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Far from a Point in the F4(q)Geometry

RIEUWERT J. BLOK

We take the long-root geometry associated with the Chevalley groupF4(q), q even, and consider
the subgeometry induced on the set of points at maximal distance from a givenpoint. We shall de-
scribe this geometry and in particular determine the parameters of a 12-class association scheme on
its point set obtained by joining certain classes of a group scheme.

c© 2001 Academic Press

1. INTRODUCTION

Let1 be the building of typeF4 obtained from the Chevalley groupF4(q) and let its Dynkin
diagram be labeled as in Figure1.
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FIGURE 1. The Dynkin diagram of typeF4.

Then0 = (P,L) will be the point–line geometry whose points and lines are the objects of
1 of type 1 and2 respectively, with inherited incidence (long-root geometry); we will call it
the F4,1(q) geometry. We fix a point∞ and let0∞ = (P∞,L∞) be the subgeometry whose
point setP∞ consists of the points of0 at maximal distance from∞ and whose line setL∞
consists of the lines inL that meetP∞ in at least two points. Our aim is to describe this
geometry in some detail. More precisely, we will prove the following result.

THEOREM 1.1. Let0 be the long-root geometry of the Chevalley group F4(q) with q even.
Then, for any given point∞, there exists a12-class association schemeA on theq15 points
at maximal distance from∞ whose parameters are as depicted in the diagram in Section7.

The proof of this theorem will be given in Section7. During its preparation we will gather
several nice properties of the geometry0∞ and its substructures.

In his dissertation, Riebeek [4] determined the parameters ofthe schemeA in the special
case whereq = 2 with the aid of a computer. One of the motivations behind the presentpaper
is to provide a geometric argument for his result.

We will now give an outline of this paper. In Section2 we gather some elementary properties
of this F4,1(q) geometry, notably on distances and projections. The subgeometries of points
far from a givenpoint in the polar space related toSp6(q) and in the dual polar space related
to O7(q) respectively, are subgeometries of0∞. These are studied in Sections3 and4.

In Section5 the classes of the scheme are naturally defined as (unions of) orbitals of the
parabolic group stabilizing the point∞. Here we use a classification of the orbits of the
stabilizer of a hyperbolic line.

In Section6, for a pointx in any given class and any line incident withx, we determine
the possible distributions of thepoint set of this line among the classes of the scheme. Fur-
thermore, we determine on how many lines onx a given distribution occurs. This is done in a
purely geometric way.
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FIGURE 2. The 1-shadow space of the Coxeter complex with diagramF4.

REMARK . The assumption thatq be even only takes effect from Section5 onwards for
the following reason. Whereas inthe treatmentof the geometries associated toSp6(q) and
O7(q) it is easy to deal withq even and odd simultaneously, it seems that forF4(q) this
is not so. Although rather similar, the schemes forq even andq odd do not have the same
classes (this already transpires from the table of orbits in Cooperstein [3]). Furthermore, the
use of hyperbolic lines inside symplecta (see Section5 and Subsection6.1) and the use of
hyperbolic quadrics in the dual of point-residues(see Subsection6.5 and Section4) in the
case ofq even, which quite shortens andclarifies the exposition, does not seem to have any
kind of counterpart in the case ofq odd.

2. PRELIMINARIES

Let1 be a spherical building with diagramM defined over an index setI . We will regard
a building as a diagram geometry rather than as a chamber system. Giveni ∈ I the i -shadow
space of1 is the point–line geometry whose points are thei -elements of1 and whose lines
are theI •-flags, whereI • is the set of labels of the nodes that are adjacent to thei -node inM .
We call thei -shadow space of a building with diagramM an Mi geometry.

Many incidence properties of1 can be uncovered by studying an apartment. An apartment
of the building1 is a substructure which is isomorphic to the Coxeter complex belonging to
the same diagram as1. Given any two flagsR andSof1 there is an apartmentA containing
both R and S (see Tits [8, Chapter 3]). From the convexity of apartments (see Tits Corol-
lary 3.5) it follows not only that the relation betweenR andS in 1 is the same as inA, but
also that the projectionof S onto R belongs toA. Theprojectionof S onto R is a flag called
projR(S) incident withR with the following property: thei -object on projR(S) is the unique
object of that type at minimal distance fromS among alli -objects incident withR. (Thus, if
there are two or more objects of typei at minimal distance fromS, then the flag projR(S) has
no i -object.)

Let us turn to the case thatM = F4. We will describe the Coxeter complex with diagram
F4 by first presenting its 1-shadow space (see Brouweret al. [1, Section 10.3]).

Complete the graph in Figure2 by inserting edges in the following places: between∞ and
every vertex of thecubeC and likewise for∞′ and C′, between the verticesi and i ′ for
1 ≤ i ≤ 8 and, finally,for all x ∈ {a,b, c,d,e, f }, between the vertexx and all vertices that
lie on the face ofC or C′ with labelx.
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The Coxeter complex with diagramF4 can be recovered from this graph as follows. The
1-cliques, 2-cliques,3-cliques and octahedra in this graph arethe objects of type 1, 2, 3 and 4
respectively, and two objects are incident whenever one of them is contained in the other.

Both in the Coxeter complex and in1, an object of type 1, 2, 3 or 4 will be called apoint,
line, planeandsymplecton, respectively.

We define distance relations 0, 1, 2s, 2ns, 3 between points of a Coxeter complex in the
following way (by the discussion above this also applies to1). The distances 0, 1 and 3
are just the distances in the collinearity graph. Furthermore, two points at distance 2 in the
collinearity graph are said to be at distance 2s (resp. 2ns) from one another if they are (not)
incident to a common symplecton. Forλ = 0,1,2,3,4 and any pointp let dλ(p) be the
collection of points at distance 0, 1, 2s, 2ns, 3 fromp, respectively.

LEMMA 2.1. Given a point p, a line l, a plane V and a symplecton S,

(i) if d4(p) ∩ l 6= ∅ then d3(p) ∩ l consists of a point and l\ d3(p) ⊂ d4(p);
(ii) if d4(p) ∩ V 6= ∅ then d3(p) ∩ V consists of a line and V\ d3(p) ⊂ d4(p);

(iii) if d 4(p) ∩ S 6= ∅ then d0(p) ∩ S = d1(p) ∩ S = ∅, d2(p) ∩ S consists of apoint s,
d3(p) ∩ S= d1(s) ∩ S and d4(p) ∩ S= d2(s) ∩ S;

(iv) if d0(p) ∩ S= d4(p) ∩ S= ∅, then d1(p) ∩ S is a line m, d2(p) ∩ S= ∩q∈md1(q).

The proof follows rather easily bystudying the presentation of the apartment of typeF4 above.
Related properties were studied by Cohen in [2] when axiomatizing metasymplectic spaces.

We can view theF4,1(q) geometry, as well as the natural polar space associated to the
groupSp2n(q), as long-root geometries (see Cooperstein [3]). In this way every point of the
geometry can be viewed as a long-root subgroup of the corresponding Chevalley group and the
geometric relations(distances) between two points can be recognized as algebraic relations in
the group. All algebraic relations of this kind are given in the following theorem. A proof for
the exceptional Chevalley groups can be found in [3].

THEOREM 2.2. Let G be a finite Chevalley group of rank at least2and notequal to2F4(q).
Let X and Y be the centers of root subgroups of orderq. Then one of the following holds:

(1) 〈X,Y〉 is elementary abelian, and is the union of q+1 long-root subgroups that pairwise
intersect trivially.

(2) 〈X,Y〉 is elementary abelian, and the only long-root subgroups itcontains are X and
Y .

(3) 〈X,Y〉 is isomorphic to a Sylow subgroup of order q3 in SL3(q) and Z= Z(〈X,Y, 〉)
has relation1 both to X and Y .

(4) 〈X,Y〉 ∼= SL2(q) (or PSL2(q) in P O+4 (q)).

For each of the distance relations between points of the geometry,the corresponding alge-
braic relation between the root groups is given in the following table.

Root-group Distance Distance
relation in theF4,1(q) in theSp2n(q)

geometry geometry
0 0 0
1 1 —
2 2s 1
3 2ns —
4 3 2
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Note that pointsX, Y with root group relation 4 are at maximal distance (opposite). The
q + 1 long-root subgroups in〈X,Y〉 form whatis usually called thehyperbolic linespanned
by X andY. The description of the distances in theF4,1(q) geometry was given above; the
description for theSp2n(q) geometry is given in the next section.

3. THE GEOMETRY FAR FROM A POINT IN SP2n(q)

Let 1 be the building of typeCn obtained from the Chevalley groupSp2n(q) and let its
Dynkin diagram be labeled as in Figure3. Let 0 = (P,L) be the 1-shadow space of1
(long-root geometry); this is the natural polar geometry associated with the groupSp2n(q).
We will call it the Sp2n(q) geometry. Fix a point∞ and let0∞ = (P∞,L∞) be the point–
line geometry whose point-set comprises all points at maximal distance (distance 2) from∞

and whose line-set comprises those lines that meetP∞ in at least two points. We prove the
following result. e e e �He e

1 2 3 n− 1 n

FIGURE 3. The Dynkin diagram of typeCn.

THEOREM 3.1. Consider the natural polar geometry0 for the groupG = Sp2n(q). Fix a
point∞.

(i) The association schemeS for the group G∞ acting on the q2n−1 points far from∞
has 3 or 5 classes according towhether q is even or odd.

(ii) The parameters ofS are as depicted in Figures4 and5.

The classesC0, C1 andC̄1, C̄0 (q even) andC̄1,sq, C̄1,nsq, C̄0,sq, C̄0,nsq(q odd) of the scheme
S are described later in thissection. Forq odd, by joining the classes̄Ci,sq andC̄i,nsq into C̄i

(i = 0,1) we obtain the same scheme as forq even.
Forλ ∈ {0,1,2}, letdλ be the collection of pairs of points of0 at distanceλ in the collinear-

ity graph. Given two non-collinear pointsx andy we can define ahyperbolic line xyon them
in three ways:

(i) by its natural embedding intoPG(2n−1,q): it is the set ofq+1 points on the projective
line x ⊕ y.

FIGURE 4. The schemeS for q even.



Far from a point in the F4(q) geometry 149

FIGURE 5. The schemeS for q odd.

TABLE 1.
The orbits of the stabilizer of a hyperbolic line in the groupSp2n(q).

Orbit 0 1 2 Size of orbit
X0 1 — q q+ 1
X1 — 1 q (q + 1)(q2n−2

− 1)
X1′ — q + 1 — (q2n−2

− 1)/(q − 1)

(ii) geometrically: letA⊥ be the collection of points collinear to every element of the point
setA. Thenxy= {x, y}⊥⊥.

(iii) group-theoretically: given a pointx we have a groupTx of transvectionstx(λ) : y 7→
y + λ(y, x)x (λ ∈ Fq). Two groupsTx, Ty generate a groupL = 〈Tx, Ty〉 that is
isomorphic toSL2(q) if and only if x andy are non-collinear; in that caseL contains
q + 1 groupsTz (one for each pointz on x ⊕ y) and these pointsz form xy.

We note that the groups of transvections mentioned in (iii) are precisely the long-root sub-
groups of the Chevalley groupSp2n(q). We will use each of these presentations. The subgroup
of G generated by the root-groups associated to the points of a point setX will be denoted by
〈X〉.

Fix a hyperbolic lineθ . The stabilizer ofθ (or normalizer of〈θ〉) in G has three orbits on
the points. We call themX0, X1 andX1′ . In Table1, for each orbitX, x ∈ X andλ = 0,1,2
we give |dλ(x) ∩ θ | and |X|. Recalling thaty ∈ d1(x), y ∈ d2(x) means: (i)(x, y) = 0
resp.(x, y) 6= 0, (in the embeddingPG(2n− 1,q), with (·, ·) being the symplectic form),
(ii) y ∈ x⊥ resp.y 6∈ x⊥ (in the geometry) and (iii)[Ty, Tx] = {1} resp.[Tx, Ty] > {1} (in
the group), we can interpret this table accordingly.

Now we are ready to define the classes of the schemeS. Fori = 0,1 andt ∈ θ let Xi,t be the
set of points inXi whose unique closest point onθ is t ; a point inXi,t is said to haveposition
[i, t] with respect toθ . By transitivity ofGθ on the points ofθ we have|X0,t| = |X0|/|θ | = 1
and|X1,t| = |X1|/|θ | = q2n−2

− 1.
Let

C0(o) = X0,o (= {o}),
C1(o) = X1,o,
C̄1(o) = ∪t∈θ\{∞,o}X1,t,
C̄0(o) = ∪t∈θ\{∞,o}X0,t (= θ \ {∞,o}).
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For q odd we haveC̄i,ε(o) = ∪t Xi,t , wheret ranges over all ‘squares’ and ‘non-squares’
of θ \ {∞} (o corresponding to 0) in the respective casesε = sq,nsq. The classes of the
schemes are defined as follows:Ci = ∪o∈P∞ {o} × Ci (o), C̄i = ∪o∈P∞ {o} × C̄i (o), C̄i,ε =

∪o∈P∞ {o} × C̄i,ε(o), for i = 0,1 andε = sq,nsq. ClearlyCi , C̄i with i = 0,1 are all
symmetric. SinceG∞ is transitive on the setP∞ these classes are (unions of)G∞-orbitals.

PROOF (OF PART (i) OF THEOREM 3.1). We clearlyhaved2(∞) = ∪t∈θ\{∞}(X0,t∪X1,t)

= ∪i=0,1(Ci (o) ∪ C̄i (o)). We first show thatG∞,t,o (t ∈ θ ) is transitive on the setX1,t.
PutCθ = 〈Tu | ∀t ∈ θ (u, t) = 0〉, i.e., the subgroup generated by the long-root subgroups

that centralize every long-root subgroup in〈θ〉. This group, which is naturally isomorphic
to Sp2n−2(q), fixes every point ofθ and acts transitively on the points ofθ⊥. Thus it acts
transitively on the collection of lines containing any given pointt ∈ θ .

Let t be such a point and letl be a line ont . Let η be a hyperbolic line inθ⊥ (so that
〈η〉 ≤ Cθ ) that meetsl in a pointu. Then the stabilizer〈η〉u fixes every vector onθ and acts
transitively on the vectors ofu. Hence〈η〉u is transitive on the points ofl \ {t,u}. ThusCθ is
transitive onX1,t.

The groupGθ acts asSL2(q) on the points ofθ . If q is even, this action is sharply 3-
transitive, and ifq is odd it is 2-transitive and the stabilizer of two points has two orbits on the
remaining points.

Thus if q is even, the orbits ofG∞,o on d2(∞) areCi (o), C̄i (o) (i = 0,1) and ifq is odd,
the setsC̄i (o) (i = 0,1) split into two orbitsC̄i,sq(o) andC̄i,nsq(o). 2

Finally we consider the lines of0∞. Given a (hyperbolic) linel , a point p is collinear to
either one or all points ofl . It follows that the feasible distributions of the points of a singular
line among the sets of points with position[0, t], [1, t] and[1′] are those listed in the table
below.

In the following table theDP-entry is the number of points in positionP on a line with
distributionD.

∀t ′ ∈ θ
[0, t] [1, t] [1′] [1, t ′]

[Sp : i, t] 1 q − 1 1 —
[Sp : ii] — — q + 1 —
[Sp : iii, t] — q 1 —
[Sp : iv] — — — 1

All these distributions occur, except that forn ≤ 2 the distributions[Sp : ii] and[Sp : iii, t]
do not occur for lack of planes.

In the following two tablesthe DP-entry is the number of lines with distributionD on a
point in positionP.

[0,t] [1,t] [1′]
[Sp : i, t] (q2(n−1)

− 1)/(q − 1) 1 1

[1, t] [1′]
[Sp : ii] — (q2(n−2)

− 1)/(q − 1)
[Sp : iii, t] q(q2(n−2)

− 1)/(q − 1) (q2(n−2)
− 1)

[Sp : iv] q2n−3 —

Now one easily proves part (ii) of Theorem3.1.
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FIGURE 6. The schemeD.

4. THE GEOMETRY FAR FROM A POINT IN DO7(q)

Let1 be thebuilding of typeB3 obtained from the Chevalley groupO7(q). For i = 1,2,3,
its i -elements are the totally singulari -spaces with respect to a non-degenerate quadratic form
on a vector spaceV of dimension 7 defined over the fieldFq where incidence is symmetrized
inclusion. Let0 be the 3-shadow space of1; it is the dual polar space associated withO7(q).
We will call it the DO7(q) geometry. In this geometry, fori = 1,2,3, we refer to thei -
elements as ‘points’, ‘lines’ and ‘quads’ of0. However, we will use this terminology only
in the formulation of the next theorem; in the remainder of the section we will work in the
7-dimensional embedding of the polar space and call the elements of typei = 1,2,3 points,
linesandplanesof 1 respectively, as customary.

THEOREM 4.1. Let0 be the dual polar space associated with the group G= O7(q). Fix
a point∞.

(i) There exists a 4-class association schemeD on the q6 points far from the point∞
whose parameters are as depicted in Figure6.

(ii) The classes of the schemeD are G∞-orbits

The classes ofD are denoted byCi (i = 0,1,2g,2h,3) and will be described later in this
section.

Forλ ∈ {0,1,2,3} let dλ be the set of pairs of planes at distanceλ. Any two planes at dis-
tance 3 span a subspace ofV of dimension 6 on which the quadratic form is non-degenerate.
We call such a subspace a ‘hyperbolic hyperplane’ because the quadratic form induced on it is
hyperbolic. The points and planes on it are the elements of the building of typeD3 associated
to the groupO+6 (q). Recall that there are two classes of planes; two planes belong to the same
class if and only if the codimension of their intersection in either plane is even. Clearly, two
planes that are disjoint must belong to different classes.

We will now define what we call the position of a plane with respect to a pair of planes at
maximal distance. Fix two disjoint planesO and∞ and let2 be the hyperbolic hyperplane
on these two planes. LetU be a plane. We say thatU has position[i, j ], (i, j = 0,1,2,3)
with respect to the pair(O,∞) if U ∈ di (O) andU ∈ d j (∞). Further, ifi + j = 5 we say
thatU has position[i, j ]h (resp.[i, j ]g) if U ⊆ 2 (resp.U 6⊆ 2). We denote the set of planes
in positionposby Xpos. It is clear that the setsX[i, j ] with i + j = 3,4,6 together with the
setsX[2,3]g , X[2,3]h , X[3,2]g , X[3,2]h partition the set of all planes.
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We can define the classesCi (i = 0,1,2g,2h,3)of the schemeD from the setsCi (O) in the
same way as we did for theSp2n(q) geometry. These classes are easilyseen to be symmetric.

C0(O) = X[0,3](O),

C1(O) = X[1,3](O),

C2g(O) = X[2,3]g(O),

C2h(O) = X[2,3]h(O),

C3(O) = X[3,3](O).

Next, we describe the action of the point-wise stabilizerG∞,O of {O,∞} on these classes.

PROOF (OF THEOREM 4.1 PART (ii)). We only considerthe action ofG∞,O on the set of
planes inC3(O). The other cases are similar. Let⊥ denote the orthogonality relation associ-
ated withthe quadraticform. Let A be a plane disjoint from∞ andO. Let2 be the hyperbolic
hyperplane containing∞ andO. Putl A := A∩2 and letp∞ = l⊥A ∩∞ and pO = l⊥A ∩ O.
SinceG is transitive on pairs of opposite flags((pO,O), (p∞,∞)), everyG∞,O orbit on
C3(O) has a planeA′ with A′ ∩ {pO, p∞}⊥ = A′ ∩ 2. The geometry of points and lines in
{p∞, pO}

⊥ is the dual of anSp4(q) geometry so we can apply the results from the section
on the symplectic geometry here (we can use this to study theG∞,O orbits onC2g(O) and
C2h(O) as well). Letl∞ = p⊥O ∩∞ and letl O = p⊥∞ ∩ O. Then the linesl∞, l O andl A are
parallel lines inside a gridT (⊆ 2). Now Gl O,l∞ acts asO3(q) on the points ofT⊥, namely
3-transitively. Furthermore, the point-wise stabilizer ofT⊥ acts asO+4 (q) on T and hence
acts 3-transitively on any set of pairwise parallel lines. In particular, its subgroup stabilizing
l∞ and l0 is transitive on the lines ofT parallel to these lines. ThusG∞,O is transitive on
C3(O). 2

We note that Theorem4.1remains valid if we replaceO7(q) by the special orthogonal group
SO7(q).

In the remaining part of this section, for any line of0∞, we will determine the distribution
of its point-set among the classes ofD.

Lines onO have distribution[DO : i, O].

[0,3] [1,3] [1,2]
[DO : i, O] 1 q − 1 1

Let p be a point onO. The geometry of planes and lines onp has typeDO5(q) ∼= Sp4(q).
Thus, we can apply the results from Section3 to this situation. Let∞p be the unique plane
on p with position[2,1]. Let θ be the hyperbolic lineO∞p of the Sp4(q) geometry. Then
the correspondence between thepositions of the planes in theDO7(q) geometry onp and the
points inSp4(q) is as follows:

DO7(q) [0,3] [1,3] [1,2] [2,1] [2,2] [2,3]h [2,3]g
Sp4(q) [0,O] [1,O] [1′] [0,∞p] [1,∞p] [0, t] [1, t]

wheret is some point onθ different fromO and∞p.
The lines ofDO7(q) correponding to the lines ofSp4(q) with distributions[Sp : ii, o] and
[Sp : iii] will be saidto have distributions[DO : ii, O] and[DO : iii] respectively.

Let l be a line disjoint fromO and∞. Then eitherl ⊆ 2 or l intersects2 in a point. In the
first casel has distribution[DO : iv, O]. A plane with position[2,3]h is contained in2 so
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each of itsq2 lines missingO has this distribution. A planex with position[3,3] lies on one
such line: it isx ∩2.

[2,2] [2,3]g [2,3]h [3,3] [3,2]h [3,2]g
[DO : iv, O] — — 1 q − 1 1 —
[DO : v,O] — 1 — q − 1 — 1
[DO : vi, O] 1 — — q — —

If l meets2 in a point there are two possibilities. Consider the planes onl that meet
O ∪ ∞. There are either twoor one of these. We then get the distributions[DO : v,O] and
[DO : vi, O]. Theq2 lines on a plane with position[2,3]g that do not meetO necessarily
have distribution[Do : v,O].

Now consider a planex with position[3,3]. Putlx = x∩2. ThenT = (l⊥x ∩O, l⊥x ∩∞)
⊥
∩2

is a grid that meetsO and∞ in lines l O andl∞. Thus on each pointa of lx there is a linem
that meets bothO and∞. For each such pointa, this linem is unique, otherwise we would
find a singular subspace in2 that meets bothO and∞ in a line. Lines likem are contained
in 2 and so no point ofx \ lx is contained in such a line.

Consider the unique pointc = T⊥ ∩ x. Clearly this point is coplanar to all lines inT so
in particular it is contained inq + 1 planes with position[2,2]meetingx in a line. If a plane
has position[2,2] and contains the pointa of lx, then it must lie onm. Hence, if there is more
than one line with distribution[Do : vi] on x meetinga, then we find a singular 4-space, a
contradiction. Thus we find preciselyq+1 lines with distribution[Do : vi] and the remaining
q2
− 1 lines must have distribution[Do : v].

For later reference we will say that points on a plane with position[3,3] such asa have
type (a), points such asc have type (c) and the remaining points on the plane have type (b).

Now one can compute for any two classes of the schemeD how many neighbours a plane
of one class has in the other class. After that, some double counting yields the sizes of the
classes.

5. THE POINTS FAR FROM A POINT IN THE F4(q) GEOMETRY

In the remainder of this paperq will be even. In this section we will define the classes of
the schemeA of Theorem1.1. LetG be the Chevalley groupF4(q). Let o ∈ P∞. Theno and
∞ determine ahyperbolic lineθ . Let N = N(〈θ〉) andC = C(〈θ〉) be the normalizer and
centralizer respectivelyof the subgroup〈θ〉 in G.

The relations ofA will be constructed from the orbits of points under the action ofN. These
orbits have been studied in detail by Cooperstein [3]. In Table2, for each orbitX, x ∈ X and
λ = 0,1,2,3,4 we give|dλ(x) ∩ θ | and|X|.

We say that a point ofXi (i ∈ {0,1,1′,2h,2g,2′,2′′,3,3′,3′′,4}) is in position[i ] (with
respect toθ). We often refine this by specifying (some of) the points onθ that are closest to
it. Thus, for instance, a pointx is in position[1, t] if d1(x) ∩ θ = {t} andθ \ d1(x) ⊂ d4(x)
and it is in position[3′, t1, t2] if d3(x) ∩ θ = {t1, t2} andθ \ d3(x) ⊂ d4(x). Further a point
x is in position[3′, t] if it is in position [3′] andt ∈ d3(x) ∩ θ . We denote the set of points in
positionposby Xpos.

Clearly we have the following partitions:

Xi =
⋃
t∈θ

Xi,t (i = 0,1,1′,2,2′,3)

X3′ =
⋃
t1,t2

X3′,t1,t2.
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TABLE 2.
The orbits of the stabilizer of a hyperbolic line in the groupF4(q) (q even).

Orbit 0 1 2 3 4 Size of orbit
X0 1 — — — q q+ 1
X1 — 1 — — q (q − 1)(q + 1)2(q2

+ 1)(q3
+ 1)

X1′ — 1 — q — (q + 1)2(q2
+ 1)2(q3

+ 1)
X2h — — 1 — q (q + 1)(q6

− 1)
X2g — — 1 — q (q + 1)(q4

− 1)(q6
− 1)

X2′ — — 1 q — (q + 1)2(q2
+ 1)2(q6

− 1)
X2′′ — — q + 1 — — (q6

− 1)/(q − 1)
X3 — — — 1 q q3(q + 1)(q4

− 1)(q6
− 1)

X3′ — — — 2 q − 1 q7(q + 1)(q4
− 1)(q3

+ 1)/2
X3′′ — — — q + 1 — q3(q6

− 1)(q2
+ 1)(q + 1)

X4 — — — — q + 1 q7(q − 1)(q4
− 1)(q3

− 1)/2

Since the group〈θ〉 (∼= SL2(q)) is 2-transitive on theq + 1 points of the hyperbolic line
θ we have(q + 1)|Xi (t)| = |Xi | (t ∈ θ , i = 0,1,1′,2,2′,3) and

(q+1
2

)
|X3′(t1, t2)| = |X3′ |

(t1, t2 ∈ θ).
Let us point out the difference between the setsX2h,t and X2g,t (t ∈ θ ). Fix t ∈ θ and

let y ∈ X2g,t ∪ X2h,t ⊆ d2(t). Then there is a unique symplectonS containingt andy. Let
s= projS(t

′) for somet ′ ∈ θ . Then there is no other possibility but thats has position[2′′] so
thats = projS(t

′) for everyt ′ ∈ θ \ {t}. Now the position of any other point inS is entirely
determined by its position with respect tot ands (cf. Lemma2.1).

SinceS is a geometry of typeO7(q) with q even, we can also view it as a geometry of type
Sp6(q). Let st be the symplectic hyperbolic line ons andt . ThenX2h,t ∩ S= st \ {s, t} and
X2g,t∩S= X2,t∩S\X2h,t (‘h’ for ‘hyperbolic’, ‘g’ for ‘generic’). We have|X2h,t∩S| = q−1
and|X2g,t ∩ S| = (q4

− 1)(q − 1). Since there are(q6
− 1)/(q − 1) symplecta ont we find

|X2g,t| = (q4
− 1)(q6

− 1) and|X2h,t| = (q6
− 1) (cf. Table2).

The classes ofA are denoted byCi , C̄i (i = 0, 1, 2g, 2h, 3, 3′, 4) and are defined from
the setsCi (o) in the same way as we did for theSp2n(q) geometry. Again these classes are
symmetric.

Ci (o) = Xi,o (i = 0,1,2g,2h,3)

C̄i (o) =
⋃

t∈θ−{o,∞}

Xi,t (i = 0,1,2g,2h,3)

C3′(o) =
⋃

t∈θ−{o,∞}

X3′,o,t

C̄3′(o) =
⋃

t1,t2∈θ−{o,∞}

X3′,t1,t2

C4(o) = X4.

Note that in caseq = 2, the setC̄3′ is empty.

6. THE L INES FAR FROM A POINT IN THE F4(q) GEOMETRY

Let θ be the hyperbolic line spanned by∞ ando. Thedistributionof a line L will be the
distribution of its point set among the setsXpos, where[pos] is one of[0, t], [1, t], [1′, t],
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[2h,t], [2g,t], [2′, t], [2′′], [3, t], [3′, t1, t2], [3′′], [4], for certaint, t1, t2 ∈ θ .
In this section we determine all distributions that occur among the lines that contain a point

at maximaldistance (d4) from some point ofθ . Moreover, for any pointx at maximal distance
from some point ofθ and for any distribution, we determine the number of lines onx having
that distribution.

First we explain the strategy we will follow. LetO be a line, plane or symplecton and let
Ot = projO(t) for everyt ∈ θ . If we know the distance betweent andOt and we also know
the mutual arrangement of the projectionsOt , then, in view of Lemma2.1, we can determine
the position of all points onO and the distribution of all lines onO simply by considering
their distance to the projectionsOt . For this we only need some knowledge of the geometry
O.

Since we know the geometry ofO very well, we will often be content with determining the
distance betweent andOt and the arrangement of the projectionsOt relative to one another
only.

6.1. Lines inside a symplecton meetingθ . Let Sbe a symplecton meetingθ in a pointt . Let
s = projS(t

′) for somet ′ ∈ θ \ {t}. Thens has position[2′′] and hences = projS(t
′) for all

t ′ ∈ θ \ {t}. Using the fact thatq is even, we viewS as the symplectic geometrySp6(q) and
observe that we can determine the distribution of any line inSby looking at its position with
respect to the symplectic hyperbolic line spanned bys andt .

In the following table theDP-entry is the number of points in positionP on a line with
distributionD.

[0, t] [1, t] [1′, t] [2g,t] [2h,t] [2′, t] [2′′]
[i, t] 1 q − 1 1 — — — —
[ii, t] — — q + 1 — — — —
[iii, t] — q 1 — — — —
[iv, t] — — 1 q − 1 1 — —
[v, t] — — 1 q — — —
[vi, t] — 1 — q − 1 — 1 —
[vii, t] — — 1 — — q − 1 1
[viii, t] — — 1 — — q —

In the following two tables theDP-entry is the number of lines with distributionD on a
point in positionP.

[0, t]
[i, t] (q3

+ 1)(q2
+ 1)(q + 1)

[1, t] [2g,t] [2h,t]
[i, t] 1 0 0
[iii, t] q(q3

− 1)/(q − 1) 0 0
[iv, t] 0 1 (q4

− 1)/(q − 1)
[v, t] 0 q(q + 1) 0
[vi, t] 1 q3 0

6.2. Lines with a point at distance1 from θ . Let x ∈ d1(t) for somet ∈ θ . We consider
linesL on x that are not contained in a symplecton ont .

LEMMA 6.1. Let L be a line on x∈ d1(t) for some t ∈ θ that is not contained in a
symplecton on t.Then L\ {x} is contained in one of X1′ , X2′ , X3′′ , X3,t or X3′,t and the latter
holds if and only if x∈ X1,t.



156 R. J. Blok

PROOF. The group〈t〉 fixes t andx and acts sharply 1-transitively on the points ofboth
θ \ {t} andL \ {x} (see Cooperstein [3]). Thisproves the first part. Ifx ∈ X1,t, thenx ∈ d4(t ′)
for everyt ′ ∈ θ . This means that we can only haveL \ {x} ⊂ X3,t ∪ X3′,t . Let y ∈ L \ {x}
such thatθ ⊂ d3(y) ∪ d4(y). Clearly{t} ⊆ d3(y) ∩ θ , but if we have equality, then the action
of 〈t〉 shows thatL ⊂ d4(t ′) for all t ′ ∈ θ \ {t}. This contradiction impliesy ∈ X3′,t .

Conversely, ify ∈ X3′,t , then there existst ′ ∈ θ with y ∈ d4(t ′) ∩ L. By transitivity the
unique point ofd3(t ′) ∩ L is in the〈t〉 orbit of y. Hencex ∈ d4(t ′) and we are done. 2

We find the following (possible) distributions for lines:

∀t ′ 6= t ∀t ′ 6= t ∀t ′ 6= t
[1, t] [1′, t] [1′, t ′] [2′, t ′] [3, t] [3′, t, t ′] [3′′]

[ix] — 1 1 — — — —
[x, t] — 1 — 1 — — —
[xi, t] — 1 — — — — q
[xii, t] — 1 — — q — —
[xiii, t] 1 — — — — 1 —

A point y ∈ d3(t) is collinear to precisely one point ofd1(t). Also, a pointx ∈ X1,t lies on
q6 lines not contained in a symplectonon t . In the following table theDP-entry is the number
of lines with distributionD on a point in positionP.

[1, t] [3, t] [3′, t, t ′]
[xii, t] — 1 —
[xiii, t] q6 — 1

6.3. Lines with a point at distance2 from θ . Let x ∈ d2(t) for somet ∈ θ . Let S be the
symplecton ont andx and letL be a line onx not contained inS. Let V be the unique plane
on L that meetsS in a line and call this lineM . We assume thatV \ M contains a pointy
in d4(t ′) for somet ′ ∈ θ . Let z ∈ M be the unique point ofd1(t) ∩ V . If z ∈ X1′,t , then it
follows from Lemma6.1thatV \M ⊆ X3′′ ∪ X3,t. By assumption thenV ∩ X3,t 6= ∅. Hence
d3(t ′)∩ V is a line for everyt ′ ∈ θ \ {t}. In fact the linesd3(t ′)∩ V ⊂ d3(t) all coincide; call
this line M ′. If M has distribution[viii, t] thenM ′ = M . Otherwise it has distribution[xi, t].
In the former case we only find lines with distribution[xvi, t] on V and in the latter case we
find lines with distribution[xiv, t] or [xv, t].

[2′, t] [2g,t] [2h,t] [3, t] [3′′]
[xiv, t] — — 1 q − 1 1
[xv, t] — 1 — q − 1 1
[xvi, t] 1 — — q —

Supposez ∈ X1,t. ThenM has distribution[vi, t] (because of the pointy). It follows from
Lemma6.1thatV \M ⊂ X3′,t . Hence the linesMt ′ = d3(t ′)∩V with t ′ ∈ θ \ {t} aredistinct
and have distribution[xvii, t, t ′]. The remaining lines have distribution[xviii, t] (or [xiii, t]).

∀t ′ 6= t
[2′, t] [2g,t] [3′, t, t ′] [3′, t, t ′]

[xvii, t, t ′] 1 — q —
[xviii, t] — 1 — 1

As for the number of linesL with a certain distribution onx ∈ d2(t), we note thatL
uniquely determinesM and the distribution ofM . On the other handM lies on q2 planesV
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outsideS and we know how many lines onx andV have a certain distribution. Thus by a
double countof the linesM and L on x with the appropriate distribution we can see that a
point of X2h,t lies onq3(q4

− 1)/(q − 1) lines with distribution[xiv, t] and that a point of
X2g,t lies onq3(q3

−1)/(q−1) lines with distribution[xv, t] and onq6 lines with distribution
[xviii, t].

The following lemma is included for use in Subsection6.7.

LEMMA 6.2. Let x ∈ X2′′ . Then the collection of symplecta on x meeting a point ofθ forms
a (symplectic) hyperbolic line of theSp6(q) geometrythat is the residue of x. In particular,
every symplecton S on x satisfies d4(t) ∩ S= ∅ for one or all t ∈ θ .

PROOF. The residue ofx is a geometry of typeSp6(q). For t ∈ θ let St be the unique
symplecton onx andt .

SupposeS is a symplecton containing planesVi , (i = 1,2) suchthatVi = S∩Sti for certain
ti ∈ θ (i = 1,2). Let L i ⊂ Vi be the line contained ind1(ti ). These lines span a grid in which
every line parallel toL i has distribution[ii, t] for somet ∈ θ . Thus for everyt ∈ θ , both S
andSt contain the plane onx and the line with distribution[ii, t]. This proves the first part of
the lemma.

As a consequence, a symplecton onx has a plane in common withSt for one or allt ∈ θ . 2

6.4. Lines with a point at distance3′ from θ . Let x ∈ X3′,t1,t2 for certaint1, t2 ∈ θ . Let zi

(i = 1,2) be the unique point ind1(x) ∩ X1,ti (see Lemma6.1). We consider all linesL on x
that do not contain a point ofX4.

LEMMA 6.3. Given a point t∈ θ let x ∈ d3(t), let z be the point in d1(t) ∩ d1(x) and
let L be aline on x. ThenL ∩ d4(t) = ∅ if and only if L is contained in a symplecton on z;
otherwise L∩ d4(t) = L \ {x}.

PROOF. Let A be an apartment ont and the flag(x, L , S) for some symplectonS. ThenA
also contains the unique pointz ∈ d1(t)∩d1(x) becausezx= projx(t) andz= projzx(t). We
see thatwe could have chosenS on z if and only if L ∩ d4(t) = ∅. Clearly, if d4(t) ∩ L 6= ∅
thenx is the unique point ofL ∩ d3(t). 2

We claim thatL is contained in a symplectonS on x andz1 or z2. By Lemma6.3, if L has
a point in X4, thenL is not contained in a symplecton onzi (i = 1,2). Conversely, ifL is
not contained in a symplectonon z1 or z2, we find thatL \ {x} has a unique point ind3(t) for
everyt ∈ θ \ {t1, t2}, hence it has at least one point inX4.

By symmetry assume thatS is a symplecton onL andz1. In view of Lemma2.1, we first
want to locate the projections oft ∈ θ on S. Sincexz1 has distribution[xiii, t1] we have
∅ 6= d4(t)∩ L ⊂ S for every t ∈ θ \ {t1} and∅ 6= d1(t1)∩ S (t1 6∈ S). Henceπ(t) = d2(t)∩ S
is a point for everyt ∈ θ \ {t1} and M = d1(t1) ∩ S is a line with distribution[iii, t1]. The
unique pointp on M with position[1′, t1] is collinear with the pointπ(t) for everyt ∈ θ . Let
5 be the line onp andπ(t), for somet ∈ θ . Then5 has distribution[x, t1] and so its point
set is{p, π(t) | t ∈ θ \ {t1}}.

Now using Lemma2.1 we can easily determine the distribution of any line inS. We will
simply list the results.

On a plane containingxz1 we find a line with distribution[vi, t1], hence the plane is
described in Subsection6.3. On x there is one line with distribution[xvii, t1, t2], namely
d3(t2) ∩ V , and the remainingq − 1 lines have distribution [xviii, t1].
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A line with distribution[xviii, t1] or [xvii, t1, t] (t ∈ θ \ {t1}) is contained in aunique plane
on xz1. Hence onx ∈ X3′,t1,t2 there are(q3

− 1)/(q − 1) lines with distribution [xvii, t1, t2]
andq3

− 1 lines with distribution[xviii, t1].
Let V be a plane ofS on5. The lined1(z1) ∩ V is contained ind2(t1) and has distribu-

tion [viii, t1]. We haveV \ (d2(t1) ∪ 5) ⊂ X3′′ . Hence we find lines onV with distribu-
tion [xix, t1, t ′].

∀t ′ 6= t
[2′, t] [2′, t ′] [3′′] [3′, t, t ′] [3′, t, t ′] [3, t]

[xix, t, t ′] 1 1 q − 1 — — —
[xx, t, t ′] — — 1 q — —
[xxi, t] — — — — 1 1

Let V be a plane onπ(t2) andx. The line onπ(t2) andx has distribution[xvii, t2, t1]. The
line d1(p) ∩ V lies onπ(t2) and has distribution [xix, t1, t2]. We haveV \ d1(p) ⊂ X3′,t1,t2.
Thus inV and onx we findq − 1 lines with distribution[xx, t1, t2].

If L is a line onx not coplanar toz1 or π(t2), then it lies opposite to5 (in S) and we see
that it has distribution[xxi, t1].

A line L with distribution[xx, t] or [xxi, t] lies in a unique symplecton onxz1. Inside such
a symplecton we know how many lines onx have that distribution. Using this and a double
count we find that onx ∈ X3′,t1,t2 there are(q3

− 1)(q+ 1) lines with distribution[xx, t1, t2]
andq2(q3

− 1) lines with distribution[xxi, t1].
The lines onx containing a point ofX4 will be treated in Subsections6.6and6.7.

6.5. Lines with a point at distance3 from θ . Let x ∈ X3,t for somet ∈ θ . We consider all
linesL on x that do not contain a pointfrom X4.

Firstly, there is precisely one line onx containing a point ofd1(t) and it has distribution
[xii, t].

We next consider a lineL on x that contains a pointy ∈ d2(t). In Subsection6.3 we
have seen thatL has distribution[xiv, t], [xv, t] or [xvi, t]. We determine how often each
distribution occurs among the lines onx.

Let z be the unique point ind1(x) ∩ d1(t). Then these linesL lie in a planeV on the line
xz. Let M be the unique line ofV that is contained in some symplectonS on zt (there is
only one suchS). Then the distribution ofM (which is[iv, t], [v, t] or [viii, t]) determines the
distribution of the lines inV as described in Subsections6.2and6.3.

Let E be a line with distribution[ix] on z (in fact it is unique). LetMx = M and letME

be the line onS that is coplanarto E. We will see that the distribution ofME determines that
of Mx.

Regarding the geometry of symplecta, planes and lines onz as a geometry of typeSp6(q),
call these objects points, lines and planes respectively. Furthermore two objects sharing a Line
will be called co-Linear. Using thatq is even, we regard this geometry as aDO7(q) geometry
and apply the results of Section4. The planesE, zt andzx are pairwise disjoint. Then we
know from Section4 that the pointS has one of three possible positions: (a) The planesMx

andME sharea line that meetszt (in S), zxandE in a point. (b) The planeMx is not co-linear
to ME nor is it co-linear to all planes that are co-linear tozt andME. (c) The planeMx is not
co-linear toME but is co-linear to all planes that are co-linear tozt andME.

Now we note thatME being coplanar toE contains the unique points of S in position[2′′].
It follows that ME has distribution[vii, t]. We note that we can characterize case (c) (resp.
(b)) by the fact that they occur precisely whenMx has (no) point on the symplectic hyperbolic
line ts of S.
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Thus in case (a)Mx has distribution[viii, t]; in case (b)Mx has distribution[v, t]; in case
(c) Mx hasdistribution[iv, t].

In Section4 we have seen that cases (a), (b) and (c) occurq + 1, q2
− 1 and 1 time(s)

respectively. Hence onx, in total, there are(q + 1)q lines with distribution[xvi, t], there are
(q2
−1)q+ (q−1)= q3

−1 lines with distribution[xv, t] and there is 1 line with distribution
[xiv, t] with respect toθ andt .

Let us finally consider a lineL on x that has a point ind3(t) but none ind2(t). ThenL is
contained ind3(t). By considering an apartment on the pointt and the flag(x, L)we see thatL
is contained in a unique symplectonSonzx (rememberz is the unique point ind1(t)∩d1(x)),
but not in a plane onzx (cf. Lemma6.3).

Let Mt andME be the lines onS that are coplanar tozt andE respectively. ThenME has
distribution[vii, t] or [x, t]. For everyt ′ ∈ θ \ {t}, projS(t

′) = d2(t ′) ∩ S is a point because
∅ 6= d4(t ′)∩L ⊂ S. Further,t 6∈ Sbutd1(t)∩S 6= ∅ and projS(t) = Mt . SinceL is opposite to
ME (in S) the distribution ofME determines that ofL by projection. It follows that ifME has
distribution [x, t], thenL has distribution[xxi, t]. Moreover, if ME has distribution[vii, t],
thenL has distribution[xxii, t].

[3′′] [3, t]
[xxii, t] 1 q

There are essentially two cases for the configuration formed by the linesE, zt and the sym-
plecton onzx, corresponding to case (a) and cases (b), (c) of Section4 respectively. Incase
(a) ME andMt lie in a common planeV of S. ThusME shares a symplecton withzt and has
distribution[vii, t]. In case (b-c)ME is not coplanarto Mt . ThusME is not contained in a
symplecton onzt and hence has distribution[x, t].

In each symplecton onzx there areq3 lines onx that are not coplanar tozt. Hence onx, in
total (cf. again Section4), there are(q+1)q3 lines with distribution[xxii, t], and there areq5

lines with distribution[xxi, t].

6.6. Somewhat far planes.A plane issomewhat farwith respect toθ if, and only if for
everyt ∈ θ the plane contains a point ofd4(t) and has no points in∩t∈θd3(t) (that is, with
position[3′′]).

Suppose thatV is a somewhat far plane. Clearly, for everyt ∈ θ the setL t = projV (t) =
d3(t) ∩ V is a line and no three of these lines lie on a common point. In particular no two of
these lines coincide, so thatV has one point with position[3′, t1, t2] for every pairt1, t2 ∈ θ
(
(q+1

2

)
in total), one point with position[3, t1] for every t1 ∈ θ (q + 1 in total) and

(q
2

)
remaining points which have position[4].

Let us look at the lines onV . Clearly, the lineL t has distribution[xxi, t]. The collection of
linesO = {L t | t ∈ θ} is an ovoid or(q+1)-arc in the dual of the projective planeV . Sinceq
is even it follows from Theorem 3 in Section 1.3 of Thas [7] (see also Segre [5] and Thas [6])
that there is a lineN such thatO ∪ {N} is a hyperoval of the dual of the projective planeV .
Theline N meets the lines inO in q+ 1 distinct points and hence has distribution[xxv]. Any
other lineL on V has the property that each of its points lies on either 0 or 2 lines inO∪{N}.
HenceL has distribution[xxiv, t, π], whereπ is a partition ofθ \ {t}.

∀{t1, t2} ∈ π ∀t ∈ θ
[3′, t1, t2] [3, t] [3, t] [4]

[xxiii, t, π] 1 1 — q/2
[xxiv] — — 1 —



160 R. J. Blok

In the remainder of this subsection we will determine, for any point inX3∪X3′ , the number
of neighboursin X3′,t1,t2, X3,t1 (t1, t2 ∈ θ) andX4 using these somewhat far planes.

Let x ∈ X3,t for somet ∈ θ andlet L be a line with distribution[xxi, t] on x. We first
determine the number of somewhat far planes onL. Let z be the unique point ind1(x)∩d1(t).
ThenL andzx are contained in a unique symplectonS. Let V be a plane onL. Clearly, for
t ′ ∈ θ \ {t} we havex ∈ d4(t ′) ∩ V . Further,V has a point ind4(t) if and only if V 6⊆ S and
in that case we haveX3′′ ∩ V ⊆ X3′′ ∩ L t = ∅ so thatV is somewhat far.

Thus a line with distribution[xxi, t] is contained inq2 planes that are somewhat far fromθ .
We saw in Subsection6.5 thatx lies onq5 lines with distribution[xxi, t] and sox lies onq7

somewhat far planes.
Now let y ∈ d4(t) be a point collinear tox. We determine how many somewhat far planes

lie on the linexy. Any symplectonS′ on zx contains a unique lineL ′ that lies on a planeV ′

with y. The lineL ′ has distribution[xxi, t] or [xxii, t] (see Subsection6.5) and asV already
containsy ∈ d4(t), this plane is somewhat far precisely in the former case.

SinceL ′ is a line ofS′ that is not coplanar toxz we conclude from the end of Subsection6.5
(cases (b) and (c)) that there areq2 symplectaS′ such thatL ′ has distribution[xxi, t]. Hence
there areq2 planes onx andy that are somewhat far.

It follows that x ∈ X3,t (t ∈ θ ) is collinear toq7/q2
= q5 points with position[3, t1] or

[3′, t1, t2] for givent1, t2 ∈ θ \ {t}, and is collinear toq7
· (q(q− 1)/2)/q2

= q5(q(q− 1)/2)
points with position[4].

One can now compute the number of lines with distribution[xxiv, t] and[xxv] on x ∈ X3,t.
Now let x ∈ X3′,t1,t2 for certaint1, t2 ∈ θ . We have seen in Subsection6.4 that x lies on

q2(q3
− 1) lines with distribution[xxi, ti ] (i = 1,2). Hencex lies onq4(q3

− 1) planes that
are somewhat far fromθ (see above).

Now let y ∈ d4(t1) ∩ d4(t2) be a point collinear tox. The line L on x and y satisfies
d4(t) ∩ L 6= ∅ for all t ∈ θ so thatd3(t) ∩ L is a single point.

We determine how many planesV ′ on L are somewhat far fromθ . For this it remains to
determine how many planesV ′ on L contain a point in position[3′′]. As L contains a point in
d4(t) for everyt ∈ θ , the setL ′t = d3(t)∩ V ′ is a line ofV ′ for everyt ∈ θ . Now V ′ contains
a point with position[3′′] if and only if the linesL t1 andL t2 coincide.

Let L i (i = 1,2) be the line onx andzi . The lineL ′ti (i = 1,2) is the unique line ofV ′ that
is contained in a symplecton onL i . By considering again the dual of the residue ofx, which
is a geometry of typeO7(q), and using the results of Section4, we see that there areq + 1
planes onL that contain a line that is contained in a symplecton both onL1 andL2, that is
whereL t1 = L t2; these were theq + 1 lines onthe unique point of type (c) (see the end of
Section4). The remainingq2 planes onx andy are apparently somewhat far fromθ .

Hence the pointx ∈ X3′,t1,t2 is collinear toq4(q3
− 1) · 1/q2

= q2(q3
− 1) points in either

one of the positions[3, t3], [3′, t3, t4], with t3, t4 ∈ θ \ {t1, t2}. Moreover,x ∈ X3′,t1,t2 is
collinear toq4(q3

− 1)(q(q − 1)/2)/q2
= q2(q3

− 1)(q(q − 1)/2)points with position[4].
One can now compute the number of lines with distributions[xxiv, t] and [xxv] on x ∈

X3′,t1,t2.

6.7. Somewhat far symplecta.We say that a symplecton issomewhat farfrom the hyper-
bolic line θ if it contains a point with position[4]. As a side remark, we note that it is easy to
see that a symplecton is somewhat far if and only if it contains a somewhat far plane.

LEMMA 6.4. Assume that q is even. Let S be a somewhat far symplecton with respect to
a hyperbolic lineθ . Letπt be the projection of t onto S (t∈ θ ) and put5 = {πt | t ∈ θ}.
View Sas embedded into the natural Sp6(q) moduleV. Then, no three elements of5 are on
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a singular or hyperbolic line anddim(〈5〉V) = 3.

Let ⊥ denote the orthogonality relation with respect to the symplecticform onV and put
P = 〈5〉V ⊆ V.

PROOF. Let x ∈ S be a point with position[4]. Then, for everyt ∈ θ , πt = d2(t) ∩ S.
For everyt ∈ θ , the pointsin d1(πt ) ∩ S (resp.S\ ({πt } ∪ d1(πt )) are precisely the points in
d3(t) ∩ S (resp.d4(t) ∩ S). Since for everyt ∈ θ a pointπt is in position[2′′], [2′, t] or [2, t]
and for everyt ′ ∈ θ \ {t} andi ∈ {0,1,2}we haveπt ∈ di (πt ′) if and only ifπt ′ ∈ di (πt ), the
following are the cases that may occur:

(i) All πt ’s coincide.
(ii) The πt ’s are distinct but pairwise collinear.

(iii) The πt ’s are pairwise non-collinear.

From Lemma6.2we may concludethat case (i) never occurs.
The points of5 do not form a single projective line because otherwise we would have

πt ∈ d1(x) for somet ∈ θ , contradictingx ∈ d4(t). Then, recalling that a point ofS that
is collinear to three points of5 must be collinear to all points of5, we find thatP has
dimension 3. 2

For a point inX4 we determine the number of its neighbours inX3,t1, X3′,t1,t2 and X4
(t1, t2 ∈ θ). Let x be a point inS∩ X4. Thenx 6∈ P so that dim(x ⊕ P) = 4, and hence the
number of points inX3′′ ∩ S that are collinear tox (i.e., in (x ⊕ P)⊥) is q + 1. Then by a
double count of the pairs of lines onx containing a point fromX3′′ and symplecta containing
these lines, we find that a point inX4 is collinear to(q + 1)(q3

+ 1) points inX3′′ . Here we
use the fact that a line onx contains precisely one point fromd3(t) for everyt ∈ θ . Similarly
one can see that a point inX4 is collinear toq2(q3

+ 1) points ofX3′,t1,t2 and ofX3,t1 for any
givent1, t2 ∈ θ .

The remainder of this subsection is devoted to finding the distributions of the remaining
lines of 0∞. We consider linesL that contain a point ind4(t) for every t ∈ θ . Note that
|d3(t) ∩ L| = 1 andL \ d3(t) ⊂ d4(t), for anyt ∈ θ .

If d3(t)∩ L is the same point for allt ∈ θ , thenL has distribution[xxiii]. From the previous
we conclude that a pointx ∈ X4 lies on(q + 1)(q3

+ 1) such lines.

[3′′] [4]
[xxv] 1 q

If we assumeL ∩ X3′′ = ∅, then, considering the results from Subsection6.6, we are
apparently looking at those lines of a somewhatfar planeV not having distribution[xxi, t]
for somet ∈ θ . Theselines are described in Subsection6.6and we are done.

Using the results on somewhat far symplecta at the beginning of this subsection one can
compute the numberof lines with distributions[xxiv, t] and[xxv] on points inX4.

7. PROOF OF THEMAIN THEOREM

PROOF (OF THEOREM 1.1). The classes of the scheme partition the setP∞ × P∞ and
are unionsof orbitals under the action of the stabilizerG∞ of the point∞. Table2 lists all
orbits of the stabilizer ofa hyperbolic lineθ for q even cf. Cooperstein [3]). Leto ∈ P∞
together with∞ span the hyperbolic lineθ . Then it is clear that the setsCi (o) and C̄i (o)
(i = 0,1,2g,2h,3,3′,4) asdefined in Section5 partitionP∞ and we are done becauseG∞
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FIGURE 7. The SchemeA.

is transitive onP∞. Thus we are dealing with an association scheme obtained by joining
certain classesof a group scheme (forG∞) on thepoint setP∞.

The sizes of the classes are easily computed again using Table2. As for the other param-
eters, for every pointx ∈ P∞, we have determined all possible distributions of the point-set
of a lineon x among theG∞-orbitals and for each such distribution we have determined how
many lines with that distribution containx. From these facts it is easy, though tedious, to
compute for any pair of classes how many neighbours a point in the one class has in the other
class. 2

In Figure7 the classes are represented as follows (from bottom left to top right):C0(o),
C̄0(o); C1(o), C3′(o), C̄1(o); C2g(o), C̄2g(o); C2h(o), C̄2h(o); C3(o), C̄3(o); C4(o); C̄3′(o).
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