

 C Si Mn Co Cr Fe Mo 
Nb + 
Ta* 

Min 0.03 - - - 20.0 - 8.00 3.15 

Max 0.10 0.50 0.50 1.00 23.0 5.000 10.0 4.20 

Table 2: Major alloying elements A625 

2.2 Welding 

Welding was performed with the pro-beam machine EBG 45-150 K14 (EB gun power 45kW, vacuum 
chamber 1.4m³). All experiments were conducted with an acceleration voltage of 120kV and a circular beam 
oscillation. No preheating was performed before welding. The welding surfaces for all joints had an average surface 
finish between Ra=1.6 and 3.2 m. All edges were deburred and the surfaces were cleaned with alcohol. 

To find the best welding parameters for these two materials the experimental design and the interpretation of 
the results was done statistically with the “Design of Experiments” method. Therefore several blind welds (welds in 
a full metal block) were carried out to evaluate the qualitative and quantitative effects of the welding parameter on 
the weld. Within these tests, beam current I, welding speed v, focal position fp and the amplitude of the beam figure 
h were varied. 

In the next experimental phase, similar (A625/A625) and dissimilar (A625/CB2) joint samples (see Figure 7) 
were produced, using different parameter settings. The welding parameters for the dissimilar joint were derived and 
combined from the results of the blind welding test of the two materials.  
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3.1 Similar Joints (A625/A625) 

Microstructure: In none of the performed similar joint welds cavities or cracks were observed when using 
optimised parameters. Figure 10 shows one representative cross section macro etching of a similar joint 
(A625/A625). The shape of the seam is steady and the finer grain in the fusion zone is visible with the naked eye. To 
identify the solidification process, aqua regia was used as etchant. Solidification direction is observed to be 
perpendicular to the beam describing the direction of the highest temperature gradient. The lines in Figure 11 result 
from varying solidification speed caused by impurities in alloying elements which induce local undercooled areas. 
These lines are in this arrangement harmless. A conglomeration of the lines in the seam centre would affect the 
strength of the joint [18]. 

 

Figure 10: Joint welding, similar  

 

Figure 11: Cross section, solidification lines 

In Figure 12 and Figure 13 the area next to the fusion zone is displayed. The microstructure of the fusion 
zone is clearly different compared to the base material; no heat affected zone is visible. However some grain 
boundaries were found in higher magnification, which grow into the fusion (see Figure 13) which is caused by 
epitaxy grain growth. 

 

Figure 12: Fusion zone, dendrites 

 
Figure 13: Grain boundary 

Hardness: The carried out hardness lines across the seam show a hardness of 160HV10 in the base material. 
From about 2mm from the fusion zone, the hardness progressively increases to reach a maximum of about 220HV in 
the centre of the fusion zone which can be explained by the grain refinement. 

Tensile test: None of the tested specimen fractured in the fusion zone. The average ultimate tensile strength 
is 490MPa which is in the range of the tested base material.  

Fig. 13 
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Charpy test: Due to the high ductility of A625, just a small percentage of tested pieces fractured and 
delivered valid results, here the impact energy was always above 215J.  

Side Bend test: All welded Nickel based specimens where bent to 180° without any cracks. 

3.2 Dissimilar Joints 

The materials showed different behaviour with respect to some of the welding parameters; The CB2 needed 
more welding current to reach a certain depth and a bigger beam figure diameter to produce a stable keyhole. 
Another aspect for this joint is the magnetic field which is induced during EBW [19]. Especially when welding a 
magnetic and a non-magnetic material a decent demagnetisation for the CB2 was necessary in order to avoid beam 
deflection. 

Microstructure:  

Figure 14 shows one representative cross section of a dissimilar joint. In the light microscope, the 
microstructure of the fusion zone looks analogous to the similar joints. Dendrites, perpendicular to the beam 
direction, are visible as well as some solidification lines (see  

Figure 15). 

 

 

Figure 14: Joint welding, dissimilar 

 

 

Figure 15: Fusion zone, dissimilar 

 

With an EDX line scan, the qualitative composition of the welded materials and the welded zone was 
estimated. Figure 16 shows the scan across the seam and the evolution of the quantity of the selected elements: Iron 
(Fe), Nickel (Ni), Chromium (Cr) and Molybdenum (Mo) in the fusion zone. 
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4. Summary and Conclusion 

In this study it was shown that by means of EBW it is possible to weld thick walled components made from 
a cast 9%Cr steel (CB2) and cast Nickel-based (A625) alloy without pre- and post-heating. After finding appropriate 
welding parameters the work pieces were welded completely and the joints exhibit good mechanical properties. The 
investigations of the micro sections and the mechanical test showed that all quality requirements with respect to the 
microstructure of the weld and its mechanical properties were fulfilled. The very thin high hardness layer, located in 
the HAZ of the CB2, showed no influence on the mechanical properties. In terms of tensile strength and ductility a 
PWHT is not necessary. 

5. Outlook 

Further investigation of the creep behaviour of the welded joint has to be carried out. Particularly, the fine 
grained fusion zone and the presence of �-ferrite in the HAZ of CB2 are adverse for the creep behaviour. Especially 
a comparison between a EB welded and MMA welded joint (see [7]) would be interesting. Furthermore the effect of 
the high hardness layer in the CB2 HAZ on the toughness and fatigue strength should be investigated as well. 
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