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Abstract

The first type of pseudo-splines were introduced in [I. Daubechies, B. Han, A. Ron, Z. Shen, Framelets: MRA-based construc-
tions of wavelet frames, Appl. Comput. Harmon. Anal. 14 (1) (2003) 1–46; I. Selesnick, Smooth wavelet tight frames with zero
moments, Appl. Comput. Harmon. Anal. 10 (2) (2001) 163–181] to construct tight framelets with desired approximation orders
via the unitary extension principle of [A. Ron, Z. Shen, Affine systems in L2(Rd): The analysis of the analysis operator, J. Funct.
Anal. 148 (2) (1997) 408–447]. In the spirit of the first type of pseudo-splines, we introduce here a new type (the second type)
of pseudo-splines to construct symmetric or antisymmetric tight framelets with desired approximation orders. Pseudo-splines pro-
vide a rich family of refinable functions. B-splines are one of the special classes of pseudo-splines; orthogonal refinable functions
(whose shifts form an orthonormal system given in [I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm.
Pure Appl. Math. 41 (1988) 909–996]) are another class of pseudo-splines; and so are the interpolatory refinable functions (which
are the Lagrange interpolatory functions at Z and were first discussed in [S. Dubuc, Interpolation through an iterative scheme,
J. Math. Anal. Appl. 114 (1986) 185–204]). The other pseudo-splines with various orders fill in the gaps between the B-splines and
orthogonal refinable functions for the first type and between B-splines and interpolatory refinable functions for the second type.
This gives a wide range of choices of refinable functions that meets various demands for balancing the approximation power, the
length of the support, and the regularity in applications. This paper will give a regularity analysis of pseudo-splines of the both
types and provide various constructions of wavelets and framelets. It is easy to see that the regularity of the first type of pseudo-
splines is between B-spline and orthogonal refinable function of the same order. However, there is no precise regularity estimate
for pseudo-splines in general. In this paper, an optimal estimate of the decay of the Fourier transform of the pseudo-splines is
given. The regularity of pseudo-splines can then be deduced and hence, the regularity of the corresponding wavelets and framelets.
The asymptotical regularity analysis, as the order of the pseudo-splines goes to infinity, is also provided. Furthermore, we show
that in all tight frame systems constructed from pseudo-splines by methods provided both in [I. Daubechies, B. Han, A. Ron,
Z. Shen, Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal. 14 (1) (2003) 1–46] and this
paper, there is one tight framelet from the generating set of the tight frame system whose dilations and shifts already form a Riesz
basis for L2(R).
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1. Introductions

Pseudo-splines were first introduced in [12,24] in order to construct tight framelets with required approximation
order of the truncated frame series. Pseudo-splines are refinable and compactly supported. They give a wide variety of
choices of refinable functions and provide large flexibilities in wavelet and framelet constructions and filter designs.
Functions such as B-splines, interpolatory, or orthogonal refinable functions are special cases of them. An optimal
regularity analysis of pseudo-splines does not come easily, as it has already been illustrated in a regularity estimate
of the orthonormal refinable functions, which is a special case of pseudo-splines (see [4] and [10]). This paper gives
a systematic regularity analysis of both types of pseudo-splines. Furthermore, the technique used to estimate the
regularity of pseudo-splines can be applied to discover that the tight frame systems derived from the methods given
in both [12] and this paper have one framelet whose dilations and shifts already form a Riesz basis for L2(R). This
leads to a new understanding of the structure of the pseudo-spline tight frame systems.

A function φ ∈ L2(R) is refinable if it satisfies the refinement equation

φ = 2
∑
k∈Z

a(k)φ(2· − k) (1.1)

for some sequence a ∈ �2(Z), called refinement mask of φ.
By Lp(R), for 1 � p < ∞, we denote all the functions f (x) satisfying

∥∥f (x)
∥∥

Lp(R)
:=

(∫
R

∣∣f (x)
∣∣p dx

) 1
p

< ∞;

and �p(Z) the set of all sequences c defined on Z such that

‖c‖�p(Z) :=
(∑

j∈Z

∣∣c(j)
∣∣p) 1

p

< ∞.

The Fourier transform of a function f ∈ L1(R) is defined by

f̂ (ξ) :=
∫
R

f (t)e−iξ t dt, ξ ∈ R,

which can be extended to more general function spaces (e.g., L2(R)) naturally. Similarly, the Fourier series ĉ of a
sequence c ∈ �2(Z) is defined by

ĉ(ξ ) :=
∑
j∈Z

c(j)e−ijξ , ξ ∈ R.

With these, the refinement equation (1.1) can be written in terms of its Fourier transform as

φ̂(ξ) = â(ξ/2)φ̂(ξ/2), ξ ∈ R.

We also call â a refinement mask for convenience.
Pseudo-splines are defined in terms of their refinement masks. It starts with the simple identity, for given nonneg-

ative integers l and m with l � m − 1,

1 = (
cos2(ξ/2) + sin2(ξ/2)

)m+l
. (1.2)

The refinement masks of pseudo-splines are defined by the summation of the first l+1 terms of the binomial expansion
of (1.2). In particular, the refinement mask of a pseudo-spline of Type I with order (m, l) is given by, for ξ ∈ [−π,π],

∣∣1â(ξ)
∣∣2 := ∣∣1â(m,l)(ξ)

∣∣2 := cos2m(ξ/2)

l∑(
m + l

j

)
sin2j (ξ/2) cos2(l−j)(ξ/2) (1.3)
j=0
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and the refinement mask of a pseudo-spline of Type II with order (m, l) is given by, for ξ ∈ [−π,π],

2â(ξ) := 2â(m,l)(ξ) := cos2m(ξ/2)

l∑
j=0

(
m + l

j

)
sin2j (ξ/2) cos2(l−j)(ξ/2). (1.4)

Except for some special circumstances, we always drop the subscript “(m, l)” in 1â(ξ)(m,l) and 2â(ξ)(m,l) for simplic-
ity. We note that the mask of Type I is obtained by taking the square root of the mask of Type II using the Fejér–Riesz
lemma (see, e.g., [10] and [20]), i.e., 2â(ξ) = |1â(ξ)|2. Type I was introduced and used in [12] in their constructions
of tight framelets.

The corresponding pseudo-splines can be defined in terms of their Fourier transforms, i.e.,

kφ̂(ξ) :=
∞∏

j=1

kâ
(
2−j ξ

)
, k = 1,2. (1.5)

The pseudo-splines with order (m,0) for both types are B-splines. Recall that a B-spline with order m and its refine-
ment mask are defined by

B̂m(ξ) = e−ij
ξ
2

(
sin(ξ/2)

ξ/2

)m

and â(ξ) = e−ij
ξ
2 cosm(ξ/2),

where j = 0 when m is even, j = 1 when m is odd (for detailed discussions about B-splines, one may refer to [2]).
The pseudo-splines of Type I with order (m,m − 1) are the refinable functions with orthonormal shifts (called or-
thogonal refinable functions) given in [11]. The pseudo-splines of Type II with order (m,m − 1) are the interpolatory
refinable functions (which were first introduced in [14] and a systematic construction was given in [11]). Recall that
a continuous function φ ∈ L2(R) is interpolatory if φ(j) = δ(j), j ∈ Z, i.e., φ(0) = 1, and φ(j) = 0, for j �= 0 (see,
e.g., [14]). The other pseudo-splines fill in the gap between the B-splines and orthogonal or interpolatory refinable
functions.

For fixed m, since the value of the mask |kâ(ξ)|, for k = 1,2 and ξ ∈ R, increases with l (by (1) of Lemma 2.2 in
Section 2), and the length of the mask ka also increases with l, we conclude that the decay rate of the Fourier transform
of a pseudo-spline decreases with l and the support of the corresponding pseudo-spline increases with l. In particular,
for fixed m, the pseudo-spline with order (m,0) has the highest order of smoothness with the shortest support, the
pseudo-spline with order (m,m − 1) has the lowest order of smoothness with the largest support in the family. When
we move from B-splines to orthogonal or interpolatory refinable functions, we sacrifice the smoothness and short
support of the B-splines to gain some other desirable properties, such as orthogonality or interpolatory property. What
do we get for the pseudo-splines of the other orders? When we move from B-splines to pseudo-splines, we gain the
approximation power of the truncated tight frame systems derived from them, as we will discuss below.

For a given φ ∈ L2(R), a shift (integer translation) invariant space generated by φ ∈ L2(R) is defined by

V0(φ) := Span
{
φ(· − k), k ∈ Z

}
. (1.6)

Let

Vn(φ) := {
f

(
2n·): f ∈ V0(φ), n ∈ Z

}
. (1.7)

The function φ is the generator of V0, hence the generator of Vn(φ), n ∈ Z. It is easy to see that for fixed m and type,
pseudo-splines of all orders (m, l), 0 � l � m − 1, satisfy the same order of the Strang–Fix (SF) condition. (Type I
pseudo-splines are of order m and Type II are of order 2m.) Recall that a function φ satisfies the SF condition of order
m if

φ̂(0) �= 0, φ̂(j)(2πk) = 0, j = 0,1,2, . . . ,m − 1, k ∈ Z\{0}.
Assume that φ satisfies the SF condition of order m0. Then, the order of the best approximation of a sufficiently
smooth function f from (Vn)n∈Z is m0. Recall that (Vn(φ))n∈Z provides approximation order m0 (or we can say that
the refinable function φ provides approximation order m0), if for all the f in the Sobolev space W

m0
2 (R),

dist(f,Vn) := min
{‖f − g‖L (R): g ∈ Vn

} = O
(
2−nm0

)
.
2
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Therefore, even though the (Vn)n∈Z may be generated by a different pseudo-spline for the fixed type with order
(m, l), 0 � l � m − 1, the corresponding spaces (Vn)n∈Z provide the same approximation order. However, in many
applications of wavelets and framelets, we normally use

Pn :f �→
∑
k∈Z

〈f,φn,k〉φn,k (1.8)

to approximate f , where φn,k := 2n/2φ(2n· − k). The operation Pnf may not provide the best approximation of f

from Vn. We say that the operator Pn provides approximation order m1, if for all f in the Sobolev space W
m1
2 (R)

‖f −Pnf ‖L2(R) = O
(
2−nm1

)
.

As shown in [12], the approximation order of Pnf depends on the order of the zero of

1 − ∣∣â(ξ)
∣∣2

at the origin. In fact, if 1 − |â|2 = O(| · |m2) at the origin, then m1 = min{m0,m2}. For B-splines, m2 never exceeds 2.
This indicates that the approximation order of Pn can never exceed 2 even if a high order B-spline is used. On the
other hand, for the pseudo-spline of either type with order (m, l), 0 � l � m − 1, the corresponding m2 = 2l + 2 (see
Theorem 3.10). Therefore, the approximation order of Pn, with a pseudo-spline with order (m, l), 0 � l � m − 1,
as the underlying refinable function, is min{m,2l + 2} for Type I and 2l + 2 for Type II. More importantly, the
approximation order of Pn determines the approximation order of the truncated series of a tight frame system. For
given Ψ := {ψ1,ψ2, . . . ,ψr}, the system

X(Ψ ) := {
ψn,k = 2n/2ψ

(
2n· − k

)
, ψ ∈ Ψ, n, k ∈ Z

}
is a tight frame for L2(R) if∑

g∈X(Ψ )

∣∣〈f,g〉∣∣2 = ‖f ‖2
L2(R), ∀f ∈ L2(R).

For X(Ψ ), define the truncated operator as

Qn :f �→
∑

ψ∈Ψ, k∈Z, j<n

〈f,ψj,k〉 ψj,k. (1.9)

When the tight framelets Ψ are obtained via the unitary extension principle (see, e.g., Section 4.2) from the multires-
olution analysis generated by the same φ, then [12, Lemma 2.4] shows that Pnf = Qnf for all f ∈ L2(R). Recall
that for a compactly supported refinable function φ ∈ L2(R), we define V0 and Vn as in (1.6) and (1.7). Then, the
sequence of spaces (Vn)n∈Z forms a multiresolution analysis (MRA) generated by φ, i.e., (i) Vn ⊂ Vn+1,∀n ∈ Z;
(ii)

⋃
n∈Z

Vn = L2(R),
⋂

n∈Z
Vn = {0} (see, e.g., [3] and [18]). The wavelet system X(Ψ ) is said to be MRA-based if

there exists an MRA (Vn)n∈Z, such that Ψ ∈ V1. If, in addition, the system X(Ψ ) is a (tight) frame system, we refer
to the elements of Ψ as (tight) framelets.

Therefore, the tight frame system derived from a pseudo-spline normally gives better approximation order when
the truncated series is used to approximate the underlying functions than that derived from B-splines. For fixed m,
the choice of l depends entirely on applications. One needs to balance among the approximation order, the length of
support of the wavelet, and regularity according to the practical problems in hand.

The rest of the paper is organized as follows: Section 2 gives some technical lemmata used in other sections.
Section 3 focuses on the analysis of regularity and approximation order. In particular, the exact decay of the Fourier
transforms of the pseudo-splines for all orders of both types are given. The asymptotical analysis is also provided. In
Section 4, we show that in all tight frame systems constructed from pseudo-splines by methods provided both in [12]
and this paper, there is one tight framelet from the generating set of the tight frame system whose dilations and shifts
already form a Riesz basis for L2(R). Furthermore, (anti)symmetric tight framelets, which have a Riesz wavelet as
one of the framelets, are designed.
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2. Two lemmata

This section gives two key technical lemmata that will be used to prove several key results of this paper. We start
with the following lemma on binomial coefficients, where (1) is well known (see, e.g., [8]) and the proof of (3) is
rather technical but needed in Section 4.

Lemma 2.1. For given nonnegative integers m, j , l, we have:

(1)
(
m+1

j

) = (
m
j

) + (
m

j−1

)
for j � 1 and (j + 1)

(
m+j
j+1

) = (m + j)
(
m−1+j

j

)
.

(2) 2(m + 1)
∑l−1

j=0

(
m+l

j

) − l
∑l

j=0

(
m+l

j

)
� 0 for m � 1 and 1 � l � m − 1.

(3)
2l(m+l

l )
1
2∑l

j=0 (
m+l

j )
� 1 for all m � 1 and 0 � l � m − 1.

Proof. The identities in (1) are well known and can be proven directly by the definition of the binomial coefficients.
For (2), since m > l, we only need to check if

(m + 1)

l−1∑
j=0

(
m + l

j

)
− l

(
m + l

l

)
� 0

holds, which follows from the identity (m + 1)
(
m+l
l−1

) = l
(
m+l

l

)
.

Finally, we prove (3) by induction with respect to m. Since (3) is obviously true for l = 0, we now focus on
1 � l � m − 1. When m = 1, the inequality trivially holds. Assume (3) holds when m = m0, i.e.,

22l

(
m0 + l

l

)
�

(
l∑

j=0

(
m0 + l

j

))2

for all 1 � l � m0 − 1. Consider the case m = m0 + 1. We first show that (3) holds for all l, where 1 � l � m0 − 1.
For 1 � l � m0 − 1, we have

22l

(
m0 + l + 1

l

)
� m0 + l + 1

m0 + 1

(
l∑

j=0

(
m0 + l

j

))2

(by induction hypothesis)

=
(

l∑
j=0

(
m0 + l

j

)
+

(√
m0 + l + 1

m0 + 1
− 1

)
l∑

j=0

(
m0 + l

j

))2

<

(
l∑

j=0

(
m0 + l

j

)
+ l

2m0 + 2

l∑
j=0

(
m0 + l

j

))2

�
(

l∑
j=0

(
m0 + l

j

)
+

l−1∑
j=0

(
m0 + l

j

))2

(from (2))

=
(

l∑
j=0

(
m0 + l + 1

j

))2

(from (1)).

This shows that (3) holds for all 1 � l � m0 − 1, it remains to show (3) holds for l = m0, i.e., to show

22m0

(
2m0 + 1

m0

)
�

(
m0∑(

2m0 + 1

j

))2

. (2.1)

j=0
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Observe that

m0∑
j=0

(
2m0 + 1

j

)
= 1

2

2m0+1∑
j=0

(
2m0 + 1

j

)
= 22m0 .

Then (2.1) is equivalent to(
2m0 + 1

m0

)
�

m0∑
j=0

(
2m0 + 1

j

)
,

which is obviously true. This concludes the proof of (3). �
Define

Pm,l(y) :=
l∑

j=0

(
m + l

j

)
yj (1 − y)l−j (2.2)

and

Rm,l(y) := (1 − y)mPm,l(y), (2.3)

where y = sin2(ξ/2) and m, l are nonnegative integers with l � m − 1. Then, it is obvious that

Rm,l

(
sin2(ξ/2)

) = 2â(ξ).

Next, we give several basic properties of the polynomials Pm,l(y) and Rm,l(y). Parts (2)–(4) of the following
lemma are mainly used in Sections 3.3 and 4.

Lemma 2.2. For nonnegative integers m and l with l � m − 1, let Pm,l(y) and Rm,l(y) be the polynomials defined in
(2.2) and (2.3). Then

(1) Pm,l(y) = ∑l
j=0

(
m−1+j

j

)
yj .

(2) R′
m,l(y) = −(m + l)

(
m+l−1

l

)
yl(1 − y)m−1.

(3) Define Q(y) := Rm,l(y) + Rm,l(1 − y). Then,

min
y∈[0,1]Q(y) = Q

(
1

2

)
= 21−m−l

l∑
j=0

(
m + l

j

)
.

(4) Define S(y) := R2
m,l(y) + R2

m,l(1 − y). Then,

min
y∈[0,1]S(y) = S

(
1

2

)
= 21−2m−2l

(
l∑

j=0

(
m + l

j

))2

.

Proof. For fixed m, we prove (1) by induction with respect to l. It is obviously true for l = 0. Now suppose (1) holds
for l0. Consider l = l0 + 1,

Pm,l(y) =
l0+1∑
j=0

(
m + l0 + 1

j

)
yj (1 − y)l0−j+1

= (1 − y)l0+1 +
l0+1∑
j=1

(
m + l0 + 1

j

)
yj (1 − y)l0−j+1.

Applying the first identity in (1) of Lemma 2.1, we have,
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Pm,l(y) = (1 − y)l0+1 +
l0+1∑
j=1

(
m + l0

j

)
yj (1 − y)l0−j+1 +

l0∑
j=0

(
m + l0

j

)
yj+1(1 − y)l0−j

= (1 − y)Pm,l0(y) + yPm,l0(y) +
(

m + l0

l0 + 1

)
yl0+1

=
l0∑

j=0

(
m − 1 + j

j

)
yj +

(
m + l0

l0 + 1

)
yl0+1 (by induction hypothesis)

=
l0+1∑
j=0

(
m − 1 + j

j

)
yj .

We prove (2) by induction with respect to l for given m. It is obviously true when l = 0. Suppose (2) holds for l0,
i.e.,

R′
m,l0

(y) = −(m + l0)

(
m + l0 − 1

l0

)
yl0(1 − y)m−1

and consider the case l = l0 + 1 � m − 1. Using (1) and the definition of Rm,l(y) in (2.3), we have

Rm,l0+1(y) = (1 − y)mPm,l0+1(y) = (1 − y)m
(

Pm,l0(y) +
(

m + l0

l0 + 1

)
yl0+1

)
.

Since Rm,l0(y) = (1 − y)mPm,l0(y), we have

Rm,l0+1(y) =
(

m + l0

l0 + 1

)
yl0+1(1 − y)m + Rm,l0(y).

Then,

R′
m,l0+1(y) = (l0 + 1)

(
m + l0

l0 + 1

)
yl0(1 − y)m − m

(
m + l0

l0 + 1

)
yl0+1(1 − y)m−1

− (m + l0)

(
m + l0 − 1

l0

)
yl0(1 − y)m−1.

Pulling the common factor yl0(1 − y)m−1 out, one obtains

R′
m,l0+1(y) = yl0(1 − y)m−1

(
(l0 + 1)

(
m + l0

l0 + 1

)
− (l0 + 1)

(
m + l0

l0 + 1

)
y

− m

(
m + l0

l0 + 1

)
y − (m + l0)

(
m + l0 − 1

l0

))
.

By using the second identity in (1) of Lemma 2.1, one obtains

R′
m,l0+1(y) = −(m + l0 + 1)

(
m + l0

l0 + 1

)
yl0+1(1 − y)m−1.

This concludes the proof of (2).
For (3), we compute Q′(y), i.e.,

Q′(y) = R′
m,l(y) + (

Rm,l(1 − y)
)′ = R′

m,l(y) − R′
m,l(1 − y).

Applying (2), one obtains

Q′(y) = (m + l)

(
m + l − 1

l

)(
ym−1(1 − y)l − (1 − y)m−1yl

)
.

Now we show that Q′(y) � 0 on [0, 1
2 ], Q′(y) � 0 on [ 1

2 ,1]. Note that

ym−l−1 � (1 − y)m−l−1 for all y ∈
[

0,
1
]
.

2
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Multiplying both sides by yl(1 − y)l ,

ym−1(1 − y)l � (1 − y)m−1yl for all y ∈
[

0,
1

2

]
.

Similarly we have

ym−1(1 − y)l � (1 − y)m−1yl for all y ∈
[

1

2
,1

]
.

We conclude that

Q′(y)

{
� 0, y ∈ [0, 1

2 ],
� 0, y ∈ [ 1

2 ,1].
This means that Q(y) reaches its minimum value at the point y = 1

2 . Now we compute Q
( 1

2

)
. Note that Q

( 1
2

) =
2Rm,l

( 1
2

) = 21−mPm,l

( 1
2

)
. Recall that Pm,l(y) is defined in (2.2), i.e., Pm,l(y) = ∑l

j=0

(
m+l

j

)
yj (1 − y)l−j . Then

min
y∈[0,1]Q(y) = Q

(
1

2

)
= 21−m2−l

l∑
j=0

(
m + l

j

)
= 21−m−l

l∑
j=0

(
m + l

j

)
.

With (3), the proof of (4) is simpler. Since

S′(y) = 2Rm,l(y)R′
m,l(y) + 2Rm,l(1 − y)

(
Rm,l(1 − y)

)′
,

using the identities

Rm,l(y) = (1 − y)mPm,l(y),

R′
m,l(y) = −(m + l)

(
m + l − 1

l

)
yl(1 − y)m−1

and (
Rm,l(1 − y)

)′ = (m + l)

(
m + l − 1

l

)
ym−1(1 − y)l,

we obtain

S′(y)

2(m + l)
(
m+l−1

l

) =
l∑

j=0

(
m − 1 + j

j

)(
(1 − y)l+j y2m−1 − yl+j (1 − y)2m−1).

For each 0 � j � l and y ∈ [0, 1
2 ], we have y2m−l−j−1 � (1 − y)2m−l−j−1; and for y ∈ [ 1

2 ,1], we have y2m−l−j−1 �
(1 − y)2m−l−j−1. Then by similar arguments as in (3) we conclude,

S′(y)

{
� 0, y ∈ [0, 1

2 ],
� 0, y ∈ [ 1

2 ,1].
Thus miny∈[0,1] S(y) = S

( 1
2

)
. Since Rm,l

( 1
2

) = 2−m−l
∑l

j=0

(
m+l

j

)
, we have

min
y∈[0,1]S(y) = S

(
1

2

)
= 2R2

m,l

(
1

2

)
= 21−2m−2l

(
l∑

j=0

(
m + l

j

))2

. �

Remark 2.3. From (1) of Lemma 2.2 we know that the refinement mask of the pseudo-spline of Type I in (1.3) can
be written as

∣∣1â(ξ)
∣∣2 = cos2m(ξ/2)

l∑
j=0

(
m − 1 + j

j

)
sin2j (ξ/2).

Hence, the pseudo-spline of Type I with order (m,m − 1) is indeed the refinable function whose shifts form an ortho-
normal system constructed in [11] and the pseudo-spline of Type II with order (m,m−1) is indeed the autocorrelation
of the orthogonal refinable function, which is interpolatory.
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3. Basics of pseudo-splines

This section is devoted to a systematic analysis of the regularity of pseudo-splines and approximation order of
quasi-interpolatory operator Pn (see (1.8)) defined by pseudo-splines. These two are basic and essential properties
of pseudo-splines. Indeed, the regularity of pseudo-splines determines the regularity of the corresponding wavelets
and framelets; and the approximation order of Pn determines that of the truncated wavelet and framelet series. These
two properties, together with the length of support, are the key criteria in selecting wavelets or framelets in various
applications.

3.1. Regularity

In this section the regularity of the pseudo-splines is analyzed. For α = n + β , n ∈ N, 0 � β < 1, the Hölder space
Cα (see, e.g., [10]) is defined to be the set of functions which are n times continuously differentiable and such that the
nth derivative f (n) satisfies the condition,∣∣f (n)(x + h) − f (n)(x)

∣∣ � C|h|β, ∀x,h.

It is well known (see [10]) that if∫
R

∣∣f̂ (ξ)
∣∣(1 + |ξ |)α

< ∞,

then f ∈ Cα . In particular, if |f̂ (ξ)| � C(1 + |ξ |)−1−α−ε, then f ∈ Cα .
The main idea here is to estimate the decay of the Fourier transform of pseudo-splines with order (m, l) in order to

get the lower bound of the regularity of the pseudo-splines. It turns out that this lower bound coincides with the upper
bound when m goes to infinity, as shown in Section 3.2. It is well known that the exact Sobolev regularity of a given
refinable function can be obtained via its mask by applying the transfer operator and it is a very well studied area
(see, e.g., [10,23] and references in therein). Although the exact Sobolev exponent of a give refinable function can
be computed exactly by computing the spectrum of the transfer operator derived from the corresponding refinement
mask, it is hard to analyze the Sobolev exponents of a class of refinable functions, such as pseudo-splines discussed
here, systematically from the transfer operator approach. This is simply because a different refinable function will
lead to a different transfer operator. This is the main reason why we give here a systematic estimate of the decay of
the Fourier transform of pseudo-splines instead.

Since for any compactly supported refinable function φ in L2(R) with φ̂(0) = 1, the refinement mask a must satisfy
â(0) = 1 and â(π) = 0 (see, e.g., [10,19]), then â(ξ) can be factorized as

â(ξ) =
(

1 + e−iξ

2

)n

L(ξ),

where n is the maximum multiplicity of zeros of â at π and L(ξ) is a trigonometric polynomial with L(0) = 1. Hence,
we have

φ̂(ξ) =
∞∏

j=1

â
(
2−j ξ

) =
∞∏

j=1

(
1 + e−i(2−j ξ)

2

)n ∞∏
j=1

L
(
2−j ξ

) =
(

1 − e−iξ

iξ

)n ∞∏
j=1

L
(
2−j ξ

)
.

This shows that any compactly supported refinable function in L2(R) is the convolution of a B-spline of some order,
say n, with a distribution (see [21]). Indeed, a B-spline of order n can also be defined via its Fourier transform by

B̂n :=
(

1 − e−iξ

iξ

)n

.

The B-spline of order n is a piecewise polynomial of degree n − 1 in Cn−1−ε(R), supported on [0, n], and has
refinement mask(

1 + e−iξ
)n

.

2
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Since L(ξ) is bounded, L(ξ) is actually the refinement mask of a refinable distribution. Therefore, φ is the convolution
of the B-spline Bn with the distribution. The regularity of φ comes from the B-spline factor while the distribution
factor takes away the regularity. But the distribution component also provides some desirable properties for φ, such
as interpolatory properties, orthogonality of its shifts and approximation order of certain quasi-interpolants.

The decay of |φ̂| can be characterized by |â| as stated in the following theorem. The proof of this theorem can be
found in [10]. Note that in the following theorem, we write |â| in the form of

∣∣â(ξ)
∣∣ =

∣∣∣∣
(

1 + e−iξ

2

)n

L(ξ)

∣∣∣∣ = cosn(ξ/2)
∣∣L(ξ)

∣∣, ξ ∈ [−π,π].

Theorem 3.1. Let a be the refinement mask of the refinable function φ of the form∣∣â(ξ)
∣∣ = cosn(ξ/2)

∣∣L(ξ)
∣∣, ξ ∈ [−π,π].

Suppose that∣∣L(ξ)
∣∣ �

∣∣∣∣L
(

2π

3

)∣∣∣∣ for |ξ | � 2π

3
,

∣∣L(ξ)L(2ξ)
∣∣ �

∣∣∣∣L
(

2π

3

)∣∣∣∣
2

for
2π

3
� |ξ | � π.

(3.1)

Then |φ̂(ξ)| � C(1 + |ξ |)−n+κ , with κ = log
(∣∣L( 2π

3

)∣∣)/ log 2, and this decay is optimal.

This theorem allows us to estimate the decay of the Fourier transform of a refinable function via its refinement
mask. Since |1φ̂|2 = |2φ̂|, the decay rate of |1φ̂| is half of that of |2φ̂|. Thus we can focus on the analysis of the
decay of the Fourier transforms of pseudo-splines of Type II. Based on (1) of Lemma 2.2, we will show that Pm,l(y),
defined in (2.2), satisfies (3.1). This will lead directly to the estimate of the regularity of pseudo-splines. Note that the
corresponding result for l = m − 1 was proven in [4] which led to the optimal estimates for the decay of the Fourier
transforms of the orthogonal and interpolatory refinable functions. Here, the more general result for pseudo-splines is
obtained by a simpler proof than the original one of [4] and [10].

Proposition 3.2. Let Pm,l(y) be defined as in (2.2), where l,m are nonnegative integers with l � m − 1. Then

Pm,l(y) � Pm,l

(
3

4

)
for y ∈

[
0,

3

4

]
, (3.2)

Pm,l(y)Pm,l

(
4y(1 − y)

)
�

(
Pm,l

(
3

4

))2

for y ∈
[

3

4
,1

]
. (3.3)

Proof. It is clear that (3.2) is true. Indeed, by using (1) of Lemma 2.2 we have that Pm,l(y) is monotonically increasing
on [0, 3

4 ] (in fact, it is monotonically increasing on (0,∞)). Hence, we focus on the proof of (3.3).
Throughout this proof, we let m be fixed. Let

Wm,l(y) := Pm,l(y)Pm,l

(
4y(1 − y)

) −
(

Pm,l

(
3

4

))2

.

Then, the inequality (3.3) is equivalent to

Wm,l(y) � 0 for all y ∈
[

3

4
,1

]
. (3.4)

In order to show (3.4), we show, instead,

Wm,l+1(y) − Wm,l(y) � 0 for all y ∈
[

3

4
,1

]
, l = 0,1, . . . ,m − 2. (3.5)

Note that since for l = 0, Pm,0(y) = 1 for all y ∈ [0,1], (3.4) is obviously true for l = 0. Hence, (3.4) follows from
(3.5) and (3.3) follows from (3.4).
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We now compute Wm,l+1(y) − Wm,l(y). By (1) of Lemma 2.2, one obtains

Wm,l+1(y) − Wm,l(y) =
(

l+1∑
j=0

(
m − 1 + j

j

)
yj

)(
l+1∑
j=0

(
m − 1 + j

j

)(
4y(1 − y)

)j

)

−
(

l∑
j=0

(
m − 1 + j

j

)
yj

)(
l∑

j=0

(
m − 1 + j

j

)(
4y(1 − y)

)j

)

+ P 2
m,l

(
3

4

)
− P 2

m,l+1

(
3

4

)
.

Splitting the sum
∑l+1

j=0

(
m−1+j

j

)
yj , one obtains

Wm,l+1(y) − Wm,l(y) =
(

l∑
j=0

(
m − 1 + j

j

)
yj

)(
l+1∑
j=0

(
m − 1 + j

j

)(
4y(1 − y)

)j

)

+
(

m + l

l + 1

)
yl+1

l+1∑
j=0

(
m − 1 + j

j

)(
4y(1 − y)

)j

−
(

l∑
j=0

(
m − 1 + j

j

)
yj

)(
l∑

j=0

(
m − 1 + j

j

)(
4y(1 − y)

)j

)

+ P 2
m,l

(
3

4

)
− P 2

m,l+1

(
3

4

)
.

Combining the first and the third terms, one obtains

Wm,l+1(y) − Wm,l(y) =
(

m + l

l + 1

)((
4y(1 − y)

)l+1
l∑

j=0

(
m − 1 + j

j

)
yj

+ yl+1
l+1∑
j=0

(
m − 1 + j

j

)(
4y(1 − y)

)j

)
+ P 2

m,l

(
3

4

)
− P 2

m,l+1

(
3

4

)
. (3.6)

Since Wm,l+1
( 3

4

) − Wm,l

( 3
4

) = 0 − 0 = 0, it suffices to show that Wm,l+1(y) − Wm,l(y) monotonically decreases
on [ 3

4 ,1], which is equivalent to showing that

G(y) := (
4y(1 − y)

)l+1
l∑

j=0

(
m − 1 + j

j

)
yj + yl+1

l+1∑
j=0

(
m − 1 + j

j

)(
4y(1 − y)

)j

monotonically decreases on [ 3
4 ,1]. For this purpose, we obtain G′ as follows:

G′(y) = (l + 1)(4 − 8y)
(
4y(1 − y)

)l
l∑

j=0

(
m − 1 + j

j

)
yj + (

4y(1 − y)
)l+1

l−1∑
j=0

(
m + j

j + 1

)
(j + 1)yj

+ (l + 1)yl
l+1∑
j=0

(
m − 1 + j

j

)(
4y(1 − y)

)j + yl+1(4 − 8y)

l∑
j=0

(
m + j

j + 1

)
(j + 1)

(
4y(1 − y)

)j
.
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Applying (1) of Lemma 2.1 to the second and the fourth term above, one obtains

G′(y) = (l + 1)(4 − 8y)
(
4y(1 − y)

)l
l∑

j=0

(
m − 1 + j

j

)
yj + (

4y(1 − y)
)l+1

l∑
j=0

(
m − 1 + j

j

)
(m + j)yj

− (m + l)

(
m − 1 + l

l

)
yl

(
4y(1 − y)

)l+1 + (l + 1)yl
l∑

j=0

(
m − 1 + j

j

)(
4y(1 − y)

)j

+ (l + 1)

(
m + l

l + 1

)
yl

(
4y(1 − y)

)l+1 + yl+1(4 − 8y)

l∑
j=0

(
m − 1 + j

j

)
(m + j)

(
4y(1 − y)

)j
.

Since (l + 1)
(
m+l
l+1

) = (m + l)
(
m−1+l

l

)
by (1) of Lemma 2.1, we have

(l + 1)

(
m + l

l + 1

)
yl

(
4y(1 − y)

)l+1 − (m + l)

(
m − 1 + l

l

)
yl

(
4y(1 − y)

)l+1 = 0.

Hence,

G′(y) =
l∑

j=0

(
m − 1 + j

j

)(
(l + 1)(4 − 8y)

(
4y(1 − y)

)l
yj + (m + j)

(
4y(1 − y)

)l+1
yj

+ (l + 1)yl
(
4y(1 − y)

)j + (m + j)(4 − 8y)yl+1(4y(1 − y)
)j )

.

Pulling the common factor yj (4y(1 − y))j out from each term of the above summation, one obtains

G′(y) =
l∑

j=0

(
m − 1 + j

j

)
yj

(
4y(1 − y)

)j (
(l + 1)(4 − 8y)

(
4y(1 − y)

)l−j

+ (m + j)
(
4y(1 − y)

)l+1−j + (l + 1)yl−j + (m + j)(4 − 8y)yl+1−j
)
.

For 0 � j � l � m − 2, consider

gl,j (y) := (l + 1)(4 − 8y)
(
4y(1 − y)

)l−j + (m + j)
(
4y(1 − y)

)l+1−j

+ (l + 1)yl−j + (m + j)(4 − 8y)yl+1−j

= (l + 1)
(
4y(1 − y)

)l−j (4y(1 − y) − (8y − 4)
) + (l + 1)yl−j

(
1 − (8y − 4)

)
+ (m + j − l − 1)

((
4y(1 − y)

)l+1−j − (8y − 4)yl+1−j
)
.

The inequality 4y(1 − y) � y and 8y − 4 � 2 for y ∈ [ 3
4 ,1] show that gl,j (y) � 0 and G′(y) � 0 on this inter-

val. �
Remark 3.3. It is clear that Wm,0(y) = 0, y ∈ [ 3

4 ,1], because Pm,0 = 1. It was also proven by [4] that Wm,m−1(y) � 0,
y ∈ [ 3

4 ,1], which is equivalent to (3.3). The decreasing of Wm,l(y), for y ∈ [ 3
4 ,1], as l increases shown above indicates

some difficulties to prove (3.3) directly for an arbitrary l, 0 < l < m − 1, since it has a smaller margin than the case
when l = m− 1. In fact, to some extent, the proof of (3.3) for the case when l = m− 1 relies on a numerical check for
m � 12 (see [10]). Inequality (3.3) for the case l = m − 1 as proven in [4] (also see [10]) is one of the cornerstones of
the wavelet theory, because it immediately leads to the optimal estimate of the decay of the Fourier transforms (hence,
an estimate of the regularity) of both interpolatory and orthogonal refinable functions. We take a different approach
here by proving that Wm,l(y), y ∈ [ 3

4 ,1], decreases as l increases. As a result, we obtain (3.3) for all 0 � l � m − 1
by the fact that Wm,0(y) = 0, y ∈ [ 3

4 ,1]. This shows that introducing the concepts of the pseudo-splines gives a better
understanding and a more complete picture of the proof of (3.3) and also, we hope, enriches the theory of wavelets.
Note that the proof of (3.3) for all 0 � l � m−1 given here does not rely on any numerical computation and is simpler
than the original proof of [4] and [10].
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With this proposition, one obtains the regularity of pseudo-splines by applying Theorem 3.1.

Theorem 3.4. Let 2φ be the pseudo-spline of Type II with order (m, l). Then∣∣
2φ̂(ξ)

∣∣ � C
(
1 + |ξ |)−2m+κ

,

where κ = log
(
Pm,l

( 3
4

))
/ log 2. Consequently, 2φ ∈ Cα2−ε with α2 = 2m − κ − 1. Furthermore, let 1φ be the pseudo-

spline of Type I with order (m, l). Then∣∣1φ̂(ξ)
∣∣ � C

(
1 + |ξ |)−m+ κ

2 .

Consequently, 1φ ∈ Cα1−ε with α1 = m − κ
2 − 1.

Proof. Since

Pm,l

(
sin2(ξ)

) =
l∑

j=0

(
m + l

j

)
sin2j (ξ/2) cos2(l−j)(ξ/2),

the refinement mask of the pseudo-spline of Type II with order (m, l) is

2â(ξ) = cos2m(ξ/2)

l∑
j=0

(
m + l

j

)
sin2j (ξ/2) cos2(l−j)(ξ/2) = (

cos(ξ/2)
)2m

Pm,l

(
sin2(ξ/2)

)
.

Hence, |L(ξ)| in Theorem 3.1 is exactly Pm,l(sin2(ξ/2)) here. Let y = sin2(ξ/2). Applying (3.2) of Proposi-
tion 3.2

Pm,l(y) � Pm,l

(
3

4

)
, y ∈

[
0,

3

4

]
,

we have∣∣L(ξ)
∣∣ = Pm,l

(
sin2(ξ/2)

) = Pm,l(y) � Pm,l

(
3

4

)
= Pm,l

(
sin2

(
π

3

))
for |ξ | � 2π

3
.

Note that∣∣L(2ξ)
∣∣ = Pm,l

(
sin2(ξ)

) = Pm,l

(
4 sin2(ξ/2)

(
1 − sin2(ξ/2)

)) = Pm,l

(
4y(1 − y)

)
.

Applying (3.3) of Proposition 3.2

Pm,l(y)Pm,l

(
4y(1 − y)

)
�

(
Pm,l

(
3

4

))2

, y ∈
[

3

4
,1

]
,

we have∣∣L(ξ)L(2ξ)
∣∣ = Pm,l

(
sin2(ξ/2)

)
Pm,l

(
4 sin2(ξ/2)

(
1 − sin2(ξ/2)

))
= Pm,l(y)Pm,l

(
4y(1 − y)

)
�

(
Pm,l

(
3

4

))2

=
(

Pm,l

(
sin2

(
π

3

)))2

for
2π

3
� |ξ | � π.

Hence, by Theorem 3.1, 2φ̂ satisfies∣∣2φ̂(ξ)
∣∣ � C

(
1 + |ξ |)−2m+κ

,

where κ = log
(
Pm,l

( 3
4

))
/ log 2. This leads to 2φ ∈ Cα2−ε , where α2 = 2m − κ − 1.

Since the decay of |1φ̂| is exactly half of |2φ̂|, we have∣∣1φ̂(ξ)
∣∣ � C

(
1 + |ξ |)−m+ κ

2 ,

consequently, 1φ ∈ Cα1−ε , where α2 = m − κ − 1. �
2
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Table 1
Decay rates βm,l = 2m − κ of pseudo-splines of Type II with order (m, l) for 2 � m � 8 and 1 � l � m − 1

(m, l) l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7

m = 2 2.67807
m = 3 4.29956 3.27208
m = 4 6.00000 4.73321 3.82507
m = 5 7.75207 6.27890 5.19506 4.35316
m = 6 9.54057 7.88626 6.64465 5.66363 4.86449
m = 7 11.35614 9.54057 8.15608 7.04717 6.13261 5.36349
m = 8 13.19265 11.23182 9.71691 8.48992 7.46770 6.59988 5.85310

Table 1 gives the decay rates βm,l of the Fourier transform of pseudo-splines of Type II with order (m, l) for 2 �
m � 8 and 1 � l � m − 1. The regularity exponent of the corresponding pseudo-spline is, at least, α2 = βm,l − 1 − ε.
The decay rate of the Fourier transform of the pseudo-spline of Type I with the same order is βm,l

2 and its regularity

exponent α1 is α2−1
2 . Therefore, the table shows that for either type of the pseudo-splines and fixed order m, the decay

rate of their Fourier transform decreases as l increases, while for fixed l, it increases as m increases. This is true indeed
as shown in the following proposition.

Proposition 3.5. Let βm,l = 2m − κ with κ = logPm,l

( 3
4

)
/ log 2 as given in Theorem 3.4 and 0 � l � m − 1. Then:

(1) For fixed m, βm,l decreases as l increases.
(2) For fixed l, βm,l increases as m increases.
(3) When l = m − 1, βm,l increases as m increases.

Consequently, the decay rate β2,1 = 2.67807 is the smallest among all βm,l , with m � 2 and 0 � l � m − 1.

Proof. Part (1) follows directly from (1) of Lemma 2.2, which shows that Pm,l

( 3
4

)
increases as l increases for fixed m.

For part (2), note that

βm,l = 2m − logPm,l

( 3
4

)
log 2

.

Consider

2βm,l = 22m− logPm,l (
3
4 )

log 2 = 4m

Pm,l

( 3
4

) = 1

4−mPm,l

( 3
4

) .

Hence, part (2) is equivalent to the fact that

Im := 4−mPm,l

(
3

4

)

decreases as m increases for fixed l, which is equivalent to showing that for fixed 0 � l � m − 1,

Im+1 − Im < 0. (3.7)

Note that

Im+1 − Im = 4−m−1Pm+1,l

(
3

4

)
− 4−mPm,l

(
3

4

)
= 4−m−1

l∑
j=0

((
m + j

j

)
− 4

(
m − 1 + j

j

))(
3

4

)j

.

Inequality (3.7) follows from the fact that for 0 � j � m − 1,(
m + j

j

)
= m + j

m

(
m − 1 + j

j

)
=

(
1 + j

m

)(
m − 1 + j

j

)
< 4

(
m − 1 + j

j

)
. (3.8)

This concludes the proof of part (2).
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For part (3), using a similar argument as in the proof of part (2), one can derive that it is equivalent to showing that

Jm := 4−mPm,m−1

(
3

4

)
decreases as m increases, which, in turn, is equivalent to showing that

Jm+1 − Jm < 0 for m � 1. (3.9)

Note that, similar to the proof of part (2), we have

Jm+1 − Jm = 4−m−1

(
m∑

j=0

(
m + j

j

)(
3

4

)j

− 4
m−1∑
j=0

(
m − 1 + j

j

)(
3

4

)j
)

.

Let

M :=
m∑

j=0

(
m + j

j

)(
3

4

)j

− 4
m−1∑
j=0

(
m − 1 + j

j

)(
3

4

)j

.

Then, (3.9) is equivalent to M < 0 for m � 1. It is easy to check that M < 0, when m = 1. We consider now the case
when m � 2. First, we note that

M =
m−1∑
j=0

(
m + j

j

)(
3

4

)j

− 4
m−1∑
j=0

(
m − 1 + j

j

)(
3

4

)j

+
(

2m

m

)(
3

4

)m

=
m−1∑
j=1

(
m − 1 + j

j − 1

)(
3

4

)j

− 3
m−1∑
j=0

(
m − 1 + j

j

)(
3

4

)j

+
(

2m

m

)(
3

4

)m

,

where the last identity follows from (1) of Lemma 2.1. Substituting j for j − 1 in the first term, one obtains that

M = 3

4

m−2∑
j=0

(
m + j

j

)(
3

4

)j

− 3
m−1∑
j=0

(
m − 1 + j

j

)(
3

4

)j

+
(

2m

m

)(
3

4

)m

. (3.10)

Splitting the second term in (3.10), one obtains

M = 3

4

m−2∑
j=0

(
m + j

j

)(
3

4

)j

− 3
m−2∑
j=0

(
m − 1 + j

j

)(
3

4

)j

+
(

2m

m

)(
3

4

)m

− 3

(
2m − 2

m − 1

)(
3

4

)m−1

. (3.11)

For the last two terms of (3.11), we have(
2m

m

)(
3

4

)m

− 3

(
2m − 2

m − 1

)(
3

4

)m−1

=
(

3

4

)m((
2m

m

)
− 4

(
2m − 2

m − 1

))

=
(

3

4

)m((
4 − 2

m

)(
2m − 2

m − 1

)
− 4

(
2m − 2

m − 1

))
< 0.

Therefore,

M <
3

4

m−2∑
j=0

(
m + j

j

)(
3

4

)j

− 3
m−2∑
j=0

(
m − 1 + j

j

)(
3

4

)j

<

m−2∑
j=0

(
m + j

j

)(
3

4

)j

− 3
m−2∑
j=0

(
m − 1 + j

j

)(
3

4

)j

=
m−2∑((

m + j

j

)
− 3

(
m − 1 + j

j

))(
3

4

)j

.

j=0



B. Dong, Z. Shen / Appl. Comput. Harmon. Anal. 22 (2007) 78–104 93
Applying (3.8), one obtains, for 0 � j � m − 2,(
m + j

j

)
=

(
1 + j

m

)(
m − 1 + j

j

)
< 3

(
m − 1 + j

j

)
.

Therefore, we conclude that M < 0 and part (3) follows.
Finally, note that the decay rate of the Fourier transform of the pseudo-spline of Type I with order (2,1) is βm,l

2 ≈
1.33903. Hence, it follows from parts (1)–(3) that the decay rate of an arbitrary pseudo-spline of either type with order
(m, l), m > 2, 0 � l � m − 1, is higher than 1.33903. �
3.2. Asymptotical analysis

Proposition 3.5 reveals that the decay rates of the Fourier transforms of pseudo-splines of either type increase as m

increases for fixed l and decrease as l increases for fixed m. In this section, we give an asymptotical analysis of the
decay rate which, in turn, gives an asymptotical analysis of the regularity of 1φ and 2φ as the order (m, l) → ∞.

Theorem 3.6. Let 1φ and 2φ be the pseudo-splines of Types I and II respectively with order (m, l). Fix l = �λm�, 0 �
λ � 1, where �λm� denotes the largest integer which is smaller than or equal to λm. Then, we have∣∣1φ̂(ξ)

∣∣ � C
(
1 + |ξ |)− μ

2 m
and

∣∣2φ̂(ξ)
∣∣ � C

(
1 + |ξ |)−μm

,

where μ = log
( 4

1+λ

)λ+1( λ
3
)λ

log 2 , asymptotically for large m. This means that the asymptotic rate of the pseudo-spline of

Type I and Type II are μ
2 and μ, respectively.

Proof. As the estimate of Type I follows immediately from that of Type II, we only give the estimate for pseudo-
splines of Type II. We first prove the following fact:

x−lPm,l(x) � y−lPm,l(y) for 0 < x � y � 1. (3.12)

Indeed, assertion (1) of Lemma 2.2 gives for 0 < x � y � 1,

x−lPm,l(x) =
l∑

j=0

(
m − 1 + j

j

)
xj−l �

l∑
j=0

(
m − 1 + j

j

)
yj−l = y−lPm,l(y).

The key step to compute the asymptotic rate is to estimate the upper and lower bound of Pm,l

( 3
4

)
in terms of m

and l. For this, let x = 3
4 and y = 1 in (3.12). Then we obtain

Pm,l

(
3

4

)
�

(
3

4

)l

Pm,l(1) =
(

3

4

)l(
m + l

l

)
. (3.13)

Next, let x = 1
2 and y = 3

4 in (3.12), we obtain

Pm,l

(
3

4

)
�

(
3

2

)l

Pm,l

(
1

2

)
.

Since

Pm,l

(
1

2

)
=

l∑
j=0

(
m + l

j

)
2−j 2j−l = 2−l

l∑
j=0

(
m + l

j

)
,

one obtains

Pm,l

(
3

4

)
�

(
3

4

)l l∑(
m + l

j

)
. (3.14)
j=0
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Putting (3.13) and (3.14) together, we obtain the following estimates of Pm,l

( 3
4

)
,(

3

4

)l(
m + l

l

)
� Pm,l

(
3

4

)
�

(
3

4

)l l∑
j=0

(
m + l

j

)
.

For l � m − 1, we have

l∑
j=0

(
m + l

j

)
� m

(
m + l

l

)
.

Hence,(
3

4

)l(
m + l

l

)
� Pm,l

(
3

4

)
� m

(
3

4

)l(
m + l

l

)
. (3.15)

Next, we will use this estimate to analyze the decay of 2φ̂ with order (m, l) as m goes to infinity. The upper bound of
Pm,l

( 3
4

)
in (3.15) gives

2m − logPm,l

( 3
4

)
log 2

� 2m − log
(
m

( 3
4

)l(m+l
l

))
log 2

.

We estimate the right-hand side of the above inequality asymptotically for large (m, l) to obtain the asymptotical lower

bound of 2m − logPm,l

( 3
4
)

log 2 . For this, we first recall the Stirling approximation, i.e., m! ∼ √
2πe(m+ 1

2 ) logm−m (see, e.g.,

[15]), where am ∼ bm means that am

bm
→ 1, m → ∞. By Stirling approximation, we have

logm! ∼ log
√

2πe(m+ 1
2 ) logm−m ∼ m logm − m. (3.16)

Applying (3.16), one obtains

log

(
m + l

l

)
= log(m + l)! − logm! − log l!
∼ (m + l) log(m + l) − (m + l) − (m logm − m) − (l log l − l)

∼ (m + l) log(m + l) − m logm − l log l.

Thus,

2m − log
(
m

( 3
4

)l(m+l
l

))
log 2

= 2m − logm + l log 3
4 + log

(
m+l

l

)
log 2

∼ m

(
2 −

l
m

log 3
4 + (1 + l

m
) log(m + l) − logm − l

m
log l

log 2

)
.

By the assumption, l = �λm�, 0 � λ � 1. Hence, when m is sufficiently large, l
m

∼ λ and therefore,

2m − log
(
m

( 3
4

)l(m+l
l

))
log 2

∼ m

(
2 − log (1 + λ)

( 3+3λ
4λ

)λ

log 2

)
= m

(
log

( 4
1+λ

)λ+1(λ
3

)λ

log 2

)
.

Now we obtain the asymptotical lower bound of 2m − logPm,l (
3
4 )

log 2 , i.e., asymptotically, for large m with l = �λm�,

2m − log
∣∣Pm,l

( 3
4

)∣∣
log 2

� m

(
log

( 4
1+λ

)λ+1(λ
3

)λ

log 2

)
. (3.17)

Next, we use the left-hand side of (3.15) to obtain the asymptotical upper bound of 2m − logPm,l (
3
4 )

log 2 . First note that
(3.15) gives

2m − logPm,l

( 3
4

)
� 2m − l log 3

4 + log
(
m+l

l

)
.

log 2 log 2
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Applying arguments similar to the estimate of the lower bound by using (3.16), we will obtain the following:

2m − l log 3
4 + log

(
m+l

l

)
log 2

∼ m

(
2 −

l
m

log 3
4 + (1 + l

m
) log(m + l) − logm − l

m
log l

log 2

)

∼ m

(
log

( 4
1+λ

)λ+1(λ
3

)λ

log 2

)
.

This leads to the asymptotical lower bound of 2m − logPm,l (
3
4 )

log 2 , i.e., asymptotically, for large m with l = �λm�,

2m − logPm,l

( 3
4

)
log 2

� m

(
log

( 4
1+λ

)λ+1(λ
3

)λ

log 2

)
. (3.18)

Combining (3.17) and (3.18), we conclude that for large m, the asymptotical upper and lower bounds coincide and
equal to

2m − logPm,l

( 3
4

)
log 2

∼ m

(
log

( 4
1+λ

)λ+1(λ
3

)λ

log 2

)
= μm. (3.19)

Therefore Eq. (3.19) gives that, fixing l = �λm� and asymptotically, for large m, we have∣∣2φ̂(ξ)
∣∣ � C

(
1 + |ξ |)−μm and

∣∣1φ̂(ξ)
∣∣ � C

(
1 + |ξ |)− μ

2 m
,

where μ = log
( 4

1+λ

)λ+1( λ
3
)λ

log 2 . �
Remark 3.7. The above theorem shows that, asymptotically for large m, the smoothness of the pseudo-splines of
Types I and II increases at a rate μ/2 and μ, respectively. The proof of Theorem 3.6 also leads to the following two
observations:

(1) Consider pseudo-splines of Type II with order (m,m − p), where p is a fixed positive integer independent of m.
The asymptotic rate is 2 − log 3

log 2 ≈ 0.4150. Indeed, when l = m − p, λ ∼ l
m

= m−p
m

∼ 1 for sufficiently large m.

Similarly, for pseudo-splines of Type I with order (m,m − p), the corresponding asymptotic rate is 1 − log 3
2 log 2 ≈

0.2075.
(2) Assume that l is fixed for all m. The asymptotic rates of pseudo-splines of Types I and II with order (m, l) are 1

and 2, respectively. This is simply because, for the fixed integer l, λ ∼ l
m

∼ 0 for sufficiently large m.

Example 3.8. In Table 2, we give μ, the asymptotical rate of pseudo-splines of Type II with order (m, �λm�), as m

goes to infinity and the parameter λ = 1
10 , 1

8 , 1
6 , 1

4 , 1
2 ,1. The asymptotic rate μ0 for pseudo-splines of Type I with the

same order is just μ0 = μ
2 .

3.3. Approximation order

We follow [12] to give a brief discussion of the approximation order of Pn through Qn, where Pn is given by
(1.8) with the underlying refinable function φ and Qn is given by (1.9) with the underlying tight framelets Ψ . Char-
acterizations of approximation order of Qn were given in [12, Theorem 2.8]. Furthermore, [12, Lemma 2.4] says that
Pn = Qn on L2(R) when the tight framelets Ψ are obtained via the unitary extension principle (see Section 4.2 for
the UEP) from the MRA generated by the same refinable function φ. The following theorem is a special case of [12,
Theorem 2.8] with the understanding Pn = Qn.

Table 2
Asymptotically for large m, the smoothness of 2φ increases at rate μ, which is given in the following table with some choices of l

m → ∞ l = 0 l = m
10 l = m

8 l = m
6 l = m

4 l = m
2 l = m − 1

μ ≈ 2.0000 1.5581 1.4857 1.3789 1.2013 0.8301 0.4150
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Theorem 3.9. Let φ be a pseudo-spline of order (m, l) with refinement mask a. Let Pn be the operator as defined in
(1.8) with φ as the underlying refinable function. Then the approximation order of the operator Pn is min{m,m1},
with m1 the order of the zero of 1 − |â|2 at the origin.

With this, we have the following:

Theorem 3.10. Let m and l be nonnegative integers satisfying l � m − 1.

(1) Let 1φ be the pseudo-spline of Type I with order (m, l) and 1â be its refinement mask. Then the corresponding
operator Pn provides approximation order min{m,2l + 2}.

(2) Let 2φ be the pseudo-spline of Type II with order (m, l) and 2â be its refinement mask. Then the corresponding
operator Pn provides approximation order 2l + 2.

Proof. It was shown in [12] that 1 − |1â| = O(| · |2l+2). Therefore, Theorem 3.9 gives the rest of the proof of (1).
For (2), we compute the order of zeros of 1 − |2â|2 at the origin. We rewrite 1 − |2â|2 as

1 − |2â|2 = 1 − R2
m,l

(
sin2(ξ/2)

)
,

where Rm,l(y) was defined in (2.3). It is obvious that for ξ = 0, 1 − R2
m,l(sin2(ξ/2)) = 0. Recall that the derivative of

Rm,l(y) was given by (2) of Lemma 2.2, i.e.,

R′
m,l(y) = −(m + l)

(
m + l − 1

l

)
yl(1 − y)m−1. (3.20)

Applying (3.20) to take the first derivative of 1 − R2
m,l(sin2(ξ/2)) with respect to ξ , one obtains

(
1 − R2

m,l

(
sin2(ξ/2)

))′ = −2Rm,l

(
sin2(ξ/2)

)
R′

m,l

(
sin2(ξ/2)

)(
sin2(ξ/2)

)′

= 2Rm,l

(
sin2(ξ/2)

)(
(m + l)

(
m + l − 1

l

)
sin2l(ξ/2) cos2m−2(ξ/2)

)(
sin2(ξ/2)

)′

= 2(m + l)

(
m + l − 1

l

)
Rm,l

(
sin2(ξ/2)

)
sin2l+1(ξ/2) cos2m−1(ξ/2).

Since Rm,l(sin2(ξ/2)) and cos2m−1(ξ/2) are equal to 1 when ξ = 0 and since sin2l+1(ξ/2) has zero of order 2l + 1 at
ξ = 0, we conclude that

1 − ∣∣2â(ξ)
∣∣2 = 1 − R2

m,l

(
sin2(ξ/2)

) = O
(|ξ |2l+2).

Then Theorem 3.9 shows that the approximation order of Pn with the pseudo-spline of Type II as the underlying
refinable function is min{2m,2l + 2} = 2l + 2 for 0 � l � m − 1.

Remark 3.11. The above result says that when l � m
2 − 1, the approximation order of a pseudo-spline of Type I with

order (m, l) and one of Type II with the same order are the same, although the support of the Type I is half of that of
Type II. When l > m

2 − 1, the approximation order of Type I is m and Type II is 2l + 2 > m. The regularity of Type II
is about two times that of Type I with the same order. Furthermore, one can obtain symmetric short Riesz wavelets
and tight framelets from pseudo-splines of Type II, as we will see in the last section.

4. Riesz wavelets in framelets

In this section, we focus on the structure of the tight frame systems constructed from pseudo-splines by applying
the unitary extension principle [22]. We show that in almost all pseudo-spline tight frame systems constructed both
in [12] and the symmetric tight frame systems constructed by a pseudo-spline of Type II in this section, there is one
framelet whose dilations and shifts already form a Riesz basis for L2(R).
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4.1. Riesz wavelets

For a given ψ , define the wavelet system

X(ψ) := {
ψn,k = 2n/2ψ

(
2n· − k

)
: n, k ∈ Z

}
.

We call X(ψ) a Bessel system if for some C1 > 0 and for every f ∈ L2(R),∑
g∈X(ψ)

∣∣〈f,g〉∣∣2 � C1‖f ‖2
L2(R).

A Bessel system X(ψ) is a Riesz basis if there exists C2 > 0 such that,

C2
∥∥{cn,k}

∥∥
�2(Z

2)
�

∥∥∥∥∥
∑

(n,k)∈Z2

cn,kψn,k

∥∥∥∥∥
L2(R)

for all {cn,k} ∈ �2
(
Z

2)
and the span of {ψn,k: n, k ∈ Z} is dense in L2(R). The function ψ is called Riesz wavelet if X(ψ) forms a Riesz
basis for L2(R) and X(ψ) is also called the Riesz wavelet system.

As all pseudo-splines are compactly supported, refinable and in L2(R), the sequence of spaces (Vn)n∈Z defined via
(1.7) forms an MRA. Since the objective here is to construct Riesz wavelets, one needs to start with stable refinable
functions. Indeed, it was shown in [13, Proposition 1.1 and Lemma 2.2] that all pseudo-splines are stable (in fact, we
proved in [13] that the shifts of them are linearly independent, which is stronger than stable).

For a given stable refinable function φ ∈ L2(R), the key step in the construction of the Riesz wavelet ψ is to select
some desirable sequence b, called a wavelet mask. The wavelet ψ is then defined by b and the corresponding refinable
function φ as

ψ := 2
∑
k∈Z

b(k)φ(2· − k).

It can be written equivalently in the Fourier domain as

ψ̂(ξ) = b̂(ξ/2)φ̂(ξ/2).

When {φ(· − k): k ∈ Z} forms an orthonormal basis for V0(φ), e.g., φ is a pseudo-spline of Type I with order
(m,m − 1), define

ψ := 2
∑
k∈Z

b(k)φ(2· − k) with b(k) = (−1)k−1a(1 − k), k ∈ Z, (4.1)

or equivalently,

b̂(ξ) = e−iξ â(ξ + π).

Then the corresponding wavelet system X(ψ) with the pseudo-spline of Type I with order (m,m − 1) being the
underlying refinable function forms an orthonormal basis for L2(R). We are interested to know whether the function
ψ defined in (4.1) is a Riesz wavelet, when the refinable function φ is chosen to be the pseudo-splines with other
orders. In fact, it was shown in [17] that it is true, when φ is a B-spline, i.e., a pseudo-spline with order (m,0) or
when φ is a pseudo-spline of Type II with order (m,m − 1). In the rest of this section we will show that for all
pseudo-splines, the wavelet defined by (4.1) is a Riesz wavelet. To prove this, we use the following theorem which is
the special case of [17, Theorem 2.1]. When both refinement masks are finitely supported, a similar result was already
obtained before in [5,6,9].

Theorem 4.1. Let a be a finitely supported refinement mask of a refinable function φ ∈ L2(R) with â(0) = 1 and
â(π) = 0, such that â can be factorized into the form

∣∣â(ξ)
∣∣ =

∣∣∣∣
(

1 + e−iξ

2

)n

L(ξ)

∣∣∣∣ = cosn(ξ/2)
∣∣L(ξ)

∣∣, ξ ∈ [−π,π], (4.2)

where L is the Fourier series of a finitely supported sequence with L(π) �= 0. Suppose that∣∣â(ξ)
∣∣2 + ∣∣â(ξ + π)

∣∣2 �= 0, ξ ∈ [−π,π].
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Define

ψ̂(2ξ) := e−iξ â(ξ + π)φ̂(ξ)

and

L̃(ξ) := L(ξ)

|â(ξ)|2 + |â(ξ + π)|2 . (4.3)

Assume that

ρL := ∥∥L(ξ)
∥∥

L∞(R)
< 2n− 1

2 and ρL̃ := ∥∥L̃(ξ)
∥∥

L∞(R)
< 2n− 1

2 . (4.4)

Then X(ψ) is a Riesz basis for L2(R).

As we will show, the key step in the application of the above theorem is to estimate the upper bound of |L(ξ)| and
|L̃(ξ)|. Recall that the refinement masks of pseudo-splines of Types I and II are, for ξ ∈ [−π,π],

∣∣1â(ξ)
∣∣ := cosm(ξ/2)

(
l∑

j=0

(
m + l

j

)
sin2j (ξ/2) cos2(l−j)(ξ/2)

) 1
2

(4.5)

and

2â(ξ) := cos2m(ξ/2)

l∑
j=0

(
m + l

j

)
sin2j (ξ/2) cos2(l−j)(ξ/2). (4.6)

Hence, the corresponding L function in (4.2) for pseudo-splines of Type I is

∣∣1L(ξ)
∣∣ =

(
l∑

j=0

(
m + l

j

)
sin2j (ξ/2) cos2(l−j)(ξ/2)

) 1
2

and for pseudo-splines of Type II is

∣∣2L(ξ)
∣∣ =

l∑
j=0

(
m + l

j

)
sin2j (ξ/2) cos2(l−j)(ξ/2).

Denoting y = sin2(ξ/2), we have

|1â| = (
(1 − y)mPm,l(y)

) 1
2 , 2â = (1 − y)mPm,l(y), (4.7)

and

|1L| = (
Pm,l(y)

) 1
2 , |2L| = Pm,l(y). (4.8)

Furthermore, we have∣∣1â(ξ)
∣∣2 + ∣∣1â(ξ + π)

∣∣2 = Rm,l(y) + Rm,l(1 − y)

and ∣∣2â(ξ)
∣∣2 + ∣∣2â(ξ + π)

∣∣2 = R2
m,l(y) + R2

m,l(1 − y),

with y = sin2(ξ/2). Hence,

|1L̃| = (Pm,l(y))
1
2

Rm,l(y) + Rm,l(1 − y)
and |2L̃| = Pm,l(y)

R2
m,l(y) + R2

m,l(1 − y)
. (4.9)

The estimation of ‖1L̃‖L∞(R) and ‖2L̃‖L∞(R) are based on the following result:
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Proposition 4.2. Let m and l be given nonnegative integers with l � m − 1 and |1L̃| and |2L̃| be defined in (4.9).
Then,

(1) ‖1L̃‖L∞(R) = supy∈[0,1]
(Pm,l (y))

1
2

Rm,l(y)+Rm,l(1−y)
< 2m− 1

2 .

(2) ‖2L̃‖L∞(R) = supy∈[0,1]
Pm,l (y)

R2
m,l (y)+R2

m,l (1−y)
< 22m− 1

2 .

Proof. Note that from (1) of Lemma 2.2,

Pm,l(y) =
l∑

j=0

(
m + l

j

)
yj (1 − y)l−j =

l∑
j=0

(
m − 1 + j

j

)
yj , y ∈ [0,1], (4.10)

hence both (Pm,l(y))
1
2 and Pm,l(y) attain their maximum on [0,1] at the point 1 and the maximum values are:

(
Pm,l(1)

) 1
2 =

(
m + l

l

) 1
2

and Pm,l(1) =
(

m + l

l

)
.

By (3) of Lemma 2.2, one obtains

‖1L̃‖L∞(R) = sup
y∈[0,1]

(Pm,l(y))
1
2

Rm,l(y) + Rm,l(1 − y)
�

(
m + l

l

) 1
2

max
y∈[0,1]

1

Rm,l(y) + Rm,l(1 − y)
�

2m+l−1
(
m+l

l

) 1
2∑l

j=0

(
m+l

j

) .

Applying (3) of Lemma 2.1, i.e.,

2l
(
m+l

l

) 1
2∑l

j=0

(
m+l

j

) � 1, (4.11)

one obtains

‖1L̃‖L∞(R) � 2m−1 < 2m− 1
2 .

The proof of (2) is similar to that of (1). Indeed, by (4) of Lemma 2.2

‖2L̃‖L∞(R) = sup
y∈[0,1]

Pm,l(y)

R2
m,l(y) + R2

m,l(1 − y)
�

(
m + l

l

)
max

y∈[0,1]
1

R2
m,l(y) + R2

m,l(1 − y)
= 22m+2l−1

(
m+l

l

)
(∑l

j=0

(
m+l

j

))2
.

Applying (4.11) again, we have

‖2L̃‖L∞(R) � 22m−1 < 22m− 1
2 . �

Theorem 4.3. Let kφ, k = 1,2, be the pseudo-spline of Types I and II with order (m, l). The refinement masks ka,
k = 1,2, are given in (1.3) and (1.4). Define

kψ̂(2ξ) := e−iξ
kâ(ξ + π)kφ̂(ξ), k = 1,2, (4.12)

then X(kψ) forms a Riesz basis for L2(R).

Proof. To apply Theorem 4.1, we first note that∣∣1â(ξ)
∣∣2 + ∣∣1â(ξ + π)

∣∣2 = Rm,l

(
sin2(ξ/2)

) + Rm,l

(
cos2(ξ/2)

) �= 0

and ∣∣2â(ξ)
∣∣2 + ∣∣2â(ξ + π)

∣∣2 = R2
m,l

(
sin2(ξ/2)

) + R2
m,l

(
cos2(ξ/2)

) �= 0

for all ξ ∈ [−π,π], where Rm,l is defined in (2.3) (by (3) and (4) of Lemma 2.2).
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Next, one needs to check whether

ρ1L = ‖1L‖L∞(R) < 2m− 1
2 , ρ2L = ‖2L‖L∞(R) < 22m− 1

2 , (4.13)

ρ
1L̃ = ‖1L̃‖L∞(R) < 2m− 1

2 and ρ
2L̃ = ‖2L̃‖L∞(R) < 22m− 1

2 (4.14)

hold. Inequalities in (4.14) follows from Proposition 4.2.
For (4.13), we note that for both k = 1 and k = 2, we have∣∣

kâ(ξ)
∣∣2 + ∣∣

kâ(ξ + π)
∣∣2 � 1 for all ξ ∈ R.

Hence,∣∣
kL(ξ)

∣∣ �
∣∣
kL̃(ξ)

∣∣ for all ξ ∈ R.

This concludes the proof. �
In [12], three constructions of tight framelets were given for pseudo-splines of Type I. The number of framelets

is either two or three. Interested readers may consult [12] Section 3.1 for details. We observe that in all the three
constructions, one of the framelets ψ1 is defined by

ψ̂1 := b̂1(ξ/2)φ̂(ξ/2),

where

b̂1 := e−iξ â(· + π)

and â is the refinement mask of a pseudo-spline. It was shown in Theorem 4.3 of this paper that X(ψ1) forms a Riesz
basis for L2(R). This implies that all pseudo-spline tight frame systems constructed in [12] already have one of the
subsystems form a Riesz basis for L2(R). We further remark that it was observed in [17] that the same phenomenon
occurs for the tight spline frame systems constructed in [12]. This, together with our new finding here, gives insight
into the redundant structure of tight frame systems given in [12].

4.2. Symmetric framelets

In this section, we give a construction of symmetric tight framelets from pseudo-splines of Type II by using the uni-
tary extension principle of [22]. The constructions of symmetric tight framelets from a symmetric refinable functions
by using the unitary extension principle have been discussed in [1,7,16].

We note that the constructions of tight framelets given in [12] can also be applied to pseudo-splines of Type II.
However, the constructions there cannot guarantee that all tight framelets are symmetric, even though pseudo-splines
of Type II are symmetric. Therefore, in this section, we make use of the symmetry of the pseudo-splines of Type II
to obtain symmetric tight framelets. Furthermore, the results of the previous subsection reveal that Construction 4.4
below also has one framelet ψ such that X(ψ) itself already forms a Riesz basis for L2(R).

The construction here is based on the unitary extension principle (UEP) of [22]. We give a brief discussion here
while the more general version and comprehensive discussions of the UEP can be found in [12] and [22].

Let â be the refinement mask of φ ∈ L2(R) with â(0) = 1 and let b̂j , j = 1,2, . . . , r , be wavelet masks. If â and
b̂j are trigonometric polynomials that satisfy

â(ξ)â(ξ + ν) +
r∑

j=1

b̂j (ξ)b̂j (ξ + ν) =
{

1, ν = 0,

0, ν = π
(4.15)

for all ξ ∈ [−π,π] and Ψ := {ψ1,ψ2, . . . ,ψr} ⊂ L2(R) are given by

ψ̂j (2ξ) := b̂j (ξ)φ̂(ξ), j = 1,2, . . . , r,

then the UEP asserts that X(Ψ ) is a tight frame for L2(R).
When applying constructions in [12] on pseudo-splines of Type II to obtain a set of three tight framelets, only

the first framelet is symmetric. To overcome this, one can apply [16, Construction 3.4] to convert these framelets to
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a set of five symmetric or antisymmetric tight framelets. It was further shown in [16] that Construction 3.4 leads to
new tight framelets from the same MRA as the old tight framelets whenever the old ones are derived from the MRA
generated by a symmetric refinable function. We forgo the idea of giving the details of this construction and leave it
to readers by consulting [16], because next we will give a different approach that leads to a symmetric tight frame
system with only three generators. The ideas of this construction are based on those of [7] and one of the constructions
of [12]. Note that the construction here is generic and can be applied to any symmetric refinable function whose mask
is a trigonometric polynomial and satisfies

|â|2 + ∣∣â(· + π)
∣∣2 � 1. (4.16)

Construction 4.4. Let φ ∈ L2(R) be a compactly supported refinable function with its trigonometric polynomial
refinement mask â satisfying â(0) = 1 and (4.16). Moreover, we assume that φ, hence its refinement mask â, is
symmetric about the origin. Let

T = 1 − |â|2 − ∣∣â(· + π)
∣∣2

and A :=
√

T

2
,

where
√

T is obtained via the Fejér–Riesz lemma. Define

b̂1(ξ) := e−iξ â(ξ + π), b̂2(ξ) := A(ξ) + e−iξA(−ξ) and b̂3(ξ) := e−iξ b̂2(ξ + π).

Let Ψ := {ψ1, ψ2, ψ3}, where

ψ̂j (ξ) := b̂j (ξ/2)φ̂(ξ/2), j = 1,2,3. (4.17)

Then X(Ψ ) is a tight frame for L2(R). Moreover, ψ1 is symmetric about 1
2 , ψ2 is symmetric about 1

4 and ψ3 is
antisymmetric about 1

4 . We also note that since ψ1 is defined exactly the same as (4.12) in Theorem 4.3, X(ψ1) forms

a Riesz basis for L2(R) when φ is a pseudo-spline. Furthermore, since b̂2 and b̂3 have zeros at both 0 and π , one can
check easily that neither the shifts of ψ2 nor those of ψ3 can form a Riesz system. Hence, X(ψ2) and X(ψ3) cannot
form a Riesz basis for L2(R).

Proof. In order to verify that X(Ψ ) is a tight frame for L2(R), one needs to show that the masks {â, b̂1, b̂2, b̂3} satisfy
(4.15). Note that

b̂1 = e−iξ â(· + π) and b̂3 = e−iξ b̂2(· + π).

Hence,

ââ(· + π) +
3∑

j=1

b̂j b̂j (· + π) = ââ(· + π) − ââ(· + π) + b̂2b̂2(· + π) − b̂2b̂2(· + π) = 0.

Next, we show that

|â|2 +
3∑

j=1

|b̂j |2 = 1. (4.18)

Since

|â|2 + |b̂1|2 = |â|2 + ∣∣â(· + π)
∣∣2

,

it remains to show that

|b̂2|2 + |b̂3|2 = 1 − |â|2 − ∣∣â(· + π)
∣∣2 = T .

Since ∣∣A(ξ)
∣∣2 = 1

T (ξ) = 1(
1 − ∣∣â(ξ)

∣∣2 − ∣∣â(ξ + π)
∣∣2)
4 4
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and since T is π -periodic, the spectral factorization (which is based on the Fejér–Riesz lemma) leads to the function
A(ξ) also to be π -periodic. Furthermore, the Fourier coefficients of A(ξ) are real. Hence, we have

A(ξ) = A(ξ + π) and
∣∣A(ξ)

∣∣2 = ∣∣A(−ξ)
∣∣2 for all ξ ∈ R. (4.19)

Since

b2(ξ) = A(ξ) + e−iξA(−ξ) and b̂3(ξ) = e−iξ b̂2(· + π) = e−iξA(−ξ) −A(ξ),

applying (4.19), one obtains∣∣b̂2(ξ)
∣∣2 = (

A(ξ) + e−iξA(−ξ)
)(
A(ξ) + eiξA(−ξ)

)
= ∣∣A(ξ)

∣∣2 + ∣∣A(−ξ)
∣∣2 + eiξA(ξ)A(−ξ) + e−iξA(−ξ)A(ξ)

= 2
∣∣A(ξ)

∣∣2 + eiξA(ξ)A(−ξ) + e−iξA(−ξ)A(ξ)

and ∣∣b̂3(ξ)
∣∣2 = (

e−iξA(−ξ) −A(ξ)
)(

eiξA(−ξ) −A(ξ)
)

= ∣∣A(ξ)
∣∣2 + ∣∣A(−ξ)

∣∣2 − eiξA(ξ)A(−ξ) − e−iξA(−ξ)A(ξ)

= 2
∣∣A(ξ)

∣∣2 − eiξA(ξ)A(−ξ) − e−iξA(−ξ)A(ξ).

Hence,∣∣b̂2(ξ)
∣∣2 + ∣∣b̂3(ξ)

∣∣2 = 4
∣∣A(ξ)

∣∣2 = T (ξ),

which gives (4.18) and thus concludes that the masks {â, b̂1, b̂2, b̂3} satisfy (4.15). Therefore, X(Ψ ) is indeed a tight
frame for L2(R) by the unitary extension principle.

Now we show that ψ1 is symmetric about 1
2 while ψ2 is symmetric about 1

4 and ψ3 is antisymmetric about 1
4 . It is

well known that a function f ∈ L2(R), is symmetric about the point γ1 ∈ R if and only if

f (x) = f (2γ1 − x) a.e.,

which is equivalent to

f̂ (ξ) = e−i2γ1ξ f̂ (−ξ) a.e. (4.20)

Similarly, a function f ∈ L2(R) is antisymmetric about the point γ2 ∈ R if and only if

f (x) = −f (2γ2 − x) a.e.,

which is equivalent to

f̂ (ξ) = −e−i2γ2ξ f̂ (−ξ) a.e. (4.21)

By the definition of b̂1 and the fact that â is symmetric about the origin and 2π -periodic, one obtains

b̂1(ξ) = e−iξ â(ξ + π) = e−2iξ
(
eiξ â(−ξ + π)

) = e−2iξ b̂1(−ξ).

Since φ is symmetric about the origin, then by (4.20) one obtains

φ̂(ξ) = φ̂(−ξ) for all ξ ∈ R. (4.22)

Therefore,

ψ̂1(ξ) = b̂1(ξ/2)φ̂(ξ/2) = e−iξ b̂1(−ξ/2)φ̂(−ξ/2) = e−iξ ψ̂1(−ξ),

which, by (4.20), means that ψ1 is symmetric about 1
2 . Similarly by the definition of b̂2, one obtains

b̂2(ξ) = A(ξ) + e−iξA(−ξ) = e−iξ
(
A(−ξ) + eiξA(ξ)

) = e−iξ b̂2(−ξ).

Applying (4.22) and the definition of ψ̂2, one obtains,

ψ̂2(ξ) = b̂2(ξ/2)φ̂(ξ/2) = e−i
ξ
2 b̂2(−ξ/2)φ̂(−ξ/2) = e−i

ξ
2 ψ̂2(−ξ),

which, by (4.20), means that ψ2 is symmetric about 1
4 . Similarly, we can show that ψ3 is antisymmetric about 1

4 . �
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Fig. 1. (a) Pseudo-spline of Type II with order (3,1) and (b)–(d) are the corresponding (anti)symmetric tight framelets.

The approximation order provided by a tight frame X(Ψ ) can be characterized by the approximation order of the
corresponding operator Qn (see [12]), which is defined in (1.9). We have shown in Section 3.3 that, for the operator
Pn defined in (1.8), we have Qnf = Pnf , for f ∈ L2(R), provided that Ψ is derived from the UEP and the underlying
MRA is generated by the same φ as that defines Pn. Therefore, by Theorem 3.10, if we start from the pseudo-spline
of Type II with order (m, l) in Construction 4.4, the tight frame system X(Ψ ) provides approximation order 2l + 2.

In the end, we give one example of (anti)symmetric tight framelets constructed from Construction 4.4 using pseudo-
splines of Type II with order (3,1).

Example 4.5. Let â to be the mask of the pseudo-spline of Type II with order (3,1), i.e.,

â(ξ) = cos6(ξ/2)
(
1 + 3 sin2(ξ/2)

)
.

We define

b̂1(ξ) := e−iξ â(ξ + π) = e−iξ sin6(ξ/2)
(
1 + 3 cos2(ξ/2)

)
,

b̂2(ξ) := A(ξ) + e−iξA(−ξ) and b̂3(ξ) := e−iξA(−ξ) −A(ξ),

where

A = 1

2

(
0.00123930398199e−4iξ + 0.00139868605052e−2iξ − 0.22813823298962 + 0.44712319189971e2iξ

− 0.22162294894260e4iξ
)
.

The graphs of Ψ are given by (b)–(d) in Fig. 1. The tight frame system has approximation order 4.
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