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Human-associated microbes are the source of many bioactive microbial products (proteins andmetabolites)
that play key functions both in human host pathways and in microbe-microbe interactions. Culture-indepen-
dent studies nowprovide an acceleratedmeans of exploring novel bioactives in the humanmicrobiome; how-
ever, intriguingly, a substantial fraction of the microbial metagenome cannot be mapped to annotated genes
or isolate genomes and is thus of unknown function. Meta’omic approaches, including metagenomic
sequencing, metatranscriptomics, metabolomics, and integration of multiple assay types, represent an op-
portunity to efficiently explore this large pool of potential therapeutics. In combination with appropriate
follow-up validation, high-throughput culture-independent assays can be combined with computational ap-
proaches to identify and characterize novel and biologically interesting microbial products. Here we briefly
review the state of microbial product identification and characterization and discuss possible next steps
to catalog and leverage the large uncharted fraction of the microbial metagenome.
Introduction: The Great Microbial Unknown
The human microbiome comprises trillions of bacteria, archaea,

fungi, protozoa, and viruses. Disruptions in host-microbe bal-

ance are associated with a wide range of diseases, including

obesity (Ley et al., 2006; Turnbaugh et al., 2006), malnutrition

(Smith et al., 2013a), inflammatory bowel disease (IBD)

(Dicksved et al., 2008; Morgan et al., 2012), liver disease

(Wong et al., 2013; Zhu et al., 2013), and cancer (Castellarin

et al., 2012; Iida et al., 2013; Kostic et al., 2012). The microbiota

of healthy populations, which have been cataloged by efforts

such as the Human Microbiome Project (HMP) (Human Micro-

biome Project Consortium, 2012b) and MetaHIT (Qin et al.,

2010), encode at least 100-fold more genes than do their hu-

man hosts, and it is estimated that �10% of all circulating me-

tabolites in the human body are microbially derived (Wikoff

et al., 2009). Pharmaceuticals as fundamental as tetracycline

are microbial products, and human-associated microbial iso-

lates have historically yielded therapeutic compounds ranging

from antibiotics to antitumor therapies (Bérdy, 2005). Culture-

independent assays now provide a route to identify new

classes of biologically active molecules, which may represent

novel therapeutics themselves or, alternatively, targets for

further drug discovery (e.g., by inhibition or competitive bind-

ing) (Lemon et al., 2012). Processes such as host-microbe

crosstalk, immune activation and inflammation, microbe-

microbe signaling, microbial metabolism, and antimicrobial ac-

tivity are all, by definition, bioactive in ecosystems such as the

human gut (Holmes et al., 2012). Likewise, a wide range of mol-

ecules are candidate mediators of these processes, including

small-molecule microbial products of primary metabolism

(e.g., short-chain fatty acids [SCFAs]) as well as a diverse array

of secondary metabolites including both secreted and cell

surface peptides or sugars (Fischbach and Sonnenburg,

2011; Lopez et al., 2014).
Only in recent years has it become routine to perform culture-

independent assessments of microbial communities. Due to the

falling costs of sequencing, metagenomes are one of the fastest-

growing sources of newmicrobial community data. As of 2013, a

total of over 20,000 microbial community profiles had been

deposited in the sequence read archive (SRA), comprising an

estimated 10 million genes (Li et al., 2014; NCBI Resource Coor-

dinators, 2014). Even prior to this flood, however, it was well

known that functional characterization of microbial genes lags

behind the ability of the field to generate newmicrobial sequence

data (Galperin and Koonin, 2010). Between 30% and 40% (and

often as much as 60% to 70%) of the genes from newly

sequenced microbial isolates are functionally uncharacterized

despite a growing database of available reference information

(Fodor et al., 2012; Galperin and Koonin, 2004).

The problem of uncharacterized novel microbial gene se-

quences is further exacerbated in microbial communities, in

which a large proportion of genes community wide remains un-

characterized after annotation. Roughly 50% of genes in the

gut microbiomes of HMP participants, for example, could not

be characterized using standard annotation methods (Human

Microbiome Project Consortium, 2012a) (Figure 1A). Even

among genes with putative function (e.g., EC number, corre-

sponding to the specific chemical reactions catalyzed), the

majority remained broadly annotated (e.g., the enzymewas clas-

sified as a hydrolase, but its substrates were unclear). Further-

more, specific annotations, when provided, were highly unevenly

distributed across functional groups (e.g., enzyme families;

Figure 1B). This large fraction of uncharacterized genes dramat-

ically inhibits our ability to understand the functional activity and

systems biology of microbial communities. It represents an

enormous opportunity, however, to identify novel and biologi-

cally interesting microbial products. It is therefore critical to

develop efficient hypothesis-generating pipelines and validation
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Figure 1. Uncharacterized Microbial Genes Represent over Half of
the Human Gut Metagenome
Data from 139 Human Microbiome Project (HMP) stool sample shotgun met-
agenomes (Human Microbiome Project Consortium, 2012b). The HMP Data
Analysis and Coordinating Center (http://hmpdacc.org) annotated microbial
community genes with a GO term (Ashburner et al., 2000), EC number (Bair-
och, 2000), and/or gene name when possible.
(A) Relative abundances of GO- and/or EC-annotated genes, uncharacterized
genes with a homology-based gene name, and completely uncharacterized
genes.
(B) Distribution of EC-annotated genes in the EC functional hierarchy. Tree
shows log-scaled percent coverages of direct EC annotations at each level as
observed in the stool samples. With the exception of transferases and hy-
drolases, even when microbial genes receive EC annotations, they are often at
nonspecific higher levels within the hierarchy, rather than to specific EC sub-
classes, highlighting the need for deeper microbial gene product character-
ization in the human microbiome.
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approaches in order to successfully mine bioactive products

from the vast genetic reservoir of the microbiome.

Most current bioinformatic methods for gene function predic-

tion provide gene annotations by alignment to homologous

genes with existing annotations (e.g., BLAST) (Finn et al., 2014;

Gish and States, 1993; Powell et al., 2014) (Figure 2). Such refer-

ence-based strategies are of course limited by the availability

of appropriate curated reference genomes. Although thousands

of microbial genomes are now being sequenced each year,

remarkably, the vast majority of bacterial genomes sequenced
732 Cell Metabolism 20, November 4, 2014 ª2014 Elsevier Inc.
to date come from only four phyla (Rinke et al., 2013). Further-

more, automatic reliance on homology-based functional annota-

tion approaches has led to the accrual of uncharacterized and

poorly characterized genes, a known problem in microbial ge-

nomes that has now emerged in even more dramatic form for

community metagenomes (Richardson and Watson, 2013;

Wood et al., 2012).

Other computational methodologies, e.g., comparative meta-

genomics, phylogenetic profiling, and network context-based

approaches (Börnigen et al., 2012; Gonçalves et al., 2012;

Hwang et al., 2011; Park et al., 2010, 2013; Radivojac et al.,

2013; Wang et al., 2012; Zuberi et al., 2013), integrate additional

information to generate hypotheses regarding gene function,

while manual curation of automated sequence-based function

predictions can provide additional insight (Figure 2). These

methods can be combined withmore standard homology-based

methods to elucidate putative gene product functions for subse-

quent experimental validation. Though these methods have

been available for years, they are currently underused in many

fields of genomic research. They have not been extensively

applied toward better characterizing products from culture-inde-

pendent microbial communities in general or from the human

microbiome in particular. Efforts to better characterize these

functionally uncharacterized microbial genes, especially those

from the human microbiome, represent a promising area of

research as a result. Not only will this research lead to an

improved understanding of basic microbial biology, but also

novel human-associated microbial products are likely to have

important functions in human health. Thousands of metage-

nomes—human-associated and otherwise—have already been

sequenced, representing an extensive database for mining bio-

logically active microbial products. Even now, reanalyses of

these data using a systematic, integrated approach to microbial

product characterization could easily yield, for example, a ‘‘Most

Wanted Genes’’ list (analogous to the HMP’s ‘‘Most Wanted

Taxa’’; Fodor et al., 2012), comprising abundant or otherwise

‘‘important’’ uncharacterized genes in the human microbiome.

The aims of this Perspective are thus (i) to review major cat-

egories of bioactive microbial products already isolated from

the human microbiome, (ii) to discuss methods used to exper-

imentally validate these functions, (iii) to suggest complemen-

tary computational approaches that can be used to improve

characterization of the uncharacterized fraction of the metage-

nome, and (iv) to describe methods for integrating data across

multiple platforms and studies to validate hypothesized gene

functions.

Microbe-Derived Metabolites Affect Both Host and
Community
The human gut harbors a multimillion-gene microbial metage-

nome that outnumbers the human gene complement by at least

150-fold and produces an extraordinary array of structural com-

ponents, cell surfacemolecules, andmetabolic enzymes and by-

products (Qin et al., 2010). Although approximately half of these

genes have unknown or poorly characterized functions (Human

Microbiome Project Consortium, 2012b; Qin et al., 2010), studies

to date have revealed a vibrant, dynamic ecosystem in whichmi-

crobial community members influence host functions as well as

affect the survival of other microbes in the ecosystem.

http


Figure 2. Identification and Validation of Microbe-Derived Gene Product Functions
An overview of the process of microbial gene functional annotation and validation. Inmicrobial isolate genomes andmetagenomes alike, gene function is typically
first assigned using standard sequence analysis methods (homology-based assignment [Loewenstein et al., 2009] and domain profiling [Finn et al., 2014]). These
predictions can be further refined by additional bioinformatic approaches, such as comparative metagenomics (‘‘guilt by association’’ of uncharacterized mi-
crobial products with characterized genes across samples through the use of data integration), supervised curation (manual determination of a consensus among
multiple complementary automated annotations [Richardson andWatson, 2013]), phylogenic profiling (analysis of co-occurrence of genes across isolates [Eisen
and Fraser, 2003]), and network context (‘‘guilt by association’’ in isolate coexpression, interaction, or functional linkage networks [Sharan et al., 2007]). Following
putative classification, bioactivity must be validated and further characterized by experimental methods. When standard culture is challenging (as is common for
the microbiome), microculture and induction culture, as well as heterologous expression of genes and direct isolation of products, are particularly useful.
Functional assays for investigating the activity of microbial products include enzymatic/metabolic activity assays (Craciun and Balskus, 2012), microbial
coculture (Yan et al., 2013), host cell profiling (Wieland Brown et al., 2013), and in vivo host phenotype assessments (Olle, 2013).
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Microbial Products Involved in Host-Microbe
Interactions
Microbial proteins andmetabolites are essential in host digestion

and biochemistry. The gut microbiota synthesizes valuable nutri-

ents such as vitamins B12 and K (LeBlanc et al., 2013) and

produces enzymes that enable the breakdown of complex car-

bohydrates such as cellulose that would otherwise be indigest-

ible by the host (Xu et al., 2003). Microbial alteration of bile acids

plays a key role in the digestion and absorption of lipids, as well

as in glucose homeostasis (Jones et al., 2014). Gut microbiota

have also been shown to modify drugs consumed by the host,

potentially altering drug response (Haiser et al., 2013; Wallace
et al., 2010). Microbial communities in other sites of the body

also play a role in host biochemistry. In the vagina, the Lactoba-

cillus species produces lactic acid, whichmaintains a low vaginal

pH and inhibits colonization by noncommensal organisms (Ravel

et al., 2011).

In addition to host homeostatic and metabolic functions, mi-

crobial products are involved in maintaining epithelial barrier

function and immune homeostasis. For example, the bacterial

fermentation products SCFAs (i.e., acetate, propionate, buty-

rate) promote normal gut epithelial function, as reviewed in

Maslowski and Mackay (2011). Another major role of microbial

products is in immune regulation. SCFAs, along with other
Cell Metabolism 20, November 4, 2014 ª2014 Elsevier Inc. 733
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microbial products and metabolites such as bile acids, peptido-

glycan, and sphingolipids, have all been described to modulate

the immune system, as reviewed in Brestoff and Artis (2013).

While the list of knownmicrobial products is comparatively small

in comparison to the microbial metagenome, these character-

ized products have already been shown to have far-reaching im-

plications for human hosts.

Microbial Products Involved in Microbe-Microbe
Interactions
The ability of a human-associated microbe to survive and thrive

is contingent upon active maintenance of a balanced relation-

ship not only with the host, but also with the microbial commu-

nity. Consequently, microbes producemany products dedicated

to preserving ecosystem homeostasis via microbe-microbe in-

teractions. To monitor their own species abundance in the com-

munity, microbes produce and detect self-made metabolites in

the process of quorum sensing (Bassler and Losick, 2006);

they also secrete inhibitory metabolites such as bacteriocins to

directly kill or inhibit growth of competing organisms (Cotter

et al., 2005; McCaughey et al., 2014). Currently characterized

mediators of microbe-microbe interactions fall into two broad

classes: within-clade positive signaling and between-clade

antagonism. These are extensively reviewed elsewhere (Kura-

mitsu et al., 2007; Little et al., 2008; Marx, 2009; Phelan et al.,

2012). A recent example from the nasal microbial community,

in which a species of Corynebacterium inhibited the growth of

Staphylococcus aureus in vitro through an as-yet unidentified

mediator (Yan et al., 2013), underscores that a potentially vast

array of ecological interactions and mediating molecules have

yet to be discovered.

Functional Characterization of Microbial Products
In Vitro and In Vivo
A wide range of functional assays can be used to evaluate the

biological activity of microbial gene products, particularly when

culturable isolates are available for the microbe(s) of interest.

Testing the effects of microbial products on host cell function re-

quires three components: a host cell system to perturb, a micro-

bially derived perturbation, and a readout of host cell state. The

first component may be a model organism, gnotobiotic animal,

cell culture, organoid (Sato and Clevers, 2013), or a structured

culture such as a transwell (Moon et al., 2014) or gut-on-chip

(Huh et al., 2013). The second component may include live or in-

activated microbial cells, whole lysate, media, or an isolated, pu-

rified, or synthesized product. The third component includes a

range of functional assays to assess the bioactivity of microbial

products. These may include assays for enzymatic activity, im-

mune cell activation, or pathology in an animal model. As many

human-associated microbes are challenging to culture, combi-

natorial genetics provides an alternative route for investigating

genes of interest identified meta’omically. Genes may be cloned

and expressed heterologously in a model organism such as E.

coli; or alternatively, knockout approaches in phylogenetically

related isolates or homologous pathways may validate the activ-

ity of a bioactive gene product. A combination of experimental

approaches has been used to demonstrate the immunomodula-

tory activity of some of the well-known microbial products, such

as the SCFAs (Arpaia et al., 2013; Atarashi et al., 2013; Maslow-
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ski et al., 2009; Smith et al., 2013b), bacterial polysaccharide

(PSA) (Mazmanian et al., 2005), and sphingolipids (An et al.,

2014).

Computational Approaches to Hypothesize Function for
Human-Associated Microbial Gene Products
Uncharacterized novel gene sequences abound in microbial ge-

nomes, and the ever-increasing rate of sequence data genera-

tion drives a great need for a renewed focus on effectively using

existing computational methods for putative gene characteriza-

tion and functional prediction. In addition to supervised curation

(i.e., manual correction of annotated genomes), which can

greatly aid in assigning appropriate gene function (Richardson

and Watson, 2013), a number of computational approaches

can improve upon the simplest homology-based strategies

(e.g., best BLAST hit) for assigning gene function. These include

(i) advanced sequence-guided methods, (ii) structure-based

approaches, (iii) functional prediction methods based on evolu-

tionary conservation and phylogeny, and (iv) approaches that

use gene context within networks (e.g., coexpression or meta-

bolic networks) in order to guide functional assignment

(Figure 2).

Advanced Sequence-Based Approaches
The simplest form of homology-based sequence annotation be-

gins with an unannotated nucleotide sequence, searches its

translated amino acid sequence against one or more annotated

microbial protein catalogs, and assigns an annotation to the new

sequence if nucleotide or amino acid identity exceeds a prede-

fined threshold. Threshold recommendations for confidently

transferring function (i.e., assigning function based on sequence

similarity) range from 40% to 80% amino acid identity (Rost,

2002; Tian and Skolnick, 2003; Todd et al., 2001). This process

requires a number of subjective assumptions regarding nucleo-

tide and amino acid conservation, the relationships between pri-

mary sequence and protein function, and evolutionary mutation

rates. More sophisticated methods supplement simple best-hit

approaches with comparative genomics, comparing sequences

to databases of gene products, functions, and pathways to place

them into functional context; these databases may include Gene

Ontology (GO) (Ashburner et al., 2000), Clusters of Orthologous

Genes (COG) (Tatusov et al., 2003), Enzyme Commission (EC)

(Bairoch, 2000), or Kyoto Encyclopedia of Genes and Genomes

(KEGG) (Kanehisa et al., 2004). Many comparative genomics-

based automated pipelines have been built for bacterial genome

annotation (Stothard and Wishart, 2006); more recently, annota-

tion pipelines such as MG-RAST (Meyer et al., 2008) and IMG/M

(Markowitz et al., 2012) were created for metagenomes.

Unfortunately, overall similarity in protein sequence does not

guarantee similarity of function (Bork and Koonin, 1998; Rost,

2002; Rost et al., 2003; Skolnick and Fetrow, 2000; Whisstock

and Lesk, 2003). This issue can be partially mitigated by extend-

ing the best-hit annotation strategy to include comparisons with

sequence-diverse protein families or recurring sequence motifs.

For example, the SMART (Schultz et al., 1998) and Pfam (Punta

et al., 2012) databases catalog recurring protein domains and

binding motifs that can be directly compared with an unanno-

tated protein sequence. Position-specific iterative BLAST (PSI-

BLAST) (Altschul et al., 1997) takes a related approach to this



Cell Metabolism

Perspective
problem: an unannotated protein is first searched against a

broad sequence database; the hits from this initial search are

then used to guide subsequent searches of the database, grad-

ually building a sequence-diverse family centered on the unan-

notated protein. Notably, PSI-BLASTwas used to identify a large

group of highly abundant protein families in the human gutmicro-

biome that were missed by Pfam (Ellrott et al., 2010).

When extending homology-based annotation techniques

beyond the best-hit approach, additional statistical techniques

are necessary to detect remote homology and combine anno-

tations from multiple homologous hits. Nearly any machine-

learning technique can be (and has been) employed for this

purpose. For example, hidden Markov models are used in

SMART and Pfam tomodel site-specific amino acid distributions

across a protein family, while k-nearest neighbor classifers have

been used to predict GO function based on interrelationships be-

tween functional classes (Pandey et al., 2009). GOPET uses sup-

port vector machines (SVMs) to incorporate data from GO and

BLAST and assign confidence levels to each GO prediction (Vi-

nayagam et al., 2006). SVMs are also used in FFPred to predict

function in eukaryotes by comparing unannotated sequences to

a set of sequence-based features from well-characterized pro-

teins, including amino acid composition, secondary structure,

posttranslational modification sites, and localization signals

(Lobley et al., 2008). Many of these described techniques have

been developed in eukaryotic model organisms, with as-yet

limited applications in microbial isolates or communities.

Structure-Guided Approaches
As discussed above, various methods exist for transferring an-

notations from well-characterized proteins to an unannotated

protein based on sequence-level homology. These methods

are based on the observations that (i) proteins of similar

sequence tend to adopt similar 3D structures and (ii) that pro-

teins of similar 3D structure tend to perform similar functions.

Naturally, this suggests that one could directly compare an un-

annotated protein to a library of 3D structures to aid in annota-

tion transfer, and indeed several methods have been proposed

to do exactly this. For example, ProFunc, SuMo, and RASMOT-

3D are analogous to functional assignment based on sequence

homology, but instead identify compatibility between an unan-

notated protein and well-characterized 3D protein structures

(Debret et al., 2009; Jambon et al., 2005; Laskowski et al.,

2005). Local-global alignment (Zemla, 2003) is a further example

that behaves as a structural analog to PSI-BLAST. This method

iteratively identifies local similarity at the protein structure level,

and is one of several methods that increase the specificity of

annotation transfer by focusing on local structural motifs for

which function is likely to be conserved. Indeed, in cases of

remote homology, the ability of structure-guided methods to

assess the functional impact of conserved versus nonconserved

regions represents a key advantage over sequence-focused

methods.

Phylogenetic and Evolutionary Approaches
Another approach in computational gene product characteriza-

tion is to assess the patterns by which genes are evolutionarily

conserved, mutated, or lost throughout the microbial phylogeny,

a process referred to as phylogenomic profiling (Eisen and
Fraser, 2003). Most straightforwardly, if over evolutionary time

an uncharacterized gene is gained or lost only in tandem with

genes in a characterized pathway, the uncharacterized gene

may be placed within that pathway or regulon. This approach

can be extended from the broad level of gene gain and loss to

the more specific level of joint site-specific mutation rates. For

example, proteins that directly bind specific substrates, such

as ATP, have been identified by local evolutionary conservation

(or substitution) of individual binding site residues (Fang et al.,

2014). Tools for this type of evolutionarily informed analysis

include SIFTER (Engelhardt et al., 2005), RIO (Zmasek and

Eddy, 2002), OrthoGUI (Hollich et al., 2002), and FlowerPower

(Krishnamurthy et al., 2007). Other approaches such as evolu-

tionary tracing combine residue conservation with tertiary

structure analysis to identify groups of functionally significant

residues, such as exposed active sites (Amin et al., 2013). Partic-

ularly in the microbial tree of life, where thousands of isolate ge-

nomes are available and genome content is particularly plastic,

phylogenomic approaches have been shown to be extremely

powerful.

Gap-Filling Approaches Based on Metabolic Network
Reconstruction
An interesting and highly complementary approach for inferring

the biochemical functions of some gene products is referred to

as ‘‘sins of omission’’ in microbial metabolic network analysis.

If a microbial genome carries the vast majority of genes neces-

sary to synthesize an important compound, but a few necessary

enzymes remain uncharacterized, the rest of the genome can be

more closely scrutinized for gene products able to carry out

those roles. One recent example of such an investigation was

the remote sequence homology-based identification and exper-

imental validation of the enzyme necessary for processing

choline to trimethylamine in the human gut microbiome (Craciun

and Balskus, 2012). This approach can be formalized by the pro-

cess of metabolic network reconstruction using methods such

as flux balance analysis (Lewis et al., 2012), which enables

genome-wide modeling of the metabolism of an organism. For

example, MetaFlux (Latendresse et al., 2012) can be used to

identify gaps in an organism’s network of biotransformations.

Such gaps include ‘‘dead-end’’ metabolites that are known to

be consumed or produced, but do not appear in the network,

and ‘‘orphan’’ reactions that are known to occur, but the genes

encoding the necessary enzymes are not present (Orth and Pals-

son, 2010). While metabolic networks are typically constructed

for single organisms, further research is likely to render them

feasible for multiorganism communities (Levy and Borenstein,

2013; Zengler and Palsson, 2012).

Integrative Approaches to Predict Protein Function
The most recent and arguably most successful methods for pro-

tein function prediction integrate information frommany sources,

such as primary sequence, tertiary structure, and evolutionary

conservation. Hess et al. (Hess et al., 2009), for example, used

an ensemble method combining three different Bayesian ap-

proaches that integrated sequence features, coexpression,

protein-protein interactions, binding sites, and subcellular local-

ization to improve protein function prediction. Other studies have

combined tertiary structure with primary structural homology
Cell Metabolism 20, November 4, 2014 ª2014 Elsevier Inc. 735



Figure 3. Integration Methods for Multiple Data Types or Data Sets
Schematic of approaches for data integration either (A) among different data types within the same study or (B) across different studies assaying the same data
type. Integration methods include (i) network analyses capturing similarity of genes/gene products/microbes (correlation, coabundance, coexpression, etc.), (ii)
ordination projections, showing overall patterns of clustering or covariation (shown here applying to samples, and can also apply to gene/microbial features), and
(iii) hierarchical statistical models such as regression that quantify the degree of association among genes/microbes and sample phenotypes. Each of these
methods can be applied to one or more assay types (and phenotype metadata) within study, or they can be applied to a combination of multiple studies.
(A, i) Networks of covarying features can be generated separately for different data types (e.g., gene and transcript) or using both data types in one unified network
by correlating multiple feature types.
(B, i) Networks of covarying features can also be generated separately for different studies or can be summarized in one network to relate features that covary in
both studies.
(A, ii) A combined ordination (or biplot) of multiple data types (e.g., gene and transcript) can reveal patterns of variation that enrich one or more data types or
metadata (e.g., red meat consumption) in particular subsets of samples. In this example, samples are ordinated jointly with metadata, genes, and transcripts.
(B, ii) Ordination can be used to understand patterns of variation either independently in different studies, or a joint ordination can reveal patterns of sample
covariation across studies, possibly as linked to common metadata (e.g., consumption of nondairy diet).
(A, iii) Statistically significantly (un)related features can be identified by formal models such as linear regression. Regression among linked data types (e.g., genes
and transcripts) can quantify the degree to which features or metadata associate across data types. In this example, we show feature levels that are similar
between data types (close to the diagonal) as well as those that are significantly up- or downregulated.
(B, iii) Statistical models can be meta-analyzed by applying them within each study, determining the significance and variability of a result within each study
individually, and then comparing the resulting significance and effect sizes across studies. Meta-analysis can be used to detect signals too weak to see in any one
study or to assess the reproducibility of a result across studies.
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and secondary structure biochemistry (Wang et al., 2014);

sequence data with gene expression, protein-protein interac-

tions, and evolutionary conservation (Cozzetto et al., 2013);

sequence with interaction profiles and domain co-occurrence

(Wang et al., 2013); and sequence features with active site motifs

and structural alignment for determination of protein fold activ-

ities (Zakeri et al., 2014). Purely technical issues have impeded

the application of these methods to microbial genomes and

metagenomes. These include problems with computational effi-

ciency, consistent identification schemes for microbial taxon-

omy and gene products, and the assembly of appropriate

training data from diverse sources. All of these are surmountable

given further work on deep characterization of human-associ-

ated microbial gene products.
736 Cell Metabolism 20, November 4, 2014 ª2014 Elsevier Inc.
Integration within and among Studies in the
Meta’omic Era
Statistical Techniques for Data Integration

Different types of ‘omics data can be combined in many biolog-

ically informed ways to identify robust ‘‘hits’’ or novel microbial

products that are of interest for follow-up characterization.

A range of well-studied statistical techniques can be used to

integrate high-dimensional data, particularly when they are

multivariate (i.e., incorporate multiple features of interest) and

heterogeneous (i.e., consist of measurements of multiple types;

Figure 3). These techniques include (i) repeated univariate asso-

ciations, or networks, (ii) ordination, and (iii) hierarchical regres-

sion-based modeling. Each of these methods can be used to

integrate either across different meta’omic data types or across
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different studies containing the same data types. Any type of

interaction (or, more commonly, covariation) can be usefully rep-

resented as a network: correlation or distance of features such

as gene or microbial abundances, or any type of expression

data (transcript, protein, metabolite, etc.). Individual (pairwise,

univariate, etc.) associations can be tested for statistical signifi-

cance, or the network structure overall can be analyzed to

demonstrate how genes cluster in terms of expression pattern,

or how pathways consume and produce metabolites.

Network representations of feature associations can incorpo-

rate data from multiple meta’omics platforms in the same study

to form a single integrative network, or their contents and struc-

ture can be compared across multiple studies to determine

similarities or differences (Figures 3A, i, and 3B, i). Alternatively,

ordinations (such as principal coordinates analysis) are a family

of projection methods that provide low-dimensional visualization

of high-dimensional data. These can be used to qualitatively

determine data clustering patterns, with regard to either meta-

data (e.g., consumption of red meat, nondairy, low-fat, vege-

tarian, or vegan diet) or meta’omic features (microbial taxa,

genes, transcripts, etc.). This enables assessment of the meta-

data that covary with the greatest variation among samples, or

determination of which samples are enriched for features of in-

terest (e.g., which samples have the greatest abundance of

one or more microbes of interest; Figures 3A, ii, and 3B, ii). Ordi-

nation typically shows these relationships only qualitatively.

Although this is useful for visualization, a more quantitative test

of statistical significance using hierarchical modeling (such as

linear regression) should be performed. This will determinewhich

features (microbial taxa, genes, transcripts, etc.) are associated

with one another and with metadata in a multivariate manner.

Regression analyses provide this type of significance test for re-

lationships among features of different types within data sets

(Figure 3A, iii), while meta-analyses provide similar results for

features of the same type across data sets (Figure 3B, iii).

Integrating Across Different Data Types from the Same

Study

While metagenomic sequencing assays define the total genetic

potential of a microbial community, they describe neither which

genes are actively being transcribed and translated into proteins,

nor the relative quantities of each gene product that each cell is

expected to produce. Metatranscriptomics andmetaproteomics

are therefore excellent complementary approaches to metage-

nomics, as they can be used to evaluate the environments in

which gene products are produced or differentially expressed

(e.g., body site, disease state, nutritional intake). For mostmicro-

bial community analyses, it is critical to pair the measured gene

expression (e.g., transcripts, proteins) of each sample with a

measure of gene abundance (e.g., metagenomics). It is other-

wise impossible to determine whether changes in gene product

abundances arise due to differential underlying cell count (e.g.,

microbial growth) or to differential expression or activity.

Regression analysis can be used as an integrative approach

for combining gene and transcript data (as depicted in

Figure 3A, iii) in microbiome studies, demonstrating the upregu-

lation of a subset of pathways under specific conditions. For

example, in one study, iron acquisition and lipopolysaccharide

synthesis pathways were highly upregulated in subjects with

periodontal disease as compared with healthy subjects (Duran-
Pinedo et al., 2014). In another study, although Methanobrevi-

bacter smithii was present only at low abundance (< 1%), in

the human gut, genes in the methanogenesis pathway were

highly transcribed, suggesting the importance of that pathway

in gut function (Franzosa et al., 2014). The additional context

of transcriptional activity may also prove informative in under-

standing gene functionality with regard to host condition (e.g.,

identifying/characterizing novel virulence factors based on upre-

gulation during host disease); thus, integrative approaches will

be useful in the characterization of novel genes.

In addition to transcriptomics, the integration of metagenomic

data with metabolomics can aid in identifying the specific micro-

bial gene products that underlie associations found between

metagenomic taxonomy data and clinical/phenotypic metadata.

For example, a combination of 16S sequence profiling and me-

tabolomics was recently used to identify 4EPS as one of several

metabolites with altered levels in thematernal immune activation

mouse model of autism (Hsiao et al., 2013). 16S sequencing re-

vealed that Bacteroidia was one of the major classes that

discriminated between disease and health in this model system,

which led to experiments demonstrating that Bacteroides fragilis

restored healthy levels of 4EPS in this model system. While me-

tabolomics and metagenomics were not formally integrated in

this study, the use of covariation network analyses, joint ordina-

tions between microbial taxa and metabolites with disease/

health state, and modeling of taxa versus metabolite abundance

are well suited to support to such studies.

While methods for integrating data from multiple assays

have not yet been widely adopted in microbial community

meta’omics, these methods have been applied for nearly a

decade in human and model organism ‘omics. For example, a

combination of metabolomics, proteomics, and metabolic flux

analysis was used to generate metabolic networks of multiple

knockout strains of the model microbe E. coli (Yizhak et al.,

2010). Likewise, human transcriptomic, proteomic, and metabo-

lomic data were integrated to form functional linkage networks

(Chen et al., 2012), which were subsequently explored to identify

pathways that changed in expression over time. The ability to

jointly observe multiple levels of regulation of the same underly-

ing biological entities—genes and their products—revealed a

clear upregulation of infection and stress response pathways

at the onset of a viral respiratory infection in the subject. Only

some of these pathways were detectable in analysis of the indi-

vidual data types, either due to decreased power or biological

reasons (e.g., posttranscriptional regulation). As these integra-

tive methods have proven useful in identifying associations in

human and model systems, their use should be extended to

studies of microbial communities.

Integrating Similar Data Types across Different Studies

Jointly analyzing information from one particular assay (e.g.,

metagenomics) across multiple studies (e.g., cohorts) can like-

wise serve as a means of integration to increase the specificity

and power of hypothesis generation. This type of approach, typi-

cally referred to as a meta-analysis, has also been well studied in

low-dimensional (e.g., clinical trials) and ‘omics (e.g., gene

expression, genome-wide association studies) contexts (Tonelli

et al., 2009). Although any one data set is typically collected to

answer a few particular questions, comparative meta-analyses

are one way to leverage existing data—improving power and
Cell Metabolism 20, November 4, 2014 ª2014 Elsevier Inc. 737
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reproducibility—and to compare a new study to the existing

body of previous data. Given the large body of existing meta’o-

mics data sets, meta-analyses of meta’omics can therefore be a

powerful approach for discovering novel associations between

taxonomy/genes and metadata, as well as for investigating the

putative functions of uncharacterized genes.

A meta-analysis of one data type across studies typically in-

cludes at least two steps. First, to the extent that it is possible,

systematic differences in measurements are normalized be-

tween data sets. Such differences are inevitable in any high-

dimensional biology; they are also referred to as batch effects

(Leek et al., 2010). They can be minimized by careful adherence

to standardized protocols, but rarely completely abrogated.

Instead, integrative analyses should plan to explicitly account

for their effects, either by prenormalizing each data set (e.g.,

by rank, median, or Z score normalization, if appropriate [Bolstad

et al., 2003]), or by using a statistical model incorporating multi-

ple data sets (e.g., ComBat [Johnson et al., 2007] or fRMA

[McCall et al., 2010] from gene expression analysis). When

cross-study normalization is either not feasible or insufficient to

correct systematic biases, meta-analyses can be performed in

terms of standardized statistics such as effect sizes. This en-

sures that raw data are only compared within, and not between,

studies (Crowther et al., 2010). For example, this is a standard

approach in differential gene expression analysis, in which a so-

phisticated variant of a t test might be performed within each

study, and the resulting t-statistic values (rather than raw expres-

sion data) are compared across studies to identify genes with

reproducibly variable expression.

Second, the target measurements or statistics calculated

within each data set are compared across the meta-analyzed

studies. This not only identifies signals that reproduce across

studies (depicted by the green nodes and arrows in Figure 3B,

ii and iii), but also detects weak, but consistent, signals with

poor detection power in any single data set. Although it is early

for such techniques to be widespread in studies of microbial

community bioactives, one example is in the assessment of clus-

ter structure (e.g., enterotypes) among human microbiomes in

several different body sites and cohorts (Koren et al., 2013). In

this study, the measured effect was the degree to which groups

of individuals formed robust, discrete clusters (prediction

strength [Tibshirani and Walther, 2005]), which reproduced in

some body sites (e.g., vaginal microbiome), but not others

(e.g., gut). Note that simply merging multiple data sets or

applying the same analytical approaches to multiple data sets

is not ameta-analysis and in fact will often be prone to the biases

that meta-analytical techniques were designed to prevent. Op-

portunities for robust within- and between-study integration

will continue to arise as more functional profiles of the human

microbiome become available.

Summary
In this Perspective, we discussed some of the hallmark microbial

products of the humanmicrobiome, how they affect the host and

other microbes, and how further microbial products of biological

significance may be identified in culture-independent studies.

These include compounds such as secreted peptides, nonribo-

somal peptides, small molecules, and metabolites, any of which

can influence microbe-microbe or host-microbe interactions.
738 Cell Metabolism 20, November 4, 2014 ª2014 Elsevier Inc.
Computational methods for predicting the biological roles of

gene products have been widely used for microbial isolates

and include sequence-based, structural, and integrative

approaches, but these have yet to be extensively applied to

meta’omic studies.

As new studies and tools are created to identify microbial

products of interest, it is worth noting that the toolbox of existing

bioinformatic and statistical methods has not been exhaustively

applied toward this end, nor has the portfolio of existing meta’o-

mic data sets. With at least 50% of the genes in the human mi-

crobiome still uncharacterized, it is a worthwhile venture to focus

on improving characterization of this vast amount of genetic

material. Existing computational approaches for putative func-

tion assignment are one underexplored route, as is better inte-

gration of information from across meta‘omics platforms and

studies. When coupled with appropriate—and vital—experi-

mental validation, these have the potential to accelerate the dis-

covery of bioactives in the human microbiome.
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