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Abstract

Acoustofluidic damping is a crucial factor that limits the attainable acoustic amplitudes and therefore the effectiveness of acoustoflu-

idic devices. It can be traced back to viscous and thermal dissipation in the bulk and in the boundary layers at cavity walls or

suspended particles. However, numerical 3D simulations that include all relevant physics are prohibitively expensive since the

acoustic boundary layers need to be resolved. We present a way to incorporate the dissipation effects into a synthetic acoustofluidic

loss factor for the use in 3D device simulations. It comes at minimum numerical cost since boundary layers are resolved analyt-

ically. Our results and the validity of the physical assumptions we make in the derivation have been verified by analytical and

numerical reference solutions. The acoustofluidic loss factor is easily incorporated in device models for a numerically feasible and

quantitatively accurate prediction of acoustic amplitudes. In this sense, our work represents the missing link that allows to make

not only qualitative but also quantitative predictions of acoustofluidic forces in realistic 3D devices.
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1. Introduction

Operating in the low MHz regime, bulk acoustic wave (BAW) devices are an emerging technology for the contact-

less and cost effective handling of cells, bacteria and other micro-particles. A comprehensive review of theoretical

work, experimental setups as well as recent developments can be found in the book ”Microscale Acoustofluidics”

(Laurell and Lenshof (2015)). BAW devices are typically driven in a resonant state to achieve enhanced acoustic am-

plitudes and high acoustofluidic forces for the manipulation of micro-particles. Among other loss mechanisms related

to the structural parts of acoustofluidic devices, losses in the fluid, termed acoustofluidic damping, crucially affect the

attainable acoustic amplitudes. In typical micro-devices, these losses are mainly caused by the thin viscous boundary

layer (approx. 0.5 μm at 1 MHz in water) at the fluid cavity walls and suspended particles. Even with modern comput-

ing hardware at hand, it is prohibitively expensive to resolve these boundary layers in 3D numerical device models.
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However, in the bulk of the fluid cavity, the viscous boundary layer hardly affects the first-order time-harmonic field

in a qualitative fashion. It rather defines its amplitude at resonance by the induced damping. For this reason, the

boundary layers can be omitted from device models as long as their dissipative effect is retained. The same applies

for the thermal boundary layers.

The traditional way to model ultrasonic wave attenuation due to dissipation in the bulk of the fluid is to use a com-

plex speed of sound as a function of the loss factor ϕ (Kinsler et al. (2000)). It can be shown that the associated power

loss is Ψbulk = ωϕWst, where ω is the angular frequency and Wst is twice the stored time-averaged potential energy

in the fluid. In our novel approach, we calculate and summarize the dissipation associated with each acoustofluidic

loss mechanism to define a synthetic loss coefficient ϕ̄( f ) that we call the acoustofluidic loss factor (Hahn and Dual

(2015)). We account for all acoustofluidic losses (e.g. viscous boundary layer damping) by calculating the complex

speed of sound c according to,

c( f ) = c0

(
1 + i
ϕ̄( f )

2

)
, with ϕ̄( f ) =

∑
n

ϕ̄n( f ) =

∑
nΨn( f )

ωWst( f )
, (1)

where c0 is the real-valued speed of sound of the fluid and each n in the summation is associated with one loss

mechanism and the corresponding power dissipation Ψn( f ). The main difficulty is to calculate Ψn( f ) in a physically

accurate way. Omitting explicit frequency dependence . . . ( f ) from here on, we emphasize that all terms depend on

the frequency f and, therefore, on the mode considered. Throughout this paper, we assume the fluid to be water at

room temperature and we refer to Muller and Bruus (2014) as well as Hahn and Dual (2015) for detailed properties.

2. Losses in BAW micro-devices

The critical reader might question if acoustofluidic damping is really important in the context of other losses

associated with glue layers, structural parts of the device, or the energy transfer into the device support (anchor

loss). Certainly, there are examples where devices are clamped or glued to large structures and anchor losses are

dominant. However, the device is placed on a low-impedance base made of foam or tissue paper, the anchor losses

become negligible. For this scenario, we analyze the energy distribution inside a typical silicon-based BAW device,

quantifying the losses in each device component. As often in experiments, the device is piezo-electrically excited

at a frequency that leads to a strong time-harmonic field in the fluid cavity. The 3D device model contains a silicon

device body, a glass lid, a piezoelectric transducer, and a glue layer between the transducer and the silicon (Hahn

et al. (2014)). The device geometry and the potential energy density at 0.84 MHz are illustrated in Fig. 1. For the

Fig. 1. (a) BAW device geometry as drawn in a top view, in a side view, and in a bottom view. (b) Energy distribution in the device for excitation

at 0.84 MHz and 5 Vpp. Shown is the time-averaged acoustic potential energy density in the water and the time-averaged strain energy density on

three cut planes through the device structure. Energy is focused on the fluid cavity.

calculation of the stored energy Wst and the power dissipationΨ in Table 1 we refer to Hahn and Dual (2015), whereas
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the acoustofluidic loss factor is chosen as outlined in section 3 to account for all losses in the fluid cavity. The data

shows that over 50% of the total loss are related to acoustofluidic dissipation.

Table 1. Stored energy and power dissipation in the acoustofluidic micro-device according to Fig. 1 with excitation at 0.84 MHz and 5 Vpp. Values

are provided for all individual device components as well as for the summation over the whole device. The power dissipation in the piezoelectric

transducer contains mechanical, dielectric, and piezoelectric losses.

Parameter Symbol Transducer Silicon Glass Glue Water
∑

Device Unit

Stored energy Wst 10.4 15.4 8.9 2.6 105.9 143.2 nJ

Power dissipation Ψ 0.53 0 0.02 1.36 2.24 4.15 mW

3. Acoustofluidic loss factor

As outlined in eq. 1, the acoustofluidic loss factor ϕ̄ can be written as the sum of individual components ϕ̄n, each

related to a physical dissipation effect in the fluid cavity. Specifically, these effects are (Hahn and Dual (2015)):

• viscous (ϕ̄1) and thermal (ϕ̄2) damping in the bulk

• viscous (ϕ̄3)and thermal (ϕ̄4) damping at the cavity walls

• viscous (ϕ̄5) and thermal (ϕ̄6)damping due to suspended particles

• nonlinear effects i.e. radiation forces (ϕ̄7) and acoustic streaming (ϕ̄8)

It can be shown that thermal dissipation effects (ϕ̄2, ϕ̄4, ϕ̄6) are at least two orders of magnitude smaller than their

viscous counterparts (ϕ̄1, ϕ̄3, ϕ̄5) and that the boundary layer losses dominate at typical operation frequencies and

cavity sizes (Hahn and Dual (2015)). Nonlinear losses are neglected because the acoustic amplitudes are small. For

this reason, we focus on the viscous boundary layer losses at cavity walls and suspended particles.

3.1. Viscous boundary layer damping at cavity walls

The tangential relative velocity between the structural wall vibration and the time-harmonic fluid motion outside

the boundary layer leads to viscous shear and dissipation (Hahn and Dual (2015); Swift (1988)). The associated loss

factor component ϕ3 can be written as

ϕ3 =
ρ0δ

4Wst

∫
S
|ξdiffi|2dS , (2)

with the viscous penetration depth δ and the tangential relative velocity vector ξdiffi in index notation. The integration

is carried out over the cavity surface S . Besides the frequency dependent δ, the expression also includes Wst and

the integral which both display a complex dependence on the acoustic mode shape and the vibrating cavity walls. A

comparison with analytical and numerical reference simulations showed that eqn. 2 delivers accurate results, even if

the cavity geometry is complex or if the viscous boundary layer is relatively thick (Hahn and Dual (2015)).

3.2. Viscous boundary layer damping at suspended particles

A particle density that is different from the water density gives rise to viscous shear and dissipation around the

particle, as analogous to the case above. For elastic spherical particles, much smaller than the acoustic wavelength,

there exists an analytic solution of the time-harmonic fluid motion in the vicinity of the particle (Settnes and Bruus

(2012)). The associated viscous dissipation due to one suspended particle can be calculated based on this solution.

For a given volumetric particle concentration C (which may depend on position but it needs to be small enough to

neglect particle-particle interaction), the associated acoustofluidic loss factor component reads,

ϕ5 =
A

VpωWst

∫
V

C|vi|2dV, (3)

where

A =
48a5(a + δ)ηπ(−1 + ρ̃)2

δ(162a2δ2 + 162aδ3 + 81δ4 + 4a4(1 + 2ρ̃)2 + 36a3(δ + 2δρ̃))
, (4)
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and ρ̃ = ρp/ρ0 with the particle density ρp, the particle radius a, the spherical particle volume Vp, and the undisturbed

time-harmonic fluid velocity vector vi in index notation. The integration in eq. 3 is performed over the fluid volume

V . The expression strongly depends on the acoustic mode shape in the fluid cavity as well as the particle distribution.

At identical particle and fluid density (ρ̃ = 1), the loss factor component ϕ5 vanishes. The results of eqn. 2 have

been validated against numerical reference simulations that directly resolve the viscous boundary layer. Remarkable

agreement within a fraction of 1% has been found in all studied examples (Hahn and Dual (2015)).

4. Acoustofluidic loss factor in a realistic BAW micro-device

For the device shown in Fig. 1 (a), we evaluate the acoustofluidic loss factor with all its components for the

frequency range between 0.1 MHz and 2 MHz. Since the loss factor components of section 3 depend on the acoustic

mode shape in the fluid cavity, they cannot be calculated a priori. Nevertheless, they can be determined based on a

preceding device simulation where the acoustofluidic loss factor is only roughly guessed. Based on these simulation

results, the realistic acoustofluidic loss factor can be calculated and plugged into the final device simulation which

then is able to predict the amplitudes accurately. This procedure works because a wrong acoustofluidic loss factor

only scales the simulation results with no effect on the derived loss factor components. Figure 2 shows that the

acoustofluidic loss factor can vary dramatically with frequency and confirms that the viscous boundary layer related

terms dominate.

Fig. 2. Acoustofluidic loss factor and its individual components in a realistic 3D BAW device simulation (see Fig. 1). Some loss factor components

are too small to be visible. Results are shown for a uniform 0.1 volume-% of particles (ρ̃ = 0.6, a = 10 μm).

5. Conclusion

We have demonstrated the significance and calculation of the acoustofluidic loss factor in 3D BAW devices. Our

numerical device model is computationally efficient and allows a quantitative prediction of the acoustic amplitudes

inside realistic BAW devices. With augmentations, the model can accurately predict the acoustic radiation forces on

particles as well as the acoustic streaming velocities inside acoustofluidic cavities.
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