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Far from a Point in the F4(q) Geometry

RIEUWERT J. BLOK

We take the long-root geometry associated with the Chevalley gfaup), g even, and consider
the subgeometry induced on the set of points at maximal distance from apgiugnWe shall de-
scribe this geometry and in particular determine the parameters of a 12-class association scheme on
its point set obtained by joining certain classes of a group scheme.

(© 2001 Academic Press

1. INTRODUCTION

Let A be the building of typé=4 obtained from the Chevalley grotfa(q) and let its Dynkin
diagram be labeled as in Figute

FIGURE 1. The Dynkin diagram of typ&,.

Thenl" = (P, £) will be the point—line geometry whose points and lines are the objects of
A of type 1 and2 respectivelywith inherited incidence (long-root geometry); we will call it
the F4,1(q) geometry. We fix a pointo and letl's, = (Poo, L) be the subgeometry whose
point setP, consists of the points df at maximal distance fromo and whose line sef
consists of the lines il that meetP, in at least two points. Our aim is to describe this
geometry in some detail. More precisely, we will prove the following result.

THEOREM1.1. LetTI" be the long-root geometry of the Chevalley grougdy with g even.
Then, for any given pointo, there exists d2-class association schemeon theq® points
at maximal distance fromo whose parameters are as depicted in the diagram in Se@tion

The proof of this theorem will be given in Secti@n During its preparation we will gather
sewral nice properties of the geomeftry, and its substructures.

In his dissertation, Riebeek [4] determined the parametetleofchem@ in the special
case wherg = 2 with the aid of a computer. One of the motivations behind the presgrer
is to provide a geometric argument for his result.

We will now give an outline of this paper. In Sectigmve gather some elementary properties
of this F4 1(q) geometry, notably on distances and projections. The subgeometries of points
far from a giverpoint in the polar space related &p;(q) and in the dual polar space related
to O7(q) respectively, are subgeometrieslaf. These are studied in SectioBand4.

In Section5 the classes of the scheme are naturally defined as (unions of) orbitals of the
parabolic group stabilizing the poirb. Here we use a classification of the orbits of the
stabilizer of a hyperbolic line.

In Section6, for a pointx in any given class and any line incident with we determine
the possible distributions of thaoint set of this line among the classes of the scheme. Fur-
thermore, we determine on how many linesxoa given distribution occurs. This is done in a
purely geometric way.
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FIGURE 2. The 1-shadow space of the Coxeter complex with diagfam

REMARK. The assumption that be even only takes effect from Sectiéronwards for
the following reason. Whereas the treatmenbf the geometries associated $q(q) and
O7(q) it is easy to deal witlg even and odd simultaneously, it seems that Fartq) this
is not so. Although rather similar, the schemesdaogven andy odd do not have the same
classes (this already transpires from the table of orbits in Cooperstein [3]). Furthermore, the
use of hyperbolic lines inside symplecta (see Secii@nd Subsectio6.1) and the use of
hyperbolic quadrics in the dual of point-residugse Subsectioi.5 and Sectiord) in the
case ofg even, which quite shortens asthrifies the exposition, does not seem to hawe an
kind of counterpart in the case qfodd.

2. PRELIMINARIES

Let A be a spherical building with diagrai defined over an index sét We will regard
a building as a diagram geometry rather than as a chamber system.i Giethei-shadow
space ofA is the point—line geometry whose points are ittdements ofA and whose lines
are thel *-flags, wherd * is the set of labels of the nodes that are adjacent to-tioale inM.

We call thei -shadow space of a building with diagrdvhan M; geometry.

Many incidence properties @ can be uncovered by studying an apartment. An apartment
of the buildingA is a substructure which is isomorphic to the Coxeter complex belonging to
the same diagram as. Given any two flag®k andS of A there is an apartmem containing
both R and S (see Tits [8, Chapter 3]). From the convexity of apartments (see Tits Corol-
lary 3.5) it follows not only that the relation betwe&andSin A is the same as i\, but
also that the projectionf S onto R belongs toA. Theprojectionof Sonto R is a flag called
projr(S) incident with R with the following property: thé-object on prog(S) is the unique
object of that type at minimal distance froBamong alli -objects incident withR. (Thus, if
there are two or more objects of typat minimal distance fron$, then the flag prgj(S) has
noi-object.)

Let us turn to the case thdd = F4. We will describe the Coxeter complex with diagram
F4 by first presenting its 1-shadow space (see Browtat. [1, Section 10.3]).

Complete the graph in Figuby inserting edges in the following places: betweerand
every vertex of thecubeC and likewise foroo’ and C’, between the verticeisandi’ for
1<i < 8and, finallyforall x € {a, b, c,d, e, f}, between the vertex and all vertices that
lie on the face ofC or C’ with labelx.
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The Coxeter complex with diagrafy can be recovered from this graph as follows. The
1-cliques, 2-cliques3-cliques and octahedra in this graph #re objects of type 1, 2, 3 and 4
respectively, and two objects are incident whenever one of them is contained in the other.

Both in the Coxeter complex and i, an object of type 1, 2, 3 or 4 will be calledpaint,
line, planeandsymplecton, respectively.

We define distance relations 0, 1, 2s, 2ns, 3 between points of a Coxeter complex in the
following way (by the discussion above this also appliesAo The distances 0, 1 and 3
are just the distances in the collinearity graph. Furthermore, two points at distance 2 in the
collinearity graph are said to be at distance 2s (resp. 2ns) from one another if they are (not)
incident to a common symplecton. Fbor= 0,1,2,3,4 and any pointp let d; (p) be the
collection of points at distance 0, 1, 2s, 2ns, 3 frpprespectively.

LEMMA 2.1. Given a point p, alinel, a plane V and a symplecton S,

(i) if dg(p) NI #£ @ then &(p) N1 consists of a point and\ d3(p) C da(p);
(ii) ifda(p) NV # @ then d(p) NV consists of a line and Y dz(p) C ds(p);
(i) ifda(p) NS # Bthen dh(p) NS = di(p) NS =0, do(p) N S consists of @oint s,
ds3(p)NS=di(s)NSandd(p)NS=dx(s)NS;
(iv) ifdo(p) N S=da(p) N S= @, thend(p) N Sisalinem, g(p) N S= Ngemd1(aQ).

The proof follows rather easily studying the presentation of the apartment of tifpabove.
Related properties were studied by Cohen in [2] when axiomatizing metasymplectic spaces.

We can view theF, 1(q) geometry, as well as the natural polar space associated to the
groupSp,, (), as long-root geometries (see Cooperstein [3]). In this way every point of the
geometry can be viewed as a long-root subgroup of the corresponding Chevalley group and the
geometric relation@distances) between two points can be recognized as algebraic relations in
the group. All algebraic relations of this kind are given in the following theorem. A proof for
the exceptional Chevalley groups can be found in [3].

THEOREM2.2. Let G be afinite Chevalley group of rank at le@stnd notequal to?F4(q).
Let X and Y be the centers of root subgroups of orfleFhen one of the following holds:

(1) (X,Y) is elementary abelian, and is the union ef fjlong-root subgroups that pairwise
intersect trivially.

(2) (X,Y) is elementary abelian, and the only long-root subgroupiitains are X and
Y.

(3) (X, Y) is isomorphic to a Sylow subgroup of ordet ip SLz(q) and Z= Z((X, Y, ))
has relationl both to X and Y.

(4) (X.Y) = SLy(q) (or PSLy(q) in POy (q)).

For each of the distance relations between points of the georttatrgorresponding alge-
braic relation between the root groups is given in the following table.

Root-group Distance Distance
relation intheF4 1(q) intheSp,(Q)
geometry geometry

0 0 0

1 1 —

2 2s 1

3 2ns —

4 3 2
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Note that pointsX, Y with root group relation 4 are at maximal distance (opposite). The
g + 1 long-root subgroups ifX, Y) form whatis usually called théyperbolic linespanned

by X andY. The description of the distances in thg 1(q) geometry was given above; the
description for theSp,,(q) geometry is given in the next section.

3. THE GEOMETRY FAR FROM A POINT IN SPan(Q)

Let A be the building of typeC, obtained from the Chevalley groupp,(q) and let its
Dynkin diagram be labeled as in Figuge LetT" = (P, £) be the 1-shadow space of
(long-root geometry); this is the natural polar geometry associated with the Gpui).

We will call it the Sp,,(q) geometry. Fix a pointo and letl's, = (P, L) be the point—
line geometry whose point-set comprises all points at maximal distance (distance 2)from
and whose line-set comprises those lines that rfgtin at least two points. We prove the
following result.

FIGURE 3. The Dynkin diagram of typ€p.

THEOREM3.1. Consider the natural polar geometiyfor the groupG = Sp,(q). Fix a
point co.

(i) The association schent for the group G, actingon the "1 points far fromoo

has 3 or 5 classes according tehether q is even or odd.

(i) The parameters of are as depicted in Figure$and>5.

The classe€g, C; andCy, Co (g even) andCy SO Ci. nsg Co. SG Co nsq(d odd) of the scheme
S are described later in th&ection. Foiy odd, by joining the classes; sq andC; .nsqinto Ci
(i =0, 1) we obtain the same scheme asdaven.

Forx € {0,1, 2}, letd, be the collection of pairs of points dfat distance. in the collinear-
ity graph. Given two non-collinear pointsandy we can define ayperbolic line xyon them
in three ways:

() by its natural embedding intB G(2n—1, q): itis the set ofj+1 points on the projective

linex®y.

2(n 1) _ g2

FIGURE 4. The schem§& for g even.
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FIGURE 5. The schem& for q odd.

TABLE 1.
The orbits of the stabilizer of a hyperbolic line in the grdsipn ().
Orbit O 1 2 Size of orbit
Xo 1 — q g+1
X1 — 1 g @+bE™?-1
Xy — q+1 — @"?-1/@-1

(i) geometrically: letA® be the collection of points collinear to every element of the point
setA. Thenxy = {x, y}*t.

(iif) group-theoretically: gien a pointx we have a groudy of transvectionsgx (1) : y +—
y + Ay, X)X (A € Fq). Two groupsTy, Ty generate a group = (Ty, Ty) that is
isomorphic toS Ly(q) if and only if x andy are non-collinear; in that cade contains
g + 1 groupsT; (one for each point on x @ y) and these points form xy.

We note that the groups of transvections mentioned in (iii) are precisely the long-root sub-
groups of the Chevalley grou®p,(q). We will use each of these presentations. The subgroup
of G generated by the root-groups associated to the points of a poiktwitbe denoted by
(X).

Fix a hyperbolic lined. The stabilizer ob (or normalizer of(9)) in G has three orbits on
the points. We call thenXg, X; and Xy . In Tablel, for each orbitX, x € X andi = 0,1,2
we give |d; (X) N 8] and|X|. Recalling thaty € di(x), y € dz(x) means: (i)(x,y) = 0
resp.(x,y) # 0, (in the embeddind® G(2n — 1, q), with (-, -) being the symplectic form),
(i) y € x* resp.y ¢ x* (in the geometry) and (ii) Ty, Tx] = {1} resp.[Tx, Tyl > {1} (in
the group), we can interpret this table accordingly.

Now we are ready to define the classes of the sciereri = 0,1 andt € 6 let X ; be the
set of points inX; whose unique closest point éris t; a point inX; ¢ is said to haveosition
[i, t] with respect t@. By transitivity of Gg on the points o we havel Xo t| = | Xo|/16] = 1
and| Xyt = [X1|/[0] = g*"2 - 1.

Let

Co(0) = Xo,0 (= {0}),

C1(0) = Xq,0,

C1(0) = Uten\{oo.0} X1t

Co(0) = Uteg\foo,0) X0t (=6 \ {00, 0}).
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Forqg odd we have’f:i,é(o) = Ut Xi t, wheret ranges over all ‘squares’ and ‘non-squares’
of 6 \ {oo} (0o corresponding to 0) in the respe&icases = sq,nsg. The classes of the
schemes are defined as follov®: = Ugep,, {0} x Ci(0), Ci = Uoep,, {0} x Ci(0), Cic =
Uoep,, {0} X Ci,e(o), fori = 0,1 ande = sq,nsq. ClearlyC;, C; withi = 0,1 are all
symmetric. Sincés, is transitive on the sé®, these classes are (unions Gf),-orbitals.

PROOF (OF PART (i) OF THEOREM 3.1). We clearlyhaved;(00) = Utepjoo} (Xo,t U X1,t)
= Uj=0,1(Ci(0) U Ci (0)). We first show thaGsot 0 (t € 0) is transitive on the seXy t.

PutCy = (T, | Vt € 6 (u,t) = 0), i.e., the subgroup generated by the long-root subgroups
that centralize every long-root subgroup(#. This group, which is naturally isomorphic
to Spr_»(Q), fixes every point ob and acts transitively on the points 6f. Thus it acts
transitively on the collection of lines containing any given poisté.

Let t be such a point and létbe a line ont. Let n be a hyperbolic line ir9+ (so that
(n) < Cy) that meetd in a pointu. Then the stabilizetn), fixes every vector on and acts
transitively on the vectors af. Hence(n), is transitive on the points df\ {t, u}. ThusCy is
transitive onXy t.

The groupGy acts asSLy(q) on the points of. If q is even, this action is sharply 3-
transitive, and ify is odd it is 2-transitive and the stabilizer of two points has two orbits on the
remaining points.

Thus ifq is even, the orbits 06, o 0N da(c0) areC; (0), Ci(0) (i = 0, 1) and ifq is odd,
the set<; (0) (i = 0, 1) split into two orbitsCi sq(0) andCi ns(0). O

Finally we consider the lines df«. Given a (hyperbolic) liné, a pointp is collinear to
either one or all points df It follows that the feasible distributions of the points of a singular
line among the sets of points with positipd, t], [1,t] and[1'] are those listed in the table
below.

In the following table theD P-entry is the number of points in positidd on a line with
distributionD.

vt €6
[0,t] [1,t] (1] [1,t']
[Sp:i, t] 1 g-1 1 —

[Sp:ii] — — g+1 —
[Sp:iii, t] — q 1 —
[Sp:iv] — — — 1

All these distributions occur, except that for< 2 the distributiongSp : ii] and[Sp : iii, t]
do not occur for lack of planes.

In the following two tableghe D P-entry is the number of lines with distributidd on a
point in positionP.

[0,1] [1.8 [1]
[Sp:i,t] @™ D-1))q-1) 1 1

(1,t] [1]

[Sp:ii] — @2 _1)/q-1)
[Sp:iii, ] a@*™? -1)/@~-1) @2 _ 1)
[Sp:iv] q?"-3 _

Now one easily proves part (ii) of Theore3rl.
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FIGURE 6. The schem®.

4. THE GEOMETRY FAR FROM A POINT IN DO7(q)

Let A be thebuilding of typeBs obtained from the Chevalley group;(q). Fori = 1,2, 3,
its i -elements are the totally singuliaspaces with respect to a non-degenerate quadratic form
on a vector spac¥ of dimension 7 defined over the filith where incidence is symmetrized
inclusion. Letl" be the 3-shadow space 4f it is the dual polar space associated wiit(q).
We will call it the DO7(q) geometry. In this geometry, far = 1,2, 3, we refer to thea-
elements as ‘points’, ‘lines’ and ‘quads’ ®f. However, we will use this terminology only
in the formulation of the next theorem; in the remainder of the section we will work in the
7-dimensional embedding of the polar space and call the elements df &yde 2, 3 points,
linesandplanesof A respectively, as customary.

THEOREMA4.1. LetT" be the dual polar space associated with the group=GD7(q). Fix
a pointoo.

() There exists a 4-class association schdinen the ¢ points far flom the pointo
whose parameters are as depicted in Fig@re

(i) The classes of the scheMere Gy,-orbits

The classes db are denoted b (i = 0,1, 2g,2h,3) and will be described later in this
section.

For € {0,1,2, 3} letd, be the set of pairs of planes at distancény two planes at dis-
tance 3 span a subspace\wbf dimension 6 on which the quadratic form is non-degenerate.
We call such a subspace a ‘hyperbolic hyperplane’ because the quadratic form induced oniitis
hyperbolic. The points and planes on it are the elements of the building ofxypssociated
to the groupogr (q). Recall that there are two classes of planes; two planes belong to the same
class if and only if the codimension of their intersection in either plane is even. Clearly, two
planes that are disjoint must belong to different classes.

We will now define what we call the position of a plane with respect to a pair of planes at
maximal distance. Fix two disjoint plan€} andoo and let® be the hyperbolic hyperplane
on these two planes. L&t be a plane. We say that has positioni, j1, (i, j = 0,1,2,3)
with respect to the paifO, oo) if U € di(O) andU e dj(co). Further, ifi + j = 5 we say
thatU has positiorii, j1n (resp.fi, j1g) if U € © (resp.U £ ©). We denote the set of planes
in positionposby Xpos It is clear that the setX|; j; withi + j = 3,4, 6 together with the
setsX2,3)y, X[2.3hs X[3.2)y» X[3.23, Partition the set of all planes.
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We can define the class€s(i = 0, 1, 2g, 2h, 3) of the schem® from the set£; (O) in the
same vay as we did for th&py,(q) geometry. These classes are easi#lgn to be symmetric.

Co(0) = X[0,3)(0),
C1(0) = X[1,3)(0),
C2g(0) = X[2,3,(0),
C2n(0) = X|2,31,(0),
C3(0) = X(3,3(0).

Next, we describe the action of the point-wise stabilizgs o of {O, oo} on these classes.

PROOF (OF THEOREM 4.1 PART (ii)). We only considethe action ofG., o on the set of
planes inC3(0O). The other cases are similar. Letdenote the orthogonality relation associ-
ated withthe quadratidorm. Let A be a plane disjoint fromo andO. Let ® be the hyperbolic
hyperplane containingo andO. Putla := AN ©® and letp, = Ix N oo andpo =15 N O.
SinceG is transitive on pairs of opposite flagepo, O), (Poc, 00)), everyGo, o orbit on
C3(0) has a planéY with A’ N {po, Psc}t = A’ N . The geometry of points and lines in
{Pso» Po}™ is the dual of arSp,(q) geometry so we can apply the results from the section
on the symplectic geometry here (we can use this to studgthe orbits onCpg(O) and
Con(O) as well). Letl, = p N oo and letlo = px, N O. Then the linesy, 1o andl A are
parallel lines inside a grid (S ©). Now Gy, 1., acts asOz(q) on the points off L, namely
3-transitively. Furthermore, the point-wise stabilizerTof acts asoj(q) on T and hence
acts 3-transitively on any set of pairwise parallel lines. In particular, its subgroup stabilizing
|l andlg is transitive on the lines of parallel to these lines. ThuS o is transitive on
C3(0). O

We note that Theorerh.1remains valid if we replac®7(q) by the special orthogonal group
SO(q).

In the remaining part of this section, for any linelof,, we will determine the distribution
of its point-set among the classesuf

Lines onO have distributioriDO : i, O].

[0,3] [1,3] [L.2]
[DO:,0] 1 gq-1 1

Let p be a point orO. The geometry of planes and lines pras typeD Os(q) = Sy(q).
Thus, we can apply the results from Sect®to this situation. Lebop be the unique plane
on p with position[2, 1]. Let® be the hyperbolic lin@ooy of the Sp,(q) geometry. Then
the correspondence between gusitions of the planes in th2 O(q) geometry orp and the
points inSp(q) is as follows:

DO7(@ [0,3] [1,3] [1,2] [21] [2,2]  [2,3lh [2,3]g
Sp(@ 10,01 [1,0] (1] [0,00p] [1,00p] [O0,t] [1,t]

wheret is some point o different fromO andoop.

The lines ofDO7(q) correponding to the lines @p,(q) with distributions[Sp : ii, 0] and
[Sp: iii] will be saidto have distribution$DO : ii, O] and[DO : iii] respectively.

Letl be a line disjoint fromO andoo. Then eithet € ® orl intersect®d in a point. In the
first casd has distributionDO : iv, O]. A plane with position2, 3], is contained in® so
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each of itsg? lines missingO has this distribution. A plane with position[3, 3] lies on one
such line: itisx N ©.

[DO :iv, O] — — 1 g-—-1 1 —
[DO:v, O] — 1 — g-—1 — 1
[DO : vi, O] 1 — — q — —

If | meets® in a point there are two possibilities. Consider the planed tmt meet
O U oo. There are either twor one of these. We then get the distributi¢p®© : v, O] and
[DO : vi, O]. Theq? lines on a plane with positiof2, 3]g that do not meeD necessarily
have distributioriDo : v, O].

Now consider a planewith position[3, 3]. Putly = xN®. ThenT = (I4N0O, I{Noo)tNe
is a grid that meet® andoo in lineslg andl. Thus on each poird of Ik there is a linem
that meets botl©® andoco. For each such poirg, this linem is unique, otherwise we would
find a singular subspace  that meets botl® andoo in a line. Lines likem are contained
in ® and so no point ok \ |y is contained in such a line.

Consider the unique poimnt = T+ N x. Clearly this point is coplanar to all lines ih so
in particular it is contained iq + 1 planes with positioii2, 2] meetingx in a line. If a plane
has positiori2, 2] and contains the poift of Iy, then it must lie oom. Hence, if there is more
than one line with distributiofiDo : vi] on X meetinga, then we find a singular 4-space, a
contradiction. Thus we find precisealy+ 1 lines with distributior{Do : vi] and the remaining
g2 — 1 lines must have distributiofDo : v].

For later reference we will say that points on a plane with posit&3] such asa have
type (a), points such ashave type (c) and the remaining points on the plane have type (b).
Now one can compute for any two classes of the schBrhew many neighbours a plane
of one class has in the other class. After that, some double counting yields the sizes of the

classes.

5. THE POINTS FAR FROM A POINT IN THE F4(q) GEOMETRY

In the remainder of this paperwill be even. In this section we will define the classes of
the schem@e of Theoreml.1. LetG be the Chevalley groups(q). Leto € P. Theno and
oo determine éhyperbolic lined. Let N = N((9)) andC = C({0)) be the normalizer and
centralizer respectivelgf the subgroug) in G.

The relations oA will be constructed from the orbits of points under the actiohlofrhese
orbits have been studied in detail by Cooperstein [3]. In Tabfer each orbitX, x € X and
A =0,1,2,3,4 we give|d, (x) N O] and| X].

We say that a point oK; (i € {0,1,1,2h,2g,2,2",3,3,3",4}) isin position[i] (with
respect t@). We often refine this by specifying (some of) the pointsdaihat are closest to
it. Thus, for instance, a pointis in position[1,t] if di(x) N6 = {t} andd \ di(X) C da(x)
and it is in position3, t1, to] if d3(X) N O = {t1, t2} and \ dz(x) C da(x). Further a point
X is in position[3, t] if it is in position [3'] andt € d3(x) N . We denote the set of points in
positionposby Xpos

Clearly we have the following partitions:

Xi= Xt (=011,2273)
teo

X3/ = U X3’,t1,t2-

t1,t2
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TABLE 2.

The orbits of the stabilizer of a hyperbolic line in the graeg(q) (q even).
Orbit O 1 2 3 4 Size of orbit
Xo 1 — = — qg q+1
X1, — 1 — = g @-1Ha@+1%@?+D@+1)
Xy — 1 — q —  @+D*PP+ 1%+ 1)
Xon — — 1 — g @+D@®-1
Xog — — 1 — g @+L@* -1@* -1
Xp — — 1 q — @+ D%9*+ 13- 1)
Xpr — — g+1 — — @-1/@-1
X3 — — — 1 g a+h@*-1H@* -1
Xy — — — 2 g-1 q'@+D1@*-D@+1)/2
Xy — — — aq+1 — d*@®-H@+Db@+1)
Xs2 — — — — q+1 d'@-1@*-DH@-1/2

Since the grougd) (= SLa(q)) is 2-transitive on the + 1 points of the hyperbolic line
6 we have(q + D)|Xi )| = |Xi| (t €0,i =0,1,1,2,2,3) and(q;1)|x3,(t1, to)| = | Xz|
(t1, t2 € 0).

Let us point out the difference between the s¥f6; and Xog¢ (t € ). Fixt € 6 and
lety € XpgtU Xont € da(t). Then there is a unique symplect&containingt andy. Let
s = projg(t’) for somet’ € 6. Then there is no other possibility but thettas positiori2”] so
thats = projg(t’) for everyt’ € 6 \ {t}. Now the position of any other point i is entirely
determined by its position with respectttands (cf. Lemma2.1).

SinceSis a geometry of typ@®©7(q) with q even, we can also view it as a geometry of type
Sps(g). Let st be the symplectic hyperbolic line aandt. ThenXznt N S = st\ {s, t} and
X2g,tNS = X2,tNS\ Xzn ¢ (‘W for ‘hyperbolic’, ‘g’ for ‘generic’). We have| Xzh tNS| = -1
and|XogtN Sl = (q* — 1)(q — 1). Since there arg® — 1)/(q — 1) symplecta ort we find
|X2g.tl = (@* — 1)(@® — 1) and|Xzn 1| = (q° — 1) (cf. Table2).

The classes of are denoted b;, C; (i = 0, 1, 2g, 2h, 3, 3 4) and are defined from
the set<C; (0) in the same way as we did for th&Sp,,(q) geometry. Again these classes are
symmetric.

Ci(0) = Xi,o (i =0,1,29.2h,3)
CGo= [J Xt (=0129.2h3
tef—{0,00}
Czo= [|J Xso
te6—{0,00}

Cz(0) = U X3 1.t
t1,toe6—{0,00}

Cs(0) = Xa.

Note that in casg = 2, the seCz is empty.

6. THELINES FAR FROM A POINT IN THE F4(q) GEOMETRY

Let 6 be the hyperbolic line spanned by ando. Thedistribution of a line L will be the
distribution of its point set among the se{pos where[pos]is one of[0,t], [1,t], [1', t],
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[2h,t], [29,1], [2, 11, [2"], [3, ], [3, t1, t2], [3"], [4], for certaint, t1, to € 6.

In this section we determine all distributions that occur among the lines that contain a point
at maximaldistance (d) from some point of. Moreover, for any poink at maximal distance
from some point ob and for any distribution, we determine the number of linex draving
that distribution.

First we explain the strategy we will follow. L&D be a line, plane or symplecton and let
O = projo (t) for everyt € 6. If we know the distance betwe¢rand O; and we also know
the mutual arrangement of the projectidds then, in view of Lemm&.1, we can determine
the position of all points or© and the distribution of all lines o® simply by considering
their distance to the projectior®;. For this we only need some knowledge of the geometry
0.

Since we know the geometry @ very well, we will often be content with determining the
distance betweenhand O; and the arrangement of the projectiddsrelative to one another
only.

6.1. Linesinside a symplecton meetthgLet Sbe a symplecton meetirggin a pointt. Let
s = projg(t’) for somet’ € 6 \ {t}. Thens has positior{2”] and hences = projg(t’) for all
t’ € 6\ {t}. Using the fact thaj is even, we viewS as the symplectic geomet&p;(q) and
observe that we can determine the distribution of any lin® lny looking at its position with
respect to the symplectic hyperbolic line spanned bydt.

In the following table theD P-entry is the number of points in positidd on a line with
distributionD.

[0,t] [1,t] [Y.t] [29,t] [2h,t] [2,t] [2"]
[i, t] 1 g-1 1 — — — —
[ii, t] — — q+1 — — — —
[iii, t] — q 1 — — — —
[iv, t] — — 1 qg-1 1 — —
[v, t] — — 1 q — N —
[vi, t] — 1 — qg-1 — 1 —
[vii, t] — — 1 — — g-1 1
[vii, t] — — 1 — — q —

In the following two tables thé P-entry is the number of lines with distributidd on a
point in positionP.

[0, ]
.1 @+D@®+D@Q+1)
[1,t] [2g,1] [2h,t]

[i, t] 1 0 0
lii, ] q@®*-1/@—-1) 0 0
[iv, t] 0 1 @*—1)/@-1)
[V, ] 0 q(@+1) 0
[Vi, t] 1 q3 0

6.2. Lines with a point at distancefrom 6. Let x € di(t) for somet € 6. We consider
linesL onx that are not contained in a symplectonton

LEMMA 6.1. Let L be a line on xe di(t) for some t e 6 that is not contained in a
symplecton on iThen L\ {x} is contained in one of X, Xz, X3/, X3t or Xz and the latter
holds if and only if xe X1 t.
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PrROOF The group(t) fixest andx and acts sharply 1-transitively on the pointshbaith
6\ {t} andL \ {x} (see Coopersteir8]). Thisproves the first part. Ik € Xy, thenx € da(t")
for everyt’ € 0. This means that we can only hakie\ {x} C X3t U Xz . Lety € L\ {x}
such thaty C ds3(y) Uda(y). Clearly{t} C d3(y) N6, but if we have equality, then the action
of (t) shows thal. C dy(t’) forallt’ € 6 \ {t}. This contradiction impliey € Xz ;.

Conversely, ify € Xz ¢, then there exists € 6 with y € da(t’) N L. By transitivity the
unique point ofdz(t") N L is in the(t) orbit of y. Hencex € da4(t’) and we are done. O

We find the following (possible) distributions for lines:

Vt' £t Wt #t Vt' £t
(1,t] [Tt [2,t] [2,t] [3,t] [3,t,t] [3]
[iX] — 1 1 — — — —
[X, t] — 1 — 1 — — —
[xi, t] — 1 — — — — q
[xii, t] — 1 — — o} — —
[xiii, t] 1 — — — — 1 —

A pointy € ds(t) is collinear to precisely one point di(t). Also, a pointx € X1t lies on
q® lines not contained in a symplectont. In the following table theD P-entry is the number
of lines with distributionD on a point in positiorP.

[L,t] [3,t] [3.t,t]
[xii, t] — 1 —
[xiii, t]  ¢® — 1

6.3. Lines with a point at distanc&from 6. Let x € da(t) for somet € 6. Let S be the
symplecton ori andx and letL be a line orx not contained ir. Let V be the unique plane
on L that meetsSin a line and call this lineM. We assume thaf \ M contains a poiny
in da(t’) for somet’ € 6. Letz € M be the unique point afly(t) N V. If z € Xy 4, then it
follows from Lemma6.1thatV \ M C X3 U X3 t. By assumption thel N X3 # @. Hence
ds(t’) NV is aline for event’ € 6 \ {t}. In fact the linesdds(t’) NV c ds(t) all coincide; call
this line M’. If M has distributiorviii, t] thenM’ = M. Otherwise it has distributiofxi, t].
In the former case we only find lines with distributi@xvi, t] onV and in the latter case we
find lines with distributionxiv, t] or [xv, t].

[2,t] [2g.t] [2ht] [3,t] [3"]

[xiv, t] — — 1 q-1 1
[xv, t] — 1 — gqg-1 1
[xvi, t] 1 — — q —

Suppose € Xi1t. ThenM has distributiorvi, t] (because of the poiry). It follows from
Lemma6.1thatV \ M C Xz 1. Hence the lined/y = d3(t’) NV with t’ € 6\ {t} aredistinct
and have distributiofixvii, t, t']. The remaining lines he distribution[xviii, t] (or [xiii, t]).

vt £t

2,t] [2g.t] [3.t,t] [3,t,1]
[xvii, t, t'] 1 — q —
[xviii, t] — 1 — 1

As for the number of lined with a certain distribution orx € dx(t), we note thatL
uniquely determines/ and the distribution oM. On the other hand! lies on g2 planesV
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outsideS and we know how many lines anandV have a certain distribution. Thus by a
double counbf the linesM andL on x with the appropriate distribution we can see that a
point of Xon ¢ lies ong®(q* — 1)/(q — 1) lines with distribution[xiv, t] and that a point of
Xog 1 lies ong3(q3—1)/(q—1) lines with distributior{xv, t] and onq® lines with distribution
[xviii, t].

The following lemma is included for use in Subsect®i.

LEMMA 6.2. Let x € Xor. Then the collection of symplecta on x meeting a poifitfofms
a (symplectic) hyperbolic line of th&p;(q) geometrythat is the residue of x. In particular,
every symplecton S on x satisfigstdd N S= ¢ forone or all t € 6.

PROOF The residue ok is a geometry of typeSp;(q). Fort € 6 let § be the unique
symplecton orx andt.

SupposeSis a symplecton containing planes (i = 1, 2) suchthatV; = SN§; for certain
ti €6 (i =1,2).LetL; C V; be the line contained id; (t;). These lines span a grid in which
every line parallel td_; has distributiorii, t] for somet € 6. Thus for everyt € 6, bothS
and$ contain the plane or and the line with distributiofii, t]. This proves the first part of
the lemma.

As a consequence, a symplectonomas a plane in common with for one or allt € 6. O

6.4. Lines with a point at distanc® from6. Letx € Xz 1, 1, for certainty, t> € 6. Letz
(i = 1,2) be the unique point idy(x) N X1 4 (see Lemmd.1). We consider all linek onx
that do not contain a point of4.

LEMMA 6.3. Given a point te 6 let x € ds(t), let z be the point in git) N d1(x) and
let L be aline on x. TherL N da(t) = ¢ if and only if L is contained in a symplecton on z;
otherwise LN ds(t) = L \ {x}.

PROOF Let A be an apartment anand the flagx, L, S) for some symplecto®. ThenA
also contains the unique poink di(t) Nd;i(x) becausex = proj, (t) andz = proj,(t). We
see thatve could have choseBon zif and only if L N d4(t) = @. Clearly, ifds(t) "L £ @
thenx is the unique point of. N d(t). a

We claim thatL is contained in a symplecto®on x andz; or z;. By Lemma6.3, if L has
a point in X4, thenL is not contained in a symplecton an(i = 1, 2). Conversely, ifL is
not contained in a symplectam z; or zp, we find thatlL \ {x} has a unique point ids(t) for
everyt € 0 \ {t1, tz}, hence it has at least one pointXa.

By symmetry assume th&is a symplecton o. andz;. In view of Lemma2.1, we first
want to locate the projections 6fe 6 on S. Sincexz has distribution[xiii, t;] we have
B #£dat)yNL c Sforeveryt € 6\ {t1} and? # di(t1) N S(t1 € S). Hencer (t) = do(t) N S
is a point for everyt € 6 \ {t1} andM = di(t1) N Sis a line with distributioniii, t1]. The
unique pointp on M with position[1, t1] is collinear with the point (t) for everyt € 6. Let
IT be the line onp andx (t), for somet € 6. ThenIl has distributiorx, t;] and so its point
setis{p,(t) |t €0\ {t1}}.

Now using Lemma2.1 we can easily determine the distribution of any lineSnwe will
simply list the results.

On a plane containingz; we find a line with distribution[vi, t1], hence the plane is
described in Subsectio.3. Onx there is one line with distributiofixvii, t1, t2], namely
ds(t2) NV, and the remaining — 1 lines have distribtion [xviii, t1].
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A line with distribution[xviii, t1] or [xvii, t1, t] (t € 6\ {t1}) is contained in ainique plane
onxz. Hence orx € Xz 1, 1, there argg® — 1)/(q — 1) lines with distritution [xvii, ty, to]
andg® — 1 lines with distributior{xviii, t1].

Let V be a plane oSonTIl. The linedi(z1) NV is contained indx(t1) and has distribu-
tion [viii, t1]. We haveV \ (d2(t1) U IT) C Xgzs. Hence we find lines oW with distribu-
tion [xix, t1, t'].

vt £t
[2,t] [2,t] [3"1 [3,t,t'] [3,t,t'] [3,1]
[xix, t,t'] 1 1 g-1 — — —
[xx,t,1] — — 1 q — —
[xxi, t] — — — — 1 1

Let V be a plane om (t2) andx. The line onr (t2) andx has distributior{xvii, t2, t1]. The
line di(p) NV lies onm (t2) and has distribtion [xix, ty, t2]. We haveV \ di(p) C Xzt t,-
Thus inV and onx we findg — 1 lines with distributior[xx, t1, t].

If L is a line onx not coplanar taz; or = (t2), then it lies opposite tdl (in S) and we see
that it has distributiorixxi, t1].

A line L with distribution[xx, t] or [xxi, t] lies in a unique symplecton oty . Inside such
a symplecton we know how many lines @rhave that distribution. Using this and a double
count we find that ox € Xz ¢, 1, there argq® — 1)(q + 1) lines with distribution[xx, tz, to]
andg?(q® — 1) lines with distribution[xxi, t1].

The lines orx containing a point o4 will be treated in Subsectior&6and6.7.

6.5. Lines with a point at distanc®fromé. Letx e X3t for somet € 6. We consider all
linesL onx that do not contain a poiritom Xj.

Firstly, there is precisely one line oncontaining a point ofl;(t) and it has distribution
[xii, t].

We next consider a lin& on x that contains a poiny € dx(t). In Subsectior.3 we
have seen that has distribution[xiv, t], [Xv, t] or [xvi, t]. We determine he often each
distribution occurs among the lines an

Let z be the unique point i1 (x) N d1(t). Then these linek lie in a planeV on the line
xz. Let M be the unique line o¥ that is contained in some symplect&won zt (there is
only one sucl). Then the distribution oM (which is[iv, t], [v, t] or [viii, t]) determines the
distribution of the lines i/ as described in Subsectiod and6.3.

Let E be a line with distributior{ix] on z (in fact it is unique). LetMyx = M and letMg
be the line orSthat is coplanato E. We will see that the distribution d¥lg determines that
of My.

Regarding the geometry of symplecta, planes and linesama geometry of typ&ps(q),
call these objects points, lines and planes respectively. Furthermore two objects sharing a Line
will be called co-Linear. Using that is even, we regard this geometry aB &7(q) geometry
and apply the results of Sectigh The planes, zt andzx are pairwise disjoint. Then we
know from Sectiort that the pointS has one of three possible positions: (a) The plavigs
andMg sharea line that meetst (in S), zxandE in a point. (b) The plan&/y is not co-linear
to Mg nor is it co-linear to all planes that are co-lineaztandMEg. (c) The planeViy is not
co-linear toMg but is co-linear to all planes that are co-lineazt@andMEg.

Now we note thaMg being coplanar t& contains the unique poistof Sin position[2"].

It follows that Mg has distributionvii, t]. We note that we can characterize case (c) (resp.
(b)) by the fact that they occur precisely whigly has (ho) point on the symplectic hyperbolic
linets of S.
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Thus in case (aMy has distributiorviii, t]; in case (b)My has distributior{v, t]; in case
(c) My hasdistribution[iv, t].

In Section4 we have seen that cases (a), (b) and (c) occwr 1, g2 — 1 and 1 time(s)
respectively. Hence ox, in total, there aréq + 1)q lines with distribution[xvi, t], there are
(q2—1)g+ (g—1) = g% — 1 lines with distributior{xv, t] and there is 1 line with distribution
[xiv, t] with respect t@ andt.

Let us finally consider a liné on x that has a point im3(t) but none ind>(t). ThenL is
contained irds(t). By considering an apartment on the pdianhd the flagx, L) we see that
is contained in a unigue symplect&on zx (remember is the unique point iy (t) Nd1 (X)),
but not in a plane o x (cf. Lemma6.3).

Let M; and Mg be the lines or that are coplanar tat and E respectively. ThetMg has
distribution[vii, t] or [x, t]. Foreveryt’ € 6 \ {t}, projs(t’) = dx(t’) N Sis a point because
@ # ds(t’)NL C S. Furthert ¢ Sbutd; (t)NS # @ and proi(t) = M. SinceL is opposite to
Mg (in S) the distribution oMg determines that df by projection. It follows that ifMg has
distribution[x, t], thenL has distributionxxi, t]. Moreover, if Mg has distributionvii, t],
thenL has distributiorfxxii, t].

[3"1 [3,t]
[xxii, t] 1 q

There are essentially two cases for the configuration formed by thelinesand the sym-
plecton onzx, corresponding to case (a) and cases (b), (c) of Sedtrespectively. Ircase
(a) Mg andM; lie in a common plan& of S. ThusMg shares a symplecton wittt and has
distribution[vii, t]. In case (b-c)Mg is not coplanato M;. Thus Mg is not contained in a
symplecton orzt and hence has distributigr, t].

In each symplecton onx there arey® lines onx that are not coplanar tot. Hence orx, in
total (cf. again Sectiod), there argq + 1)g° lines with distribution{xxii, t], and there arg®
lines with distribution[xxi, t].

6.6. Somewhat far planesA plane issomewhat famwith respect to® if, and only if for
everyt € 0 the plane contains a point dfi(t) and has no points imycgds(t) (that is, with
position[3"]).

Suppose thaV is a somewhat far plane. Clearly, for everg 6 the setlLy = projy, (t) =
ds(t) NV is a line and no three of these lines lie on a common point. In particular no two of
these lines coincide, so th¥thas one point with positiof8', t, to] for every pairty, t; € 6
((%3%) in total), one point with positiori3,t1] for everyt; € 6 (g + 1 in total) and(9)
remaining points which have positi¢a].

Let us look at the lines ol . Clearly, the linel; has distributiorixxi, t]. The collection of
linesO = {L | t € 8} is an ovoid org + 1)-arc in the dual of the projective plaive Sinceq
is even it follows from Theorem 3 in Section 1.3 of Thas [7] (see also Segre [5] and Thas [6])
that there is a lineN such that® U {N} is a hyperoval of the dual of the projective plavie
Theline N meets the lines i® in q + 1 distinct points and hence has distributje®v]. Any
other lineL onV has the property that each of its points lies on either 0 or 2 lin€sUr{N}.
HenceL has distributiorixxiv, t, =], wherer is a partition o6 \ {t}.

Vi, to} e Vteo
(3, t1, t2] [3,t]  [3,t] [4]

[xxiii, t, 7] 1 1 — q/2
[xxiv] — — 1 —
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In the remainder of this subsection we will determine, for any poiltg Xz, the number
of neighboursn Xz 1, t,, X34 (i1, t2 € #) and X4 using these somewhat far planes.

Let x € X3t for somet € 6 andlet L be a line with distributior[xxi, t] on x. We first
determine the number of somewhat far planes obet z be the unique point id; (x) Nd1(t).
ThenL andzx are contained in a unique symplectSnLet V be a plane or.. Clearly, for
t’ € 0\ {t} we havex e d4(t’) N V. Further,V has a point irds(t) if and only if V ¢ Sand
in that case we havEz NV C X3 N Ly = @ so thatV is somewhat far.

Thus a line with distributiorixxi, t] is contained irg? planes that are somewhat far frem
We saw in SubsectioB.5thatx lies ong® lines with distribution[xxi, t] and sox lies ong’
somewhat far planes.

Now lety € da(t) be a point collinear ta. We determine how many somewhat far planes
lie on the linexy. Any symplectonS on zx contains a unique ling’ that lies on a plan¥'’
with y. The lineL’ has distributior{xxi, t] or [xxii, t] (see SubsectioB.5) and a3/ already
containsy € dy(t), this plane is somewhat far precisely in the former case.

Sincel’ is a line ofS' that is not coplanar t&z we conclude from the end of Subsect®b
(cases (b) and (c)) that there afgsymplectaS such thatlL’ has distributior{xxi, t]. Hence
there aregy? planes orx andy that are somewhat far.

It follows thatx € Xz (t € 6) is collinear toq’/q? = g° points with position[3, ;] or
[3, 1, t2] for giventy, tp € 6\ {t}, and is collinear tq’ - (q(q — 1)/2) /9% = q°(q(q — 1)/2)
points with position4].

One can now compute the number of lines with distribufiotv, t] and[xxv] onx € Xz.
Now letx € Xz 1,1, for certainty, to € 6. We have seen in Subsectié that x lies on
g2%(q® — 1) lines with distributionxxi, t] (i = 1,2). Hencex lies ong*(g® — 1) planes that

are somewhat far frorf (see abog).

Now lety € da(ty) N da(tz) be a point collinear tox. The lineL on x andy satisfies
dat) N L £ @forallt € 6 sothatds(t) N L is a single point.

We determine how many plan&& on L are somewhat far frord. For this it remains to
determine how many plan&& on L contain a point in positiof3”]. As L contains a pointin
da(t) for everyt € 6, the setL{ = dz(t) NV’ is aline of V' for everyt € 6. Now V'’ contains
a point with positior{3"] if and only if the linesL, andL, coincide.

LetL; (i = 1,2) be the line orx andz . The lineL (i = 1,2) is the unique line o¥/’ that
is contained in a symplecton dn. By considering again the dual of the residuexpfvhich
is a geometry of type7(q), and using the results of Sectidhwe see that there agg+ 1
planes orL that contain a line that is contained in a symplecton both.p@andL, that is
wherel, = Ly,; these were theg + 1 lines onthe unique point of type (c) (see the end of
Sectiond). The remaining)? planes orx andy are apparently somewhat far frain

Hence the poink € Xz 1, 1, is collinear tog*(g® — 1) - 1/9% = q2(q® — 1) points in either
one ofthe positiong3, t3], [3, t3, ta], with t3,t4 € 6 \ {t1, to}. Moreover,x € Xz t,, IS
collinear tog*(q® — 1)(q(q — 1)/2)/9° = 9%(q® — 1)(q(q — 1)/2) points with positior[4].

One can now compute the number of lines with distributipogv, t] and[xxv] on x €
X3,

ty,t2-
6.7. Somewhat far symplectale say that a symplecton somewhat fafrom the hyper-

bolic line @ if it contains a point with positiofi4]. As a side remark, we note that it is easy to
see that a symplecton is somewhat far if and only if it contains a somewhat far plane.

LEMMA 6.4. Assume that q is even. Let S be a somewhat far symplecton with respect to
a hyperbolic linef. Let 7y be the projection of t onto S @& 6) and putll = {m; | t € 6}.
View Sas embedded into the natural §n) moduleV. Then, no three elements dfare on
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a singular or hyperbolic line andim((IT)y) = 3.

Let L denote the orthogonality relation with respect to the sympldotim onV and put
P=(I)y CV.

PROOF LetXx € Sbea point with position[4]. Then, for everyt € 0, iy = da(t) N S.
For everyt € 6, the pointsin dy(;r¢) N S(resp.S\ ({7t} U di(7tt)) are precisely the points in
ds3(t) N S(resp.ds(t) N S). Since for everyt € § a pointz is in position[2”], [2/, 1] or [2, 1]
and for evenyt’ € 9\ {t} andi € {0, 1,2} we haver; € d; (7rv) if and only if 7y € d; (7ty), the
following are the cases that may occur:

() All m¢’s coincide.
(ii) The my’s are distinct but pairwise collinear.
(iii) The my's are pairwise non-collinear.

From Lemma6.2we may conclud¢hat case (i) never occurs.

The points off1 do not form a single project®& line because otherwise we would have
;€ di(x) for somet € 6, contradictingx € d4(t). Then, recalling that a point db that
is collinear to three points ofl must be collinear to all points dfl, we find thatP has
dimension 3. ]

For a point inX4 we determine the number of its neighboursXgy, Xz 4.1, and X4
(t1,t2 € 0). Letx be a point inSN X4. Thenx ¢ P so that dimk & P) = 4, and hence the
number of points inX3» N S that are collinear tx (i.e., in (x ® P)) isq + 1. Then by a
double count of the pairs of lines otcontaining a point fronKz» and symplecta containing
these lines, we find that a point Xy is collinear to(q + 1)(g® + 1) points in X3.. Here we
use the fact that a line ancontains precisely one point froda(t) for everyt € 6. Similarly
one can see that a point Xy is collinear tog?(q® + 1) points of Xz t,,1, and of Xz y, for any
giventy, ty € 6.

The remainder of this subsection is devoted to finding the distributions of the remaining
lines of I'o. We consider lined that contain a point irds(t) for everyt € 6. Note that
[d3(t) N L| = 1 andL \ d3(t) C d4(t), for anyt € 6.

If d3(t) N L is the same point for atl € 6, thenL has distributiorjxxiii]. From the previous
we conclude that a point € X4 lies on(q + 1)(g2 + 1) such lines.

[3"1 [4]
[Xxv] 1 q

If we assumeL N X3» = @, then, considering the results from Subsectto6, we are
apparently looking at those lines of a somewfaaitplaneV not having distributior{xxi, t]
for somet € 6. Thesdines are described in Subsectié® and we are done.

Using the results on somewhat far symplecta at the beginning of this subsection one can
compute the numbef lines with distributiongxxiv, t] and[xxv] on points inX4.

7. PROOF OF THEMAIN THEOREM

PrROOF(OF THEOREM1.1). The classes of the scheme partition theBgt x P~ and
are unionf orbitals under the action of the stabiliz8, of the pointco. Table2 lists all
orbits of the stabilizer o hyperbolic line for g even cf. Cooperstein [3]). Lat € Py
together withoo span the hyperbolic lin€. Then it is clear that the setj (0) and C; (0)
(i =0,1,29,2h,3,3, 4) asdefined in Sectio partition P, and we are done becauSg,
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(7 (2-2)a%(® + ¢ - 1) + (2 — 2)a%(¢® - 1)(a - 3)/2
g—1

(@® +1)(® + 1)(a+ 1)(a - 1) , . (@ +1)(® + 1)@+ (e —1)
(@ +1)(¢® — 1)

+la-2)a?(@® +a-1) qt -2 1

( 2 3 qﬁ(q ) ! 6 4 3 ! qe 2 2 3
(4= 1(a+1)(e% + 1)@ +1) {Pa-nat -0t + ) {@- 2@+ + 0@+

3.3 3,3
9°(¢° — 1) q371J kq371 a°(a® — 1)

1 g% -2

Pt -1 a3(q* - 1)

@ +qt —2¢% —1(1

-1 St -y ) \_ @ - e-1 ®a-1)

232 - 1)(a* - 1)(e® —)
?(@® Da@ 1/2
®@-1) a?(a® + 1)(a - 1) a®
(@+1)(a® +1)(a -1+ q%(a—2)/2)
a® - a(a—1)/2 a?(¢® +1) . a?(¢® + 1)@ - 1) a® - ala—1)/2

€ (a—1)(a* - 1)(&® - 1)/2

a?(e® + 1)@ (@ 2)/2

a3(a* - 1)(e® - 1)

(@® +1)(a® — 1) +2¢%(a® + - 1)(a - 8)
2?(a® - Da(a - 1)/2 | +a?(a® - 1)(a - 3)(a - 4)/2

\__@*la- =22 a?(d® - 1) \a?(a® - 1)(a - 1) la-1@-2)/2 )
a8(a - 1)(a — (e - 1(@® +1)/2
2(¢® - 1) -2 )
\_ 2¢%(a® + 0 - 1) + (¢ — 3)a%(a® - 1) 2 -2 )

FIGURE 7. The Schem@.

is transitive onP,. Thus we are dealing with an association scheme obtained by joining
certain classesf a group scheme (fd6,) on thepoint setPy.

The sizes of the classes are easily computed again using ZaBkefor the other param-
eters, for every poink € P, we have determined all possible distributions of the point-set
of a lineon x among theG . -orbitals and for each such distribution we have determined how
many lines with that distribution contaixn. From these facts it is easy, though tedious, to
compute for any pair of classes how many neighbours a point in the one class has in the other
class. O

_In Figure7 the classes are represented as follows (from bottom left to top righe,
Co(0); C1(0), C3(0), C1(0); C2g(0), C2g(0); C2n(0), C2n(0); C3(0), C3(0); C4(0); C3(0).

ACKNOWLEDGEMENT

The author would like texpress his gratitude towards A. E. Brouwer for many fruitful
discussions initiating the research that has led to the present paper.

REFERENCES

1. A.E. Brouwer, A. M. Cohen and A. NeumaiéJistance-Regular Graph&jumber 18 in Ergebnisse
der Mathematik und ihre Grenzgebiete 3, Springarlin, 1989.

2. Arjeh M. Cohen, An axiom system for the metasymplectic spa@Gesm. Ded.12 (1982), 417—
433.

3. Bruce N. Cooperstein, The Geometry of root subgroups in exceptional gro@eoim. Ded.8
(1978), 317-381.



Far from a point in the k() geometry 163

4. Remko J. Riebeek, Computations in association schemes, Ph. D. Thesis, Thesis Publishers, Ams-
terdam, 1998.
5. B. Segre, in:introductionto Galois Geometries, Atti Accad. Naz. Lincei Mem., Vol. 8,.JWP
Hirschfeld (ed.)Accad. Naz. Lincei, 1967.
. J. A. Thas, Complete Arcs and Algebraic Curves in P@j2,). Algebra,106(1987), 451-464.
. J. A. Thas, Projective geometry over a finite field,itandbookof Incidence Geometry, Chapter 7,
F. Buekenhout (ed.), North-Holland, Amsterdam, 1995.
8. J. Tits, Buildings of Spherical type anBinite BN-Pairs,Number 386 in Lecture Notes in Math,
Springer, Berlin1974.

~N O

Received 9 December 1999 and accepted 25 July 2000. Published electronically 1 December 2000

RIEUWERT J. BLOK

Department of Mathematics,

Michigan State University,

East Lansing, MI 48824-1027,
US.A.



	Introduction
	Fig. 1

	Preliminaries
	Fig. 2

	The Geometry Far from a Point in Sp$_{2n}(q)$
	Fig. 3
	Fig. 4
	Fig. 5
	Table 1

	The Geometry Far from a Point in DO$_7(q)$
	Fig. 6

	The Points Far from a Point in the $F_4(q)$ Geometry
	Table 2

	The Lines Far from a Point in the $F_4(q)$ Geometry
	Proof of the Main Theorem
	Fig. 7

	References

